Review of the Early Allotherian Mammals

Total Page:16

File Type:pdf, Size:1020Kb

Review of the Early Allotherian Mammals Review of the early allotherian mammals Percy M. Butler Acta Palaeontologica Polonica 45 (4), 2000: 317-342 Comparison of the early allotherian genera, Haramiyavia, Thomasia, Theroteinus, and Eleutherodon shows that their molariform teeth are variants of a common pattern, justifying the inclusion of these genera in a single order Haramiyida. Haramiyavia is made the type of a new family Haramiyaviidae. The order Haramiyida is divided into two suborders: (1) Theroteinida (only family Theroteinidae), and (2) Haramiyoidea (families Haramiyaviidae, Haramiyidae, Eleutherodontidae). Dental resemblances support the hypothesis that the Multituberculata originated within the Haramiyida, in which case the Haramiyida would be paraphyletic. Derivation of multituberculates from within the Mammaliaformes would involve a highly improbable transformation of the dentition. It is therefore postulated that allotherian (Haramiyida + Multituberculata) and non-allotherian mammaliaform clades separated before the Mammaliaformes developed a shearing dentition with unilateral occlusion and transverse jaw movements. This hypothesis implies that the two clades evolved to a large extent in parallel, to account for the apparent synapomorphies of multituberculates and therians. Key words: Haramiyida, Multituberculata, molars, occlusion, homoplasy. Percy M. Butler [[email protected]], School of Biological Sciences, Royal Holloway, University of London, Egham, Surrey, TW20 0EX, United Kingdom. This is an open-access article distributed under the terms of the Creative Commons Attribution License (for details please see creativecommons.org), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Full text (2,563.2 kB) Powered by TCPDF (www.tcpdf.org).
Recommended publications
  • A Non-Mammaliaform Cynodont from the Upper Triassic of South Africa: a Therapsid Lazarus Taxon?
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Wits Institutional Repository on DSPACE A non-mammaliaform cynodont from the Upper Triassic of South Africa: a therapsid Lazarus taxon? Fernando Abdala1*, Ross Damiani2, Adam Yates1 & Johann Neveling3 1Bernard Price Institute for Palaeontological Research, School of Geosciences, University of the Witwatersrand, Private Bag 3, WITS, 2050 South Africa 2Staatliches Museum für Naturkunde Stuttgart, Rosenstein 1, D-70191, Stuttgart, Germany 3Council for Geoscience, Private Bag X112, Pretoria, 0001 South Africa Received 20 January 2006. Accepted 10 January 2007 The tetrapod record of the ‘Stormberg Group’, including the Lower Elliot Formation, in the South African Karoo is widely dominated by archosaurian reptiles, contrasting with the therapsid dominion of the subjacent Beaufort Group. The only therapsids represented by skeletal remains in the Upper Triassic Lower Elliot Formation are the large traversodontid cynodont Scalenodontoides macrodontes and the recently described tritheledontid cynodont Elliotherium kersteni. Here we present a fragmentary lower jaw that provides evidence of a third type of cynodont for the Upper Triassic of South Africa. The fossil is tentatively assigned to the Diademodontidae. The latter representative of this family is known from the Late Anisian, and its tentative record in the Norian Lower Elliot Formation, if confirmed, will represent a case of Lazarus taxon. Thus, Diademodontidae apparently disappeared from the fossil record by the end of the Anisian and then reappeared in the Norian of South Africa, a stratigraphic interval of some 21 million years. This new cynodont record, together with the recently described Tritheledontidae, show that cynodonts are now the second most diverse tetrapod group in the Lower Elliot fauna.
    [Show full text]
  • A Fresh Approach to Stellar Benchmarking
    NEWS & VIEWS RESEARCH a Million years ago b 250 200 150 100 50 Triassic Jurassic Cretaceous Haramiyavia European haramiyidans Haramiyidans Vintana Hahnodon Cifelliodon Cifelliodon Chinese haramiyidans Monotremes Vintana Placentals Mammals Marsupials Figure 2 | Re-evaluating the evolution and biogeography of haramiyidans. India. The authors’ analysis expands the Cretaceous range of haramiyidans to a, Huttenlocker et al.1 analysed relationships between the early branches of Madagascar (Vintana) and North America (Cifelliodon). Combined with the the family tree for mammals and their more primitive relatives. The resulting fact that other fossils of haramiyidans from the Triassic (purple) have been evolutionary tree indicates that haramiyidans are not mammals, contrary to found in Europe and Greenland, and that haramiyidans from the Jurassic (blue) some previous evidence5,6,8,9. The analysis also places the Cretaceous genus have been found in Europe, China and Tanzania, this work implies a much Vintana in Haramiyida for the first time. b, Cretaceous haramiyidans (indicated broader temporal and geographical distribution of haramiyidans than had by green circles) have previously been found in northern Africa and possibly previously been hypothesized. that, although the Chinese haramiyidans are Simone Hoffmann is in the Department of 3. Rowe, T. B., Macrini, T. E. & Luo, Z.-X. Science 332, represented by complete skeletons, the speci- Anatomy, New York Institute of Technology, 955–957 (2011). 4. Koyabu, D., Maier, W. & Sánchez-Villagra, M. R. mens are essentially 2D. Most of the skulls are College of Osteopathic Medicine, Old Proc. Natl Acad. Sci. USA 109, 14075–14080 little more than flattened outlines, which lim- Westbury, New York 11568, USA.
    [Show full text]
  • 213 a New Haramiyid Indicating a Complex Pattern of Evolution In
    Vol.27 No.4 2013 Science Watch A New Haramiyid Indicating a Complex Pattern of Evolution in Mesozoic Mammals Earth Science major unsolved problem in mammalian evolution is University reported a new haramiyid from the Jurassic period the origin of Allotheria, including Multituberculata of China, Arboroharamiya jenkinsi, a partial skeleton with A and Haramiyida. Multituberculates are the most both mandibles associated with teeth and isolated upper teeth. diverse and best known Mesozoic era mammals and This largest known haramiyid reveals additional mammalian ecologically resemble rodents, but haramiyids are known features of this group, and helps to identify other haramiyids mainly from isolated teeth, hampering our search for their represented by isolated teeth, indicating a complex pattern phylogenetic relationships. Researchers from the Institute of evolution involving many convergences and/or reversals of Vertebrate Paleontology and Paleoanthropology (IVPP), existed in Mesozoic mammals, as reported August 8 in CAS, the Shandong Tianyu Museum of Nature and the Linyi Nature. Reconstruction of Arboroharamiya jenkinsi. (Image by BI Shundong) Bulletin of the Chinese Academy of Sciences 213 BCAS Vol.27 No.4 2013 The new specimen was unearthed from the Middle–Late Jurassic Tiaojishan Formation in the town of Mutoudeng, Qinglong County, Hebei Province, China, dated about 160 million years. Researchers said it is the largest known haramiyid with a body mass estimated at 354 grams. Arboroharamiya, as with other mammals, has body Earth Science hair (preserved as impressions), a single-boned (dentary) mandible that implies a three-boned middle ear. The dentition is differentiated into incisors and multi-rooted premolars and molars, with the canine presumably lost.
    [Show full text]
  • Lower Triassic Postcanine Teeth with Allotherian-Like Crowns
    Research Letters South African Journal of Science 103, May/June 2007 245 Lower Triassic postcanine teeth with allotherian-like crowns F. Abdala*‡, H. Mocke*§ and P.J. Hancox* The Allotheria are fossil mammals with upper and lower post- canines usually showing two longitudinal rows of cusps separated by a central valley. The group comprises the poorly known haramiyids, mostly represented by isolated teeth, and the notably diverse and long-lived multituberculates; its monophyly is uncer- tain. The oldest records of this particular group are the Late Triassic (Norian–Rhaetian) haramiyids. We present here postcanines with haramiyid-like crowns that were recovered from the Lower Triassic of South Africa. A distinguishing feature of the new teeth is that they are single-rooted. This is the oldest record of mammal-like teeth with crowns having parallel rows of cusps, representing a temporal extension of some 43 million years from similar crown patterns of haramiyids and tritylodontids. This finding reinforces evidence of the remarkable faunal turnover of therapsids in the Early/Middle Triassic, at which time an explosive origin followed by a rapid early diversification of herbivorous/omnivorous forms with occluding expanded postcanines took place. Introduction The Beaufort Group of the South African Karoo shows an abundance and diversity of non-mammalian synapsids, which have allowed for biostratigraphic subdivisions ranging from Middle Permian to Middle Triassic.1 The youngest of these Fig. 1.Allotherian-like teeth.A, Occlusal and lateral views of BP/1/6515 (Pattern 1); B, occlusal and lateral views of BP/1/6516 (Pattern 2). biozones, the Cynognathus Assemblage Zone (AZ), comprises the full extent of the Burgersdorp Formation of the Tarkastad Sub- found to be most parsimonious from an unconstrained search, group (J.
    [Show full text]
  • Osteohistology of Late Triassic Prozostrodontian Cynodonts from Brazil
    Osteohistology of Late Triassic prozostrodontian cynodonts from Brazil Jennifer Botha-Brink1,2, Marina Bento Soares3 and Agustín G. Martinelli3 1 Department of Karoo Palaeontology, National Museum, Bloemfontein, South Africa 2 Department of Zoology and Entomology, University of the Free State, Bloemfontein, South Africa 3 Departamento de Paleontologia e Estratigrafia, Instituto de Geociências, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil ABSTRACT The Prozostrodontia includes a group of Late Triassic-Early Cretaceous eucynodonts plus the clade Mammaliaformes, in which Mammalia is nested. Analysing their growth patterns is thus important for understanding the evolution of mammalian life histories. Obtaining material for osteohistological analysis is difficult due to the rare and delicate nature of most of the prozostrodontian taxa, much of which comprises mostly of crania or sometimes even only teeth. Here we present a rare opportunity to observe the osteohistology of several postcranial elements of the basal prozostrodontid Prozostrodon brasiliensis, the tritheledontid Irajatherium hernandezi, and the brasilodontids Brasilodon quadrangularis and Brasilitherium riograndensis from the Late Triassic of Brazil (Santa Maria Supersequence). Prozostrodon and Irajatherium reveal similar growth patterns of rapid early growth with annual interruptions later in ontogeny. These interruptions are associated with wide zones of slow growing bone tissue. Brasilodon and Brasilitherium exhibit a mixture of woven-fibered bone tissue and slower growing parallel-fibered and lamellar bone. The slower growing bone tissues are present even during early ontogeny. The relatively slower growth in Brasilodon and Brasilitherium may be related to their small body size compared to Prozostrodon and Irajatherium. These brasilodontids also exhibit osteohistological similarities with the Late Triassic/Early Jurassic mammaliaform Morganucodon and the Late Cretaceous multituberculate mammals Kryptobaatar and Nemegtbaatar.
    [Show full text]
  • A New Mammaliaform from the Early Jurassic and Evolution Of
    R EPORTS tary trough with a shelflike dorsal medial ridge, and all other nonmammalian mamma- A New Mammaliaform from the liaforms have a medial concavity on the man- dibular angle (8–14, 23), as in nonmamma- Early Jurassic and Evolution of liaform cynodonts (9, 14, 24–27). The post- dentary trough and the medial concavity on Mammalian Characteristics the mandibular angle respectively accommo- dated the prearticular/surangular and the re- Zhe-Xi Luo,1* Alfred W. Crompton,2 Ai-Lin Sun3 flected lamina of the angular (9, 25–27) that are the homologs to the mammalian middle A fossil from the Early Jurassic (Sinemurian, ϳ195 million years ago) represents ear bones (9, 14, 16–21, 23, 26). The absence a new lineage of mammaliaforms, the extinct groups more closely related to of these structures indicates that the postden- the living mammals than to nonmammaliaform cynodonts. It has an enlarged tary bones (“middle ear ossicles”) must have cranial cavity, but no postdentary trough on the mandible, indicating separation been separated from the mandible (Fig. 3). of the middle ear bones from the mandible. This extends the earliest record of Hadrocodium lacks the primitive meckelian these crucial mammalian features by some 45 million years and suggests that sulcus of the mandible typical of all nonmam- separation of the middle ear bones from the mandible and the expanded brain maliaform cynodonts (24–27), stem groups vault could be correlated. It shows that several key mammalian evolutionary of mammaliaforms (8, 9, 14, 23, 26, 27), innovations in the ear region, the temporomandibular joint, and the brain vault triconodontids (28, 29), and nontribosphenic evolved incrementally through mammaliaform evolution and long before the therian mammals (30).
    [Show full text]
  • Does the Jurassic Agilodocodon (Mammaliaformes, Docodonta) Have Any Exudativorous Dental Features?
    DOES THE JURASSIC AGILODOCODON (MAMMALIAFORMES, DOCODONTA) HAVE ANY EXUDATIVOROUS DENTAL FEATURES? JOHN R. WIBLE and ANNE M. BURROWS Wible, J.R. and Burrows, A.M. 2016. Does the Jurassic Agilodocodon (Mammaliaformes, Docodonta) have any exudativorous dental features? Palaeontologia Polonica 67, 289–299. Obligate exudativory, including active wounding of bark to acquire gum and/or sap, is rare among extant mammals and does not show a consistent dental signature. A recently de- scribed Middle Jurassic docodont Agilodocodon was reconstructed as an exudativore based on proposed similarities of its lower anterior dentition to some extant New World monkeys, specifically marmosets, spider monkeys, and howler monkeys. Oddly enough, of these, only marmosets are exudate-feeders. In our reinvestigation, we did not find any significant resemblance in the lower (and upper) anterior dentition between the Middle Jurassic fossil and these extant New World monkeys. The marmosets, the only obligate platyrrhine exuda- tivores, have lower and upper incisors that are distinguished from Agilodocodon and other New World monkeys by having enamel restricted to the labial surface. Differential wear between the enamel and softer dentine maintains a chisel-like tooth that marmosets use in gouging bark. Additional comparisons of the anterior dentition of Agilodocodon and other extant mammals were conducted. The lower and upper anterior teeth of Agilodocodon were found to be most similar to some elephant shrews and South American marsupials, which have a primarily insectivorous diet. Agilodocodon does not show any dental adaptations found in extant mammals for exudativory. Key words: Docodonta, Agilodocodon, marmosets, exudativory, incisors, gums. John R. Wible [[email protected]], Section of Mammals, Carnegie Museum of Natural History, 5800 Baum Boulevard, Pittsburgh, PA 15206, USA.
    [Show full text]
  • Parental Care Or Opportunism in South African Triassic Cynodonts?
    Parental care or opportunism in South African AUTHOR: Triassic cynodonts? Julien Benoit1 AFFILIATION: In a paper published in Nature in 2018, Hoffman and Rowe1 describe the discovery of an adult tritylodontid cynodont, 1Evolutionary Studies Institute, Kayentatherium, from the Jurassic of the Kayenta Formation (Arizona, USA), accompanied by at least 38 perinatal School of Geosciences, University juveniles, all at the same very early stage of development. Such a high number of juveniles in one clutch is found of the Witwatersrand, Johannesburg, only in a handful of oviparous reptiles, and never in viviparous or ovoviviparous species1, suggesting that these South Africa cynodonts laid eggs. As tritylodontids are amongst the closest relatives to Mammaliaformes, and sometimes even reconstructed as their sister clade2, this textbook changing discovery implies that all non-mammaliaform CORRESPONDENCE TO: synapsids had an essentially reptilian-like reproductive biology1. Julien Benoit Hoffman and Rowe’s1 discovery forces a reappraisal of the interpretation of the rich fossil record of parental care EMAIL: in South African non-mammaliaform cynodonts3. [email protected] First, the implications of Hoffman and Rowe’s1 discovery for the evolution of parental care and lactation need to be discussed. With at least 38 hatchlings to feed, it can be safely assumed that lactation was not the main source of HOW TO CITE: Benoit J. Parental care or nutrients in Kayentatherium neonates (nor, by extension, in all more basal non-mammaliaform synapsids). Instead, opportunism in South African perinatal juveniles of Kayentatherium already had functional teeth despite their early age, which (1) impedes Triassic cynodonts? S Afr J Sci.
    [Show full text]
  • Origin and Relationships of the Ictidosauria to Non-Mammalian
    Historical Biology An International Journal of Paleobiology ISSN: 0891-2963 (Print) 1029-2381 (Online) Journal homepage: http://www.tandfonline.com/loi/ghbi20 Origin and relationships of the Ictidosauria to non- mammalian cynodonts and mammals José F. Bonaparte & A. W. Crompton To cite this article: José F. Bonaparte & A. W. Crompton (2017): Origin and relationships of the Ictidosauria to non-mammalian cynodonts and mammals, Historical Biology, DOI: 10.1080/08912963.2017.1329911 To link to this article: http://dx.doi.org/10.1080/08912963.2017.1329911 Published online: 23 Jun 2017. Submit your article to this journal Article views: 53 View related articles View Crossmark data Full Terms & Conditions of access and use can be found at http://www.tandfonline.com/action/journalInformation?journalCode=ghbi20 Download by: [Smithsonian Astrophysics Observatory] Date: 06 November 2017, At: 13:06 HISTORICAL BIOLOGY, 2017 https://doi.org/10.1080/08912963.2017.1329911 Origin and relationships of the Ictidosauria to non-mammalian cynodonts and mammals José F. Bonapartea and A. W. Cromptonb aMuseo Municipal de C. Naturales “C. Ameghino”, Mercedes, Argentina; bMuseum of Comparative Zoology, Harvard University, Cambridge, MA, USA ABSTRACT ARTICLE HISTORY Ictidosaurian genera are allocated to two families, Tritheledontidae and Therioherpetidae. This paper Received 19 December 2016 provides a diagnosis for Ictidosauria. The previously named family Brasilodontidae is shown to be a Accepted 30 April 2017 junior synonym of a family, Therioherpetidae. It is concluded that Ictidosauria originated from Late KEYWORDS Permian procynosuchid non-mammalian cynodonts rather than from Middle Triassic probainognathid Mammalian origins; non-mammalian cynodonts. The structure of the skull and jaws of a derived traversodontid Ischignathus Ictidosauria; Tritylodontia; sudamericanus from the early Late Triassic of Argentina supports an earlier view that tritylodontids are Brasilitherium more closely related to traversodontid than probainognathid non-mammalian cynodonts.
    [Show full text]
  • Molar Dentition of the Docodontan Haldanodon (Mammaliaformes) As Functional Analog to Tribosphenic Teeth
    Molar dentition of the docodontan Haldanodon (Mammaliaformes) as functional analog to tribosphenic teeth DISSERTATION zur Erlangung des Doktorgrades (Dr. rer. nat.) der Mathematisch-Naturwissenschaftlichen Fakultät der Rheinischen Friedrich-Wilhelms-Universität Bonn vorgelegt von JANKA J. BRINKKÖTTER aus Berlin Bonn 2018 I Angefertigt mit Genehmigung der Mathematisch-Naturwissenschaftlichen Fakultät der Rheinischen Friedrich-Wilhelms-Universität Bonn 1. Gutachter: Prof. Dr. Thomas Martin 2. Gutachter: Prof. Dr. P. Martin Sander Tag der Promotion: 14. Dezember 2018 Erscheinungsjahr: 2019 II List of abbreviations d – deciduous tooth M – upper molar m – lower molar P – upper premolar p – lower premolar m – mesial buc – buccal dex – dextral sin – sinistral L – length W – width fr. – fragment III List of contents Abstract .................................................................................................................................. 01 Kurzfassung ........................................................................................................................... 02 1 Aim of study ........................................................................................................................ 04 2 Introduction ........................................................................................................................ 06 2.1 Systematical position of the Docodonta ............................................................................ 06 2.2 Definitions of terms ..........................................................................................................
    [Show full text]
  • Evidence of Diphyodonty and Heterochrony for Dental
    第57卷 第1期 古 脊 椎 动 物 学 报 pp. 51–76 2019年1月 VERTEBRATA PALASIATICA figs. 1–9 DOI: 10.19615/j.cnki.1000-3118.180803 Evidence of diphyodonty and heterochrony for dental development in euharamiyidan mammals from Jurassic Yanliao Biota MAO Fang-Yuan1,2 ZHENG Xiao-Ting3,4 WANG Xiao-Li3,4 WANG Yuan-Qing1,2 BI Shun-Dong5 MENG Jin6,1 (1 Key Laboratory of Vertebrate Evolution and Human Origins of Chinese Academy of Sciences, Institute of Vertebrate Paleontology and Paleoanthropology, Chinese Academy of Sciences Beijing 100044, China) (2 CAS Center for Excellence in Life and Paleoenvironment Beijing 100044, China [email protected]) (3 Institute of Geology and Paleontology, Linyi University Linyi, Shandong 276005, China) (4 Shandong Tianyu Museum of Nature Pingyi, Shandong 273300, China) (5 Department of Biology, Indiana University of Pennsylvania Indiana 15705, USA) (6 Division of Paleontology, American Museum of Natural History New York 10024, USA) Abstract Evidences for tooth replacement of known euharamiyidans are reported based on eight specimens of four species from the Jurassic Yanliao Biota, Liaoning Province, China. Tooth morphologies, eruptional and wear condition, and tooth germs are directly observed and/or revealed by Micro CT or slab CL scan. The euharamiyidan dentition has definite number of cheek teeth and monophyodont molars that are related to precise occlusion. Incisor germs are found in three specimens of Arboroharamiya but not in Shenshou lui and Xianshou linglong. The incisor germs in the upper jaw, presumably I2, have a large crown with two or three cusps; those in the lower jaw, interpreted as the permanent i2, are positioned dorsal to the root of the erupted incisor, interpreted as di2.
    [Show full text]
  • Researchers Discover Three Extinct Squirrel-Like Species
    Media Inquiries: Kendra Snyder, Department of Communications 212-496-3419; [email protected] www.amnh.org _____________________________________________________________________________________ September 10, 2014 RESEARCHERS DISCOVER THREE EXTINCT SQUIRREL-LIKE SPECIES FINDINGS SUPPORT EARLIER ORIGIN OF MAMMALS, IN LATE TRIASSIC Paleontologists have described three new small squirrel-like species that place a poorly understood Mesozoic group of animals firmly in the mammal family tree. The study, led by scientists at the American Museum of Natural History and the Chinese Academy of Sciences, supports the idea that mammals—an extremely diverse group that includes egg-laying monotremes such as the platypus, marsupials such as the opossum, and placentals like humans and whales—originated at least 208 million years ago in the late Triassic, much earlier than some previous research suggests. The study is published today in the journal Nature. “For decades, scientists have been debating whether the extinct group, called Haramiyida, belongs within or outside of Mammalia,” said co-author Jin Meng, a curator in the Museum’s Division of Paleontology. “Previously, everything we knew about these animals was based on fragmented jaws and isolated teeth. But the new specimens we discovered are extremely well preserved. And based on these fossils, we now have a good idea of what these animals really looked like, which confirms that they are, indeed, mammals.” The three new species—Shenshou lui, Xianshou linglong, and Xianshou songae—are described from six nearly complete 160-million-year-old fossils found in China. The animals, which researchers have placed in a new group, or clade, called Euharamiyida, likely looked similar to small squirrels.
    [Show full text]