Seedling Recruitment of the Environmental Weed

Total Page:16

File Type:pdf, Size:1020Kb

Seedling Recruitment of the Environmental Weed View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by ResearchArchive at Victoria University of Wellington SEEDLING RECRUITMENT OF THE INVASIVE SPECIES BERBERIS DARWINII (DARWIN’S BARBERRY): WHAT CONTRIBUTES TO INVASION SUCCESS? by Katherine (Kate) Grace McAlpine A thesis submitted to Victoria University of Wellington in fulfilment of the requirements for the degree of Doctor of Philosophy in Science Victoria University of Wellington 2005 ABSTRACT Berberis darwinii is an invasive tree species that is considered a serious threat to indigenous ecosystems and biodiversity conservation throughout New Zealand. I examined the recruitment dynamics of this species in order to identify traits contributing to invasion success, and thus pinpoint critical stages for management. In order to do this, I measured patterns of both spatial and temporal seed dispersal, and compared rates of germination and seedling survival across a range of light environments. I also measured patterns of growth, biomass allocation, photosynthetic performance, leaf morphology, and water use efficiency across different light environments. In most of these experiments I compared the performance of B. darwinii to four ecologically similar, co-occurring native species. Berberis darwinii produced large quantities of viable seed that were widely dispersed by birds. Almost all viable seeds germinated in the spring following dispersal, indicating that B. darwinii does not form a persistent seed bank. Rates of germination and seedling survival were significantly higher in B. darwinii compared to the native species, although seedling establishment of all species was limited to high-light environments. Berberis darwinii also had approximately twice the photosynthetic capacity of the native species, but this advantage was limited to high-light environments. Berberis darwinii does not vary significantly in proportional biomass allocation across light environments, suggesting that this type of plasticity does not contribute to invasion success. Berberis darwinii was more water use efficient in sun compared to shade, but the same pattern was evident in four of the five native species. The critical stage of recruitment for B. darwinii was first-year seedling establishment. Rates of mortality were highest at this stage, and were largely associated with seedling density and low light availability. Seedling mortality was near 100% beneath the parent canopy, indicating that seed dispersal is critical to B. darwinii recruitment. These results suggest that B. darwinii is not shade-tolerant as a seedling, and that management practices should be concentrated on the removal of fruiting adult plants and seedlings growing in open sites. ii ACKNOWLEDGEMENTS Many, many thanks to my two supervisors from Victoria University: Don Drake for getting me started, and Linley Jesson for guiding me, supporting me, and generally getting me to the end point. I am also grateful to Victoria University for a post- graduate scholarship grant. And a special thanks to the Department of Conservation, especially Susan Timmins, for allowing me to turn this project into a (paid!) job. For extra guidance, feedback, support, and/or assistance in the field, thanks also to Chris Boorman, Lindsay Eaton, Chris Edkins, Richard FitzJohn, Harshi Gamage, Phil Garnock-Jones, Rod Hay, Clayson Howell, Mark Kearney, Dave Kubien, Tony Lawson, Shona Mackay, Carol McAlpine, Grant McAlpine, Rachel McAlpine, Leeann Peden, Shirley Pledger, Ian Popay, Susan Timmins, Justine Ward, Sue Wilkins, and the wonderful staff at the Karori Wildlife Sanctuary. For technical and administrative support, thanks to Victoria University staff, particularly Lesley Milicich, but also Mary Murray, Peter Watson, and Alan Hoverd. iii TABLE OF CONTENTS ABSTRACT..................................................................................................................ii ACKNOWLEDGEMENTS ...................................................................................... iii TABLE OF CONTENTS ...........................................................................................iv LIST OF TABLES .....................................................................................................vii LIST OF FIGURES ....................................................................................................ix CHAPTER ONE. SEEDLING RECRUITMENT OF BERBERIS DARWINII: WHAT FACTORS MIGHT CONTRIBUTE TO INVASION SUCCESS?...........1 Introduction................................................................................................................1 Seed dispersal.............................................................................................................3 Seed bank...................................................................................................................4 Germination ...............................................................................................................5 Seedling establishment...............................................................................................6 Critical life-stages ......................................................................................................7 Seedling growth and biomass allocation....................................................................7 Photosynthesis and water use efficiency....................................................................8 Aims and objectives of thesis ....................................................................................9 CHAPTER TWO. FACTORS CONTRIBUTING TO INVASION SUCCESS IN BERBERIS DARWINII: SEED DISPERSAL, GERMINATION, AND SEEDLING ESTABLISHMENT .............................................................................11 Abstract....................................................................................................................11 Introduction..............................................................................................................12 Methods....................................................................................................................17 Study site..............................................................................................................17 Environmental measures......................................................................................18 Seed dispersal.......................................................................................................22 Dispersal with increasing distance from source population (B. darwinii only) ..........................................................................................................................22 Directed seed dispersal (B. darwinii only).......................................................22 Predation of dispersed B. darwinii seeds .............................................................23 Seed viability and longevity.................................................................................23 Seed viability (all species) ...............................................................................23 Artificially buried seeds (B. darwinii only) .....................................................24 Natural seed bank (B. darwinii only)...............................................................25 Germination and seedling survival ......................................................................25 Seeds sown (all species)...................................................................................25 Natural seedling establishment (B. darwinii only) ..........................................26 Transition between life-stages .............................................................................27 Statistics ...............................................................................................................27 Environmental measures..................................................................................27 Dispersal with increasing distance from source population ............................28 Directed dispersal.............................................................................................28 Seed viability ...................................................................................................28 Germination and seedling survival ..................................................................29 Results......................................................................................................................30 iv Environmental measures......................................................................................30 Seed dispersal.......................................................................................................33 Dispersal from canopy edge (B. darwinii only)...............................................33 Directed seed dispersal (B. darwinii only).......................................................37 Predation of dispersed B. darwinii seeds .............................................................37 Seed viability and longevity.................................................................................39 Seed viability (all species) ...............................................................................39 Seed bank dynamics (B. darwinii only)...........................................................39 Germination and seedling survival ......................................................................41 Germination and survival of seeds sown in
Recommended publications
  • Otanewainuku ED (Report Prepared on 13 August 2013)
    1 NZFRI collection wish list for Otanewainuku ED (Report prepared on 13 August 2013) Fern Ally Isolepis cernua Lycopodiaceae Isolepis inundata Lycopodium fastigiatum Isolepis marginata Lycopodium scariosum Isolepis pottsii Psilotaceae Isolepis prolifera Tmesipteris lanceolata Lepidosperma australe Lepidosperma laterale Gymnosperm Schoenoplectus pungens Cupressaceae Schoenoplectus tabernaemontani Chamaecyparis lawsoniana Schoenus apogon Cupressus macrocarpa Schoenus tendo Pinaceae Uncinia filiformis Pinus contorta Uncinia gracilenta Pinus patula Uncinia rupestris Pinus pinaster Uncinia scabra Pinus ponderosa Hemerocallidaceae Pinus radiata Dianella nigra Pinus strobus Phormium cookianum subsp. hookeri Podocarpaceae Phormium tenax Podocarpus totara var. totara Iridaceae Prumnopitys taxifolia Crocosmia xcrocosmiiflora Libertia grandiflora Monocotyledon Libertia ixioides Agapanthaceae Watsonia bulbillifera Agapanthus praecox Juncaceae Alliaceae Juncus articulatus Allium triquetrum Juncus australis Araceae Juncus conglomeratus Alocasia brisbanensis Juncus distegus Arum italicum Juncus edgariae Lemna minor Juncus effusus var. effusus Zantedeschia aethiopica Juncus sarophorus Arecaceae Juncus tenuis var. tenuis Rhopalostylis sapida Luzula congesta Asparagaceae Luzula multiflora Asparagus aethiopicus Luzula picta var. limosa Asparagus asparagoides Orchidaceae Cordyline australis x banksii Acianthus sinclairii Cordyline banksii x pumilio Aporostylis bifolia Asteliaceae Corunastylis nuda Collospermum microspermum Diplodium alobulum Commelinaceae
    [Show full text]
  • Major Lineages Within Apiaceae Subfamily Apioideae: a Comparison of Chloroplast Restriction Site and Dna Sequence Data1
    American Journal of Botany 86(7): 1014±1026. 1999. MAJOR LINEAGES WITHIN APIACEAE SUBFAMILY APIOIDEAE: A COMPARISON OF CHLOROPLAST RESTRICTION SITE AND DNA SEQUENCE DATA1 GREGORY M. PLUNKETT2 AND STEPHEN R. DOWNIE Department of Plant Biology, University of Illinois, Urbana, Illinois 61801 Traditional sources of taxonomic characters in the large and taxonomically complex subfamily Apioideae (Apiaceae) have been confounding and no classi®cation system of the subfamily has been widely accepted. A restriction site analysis of the chloroplast genome from 78 representatives of Apioideae and related groups provided a data matrix of 990 variable characters (750 of which were potentially parsimony-informative). A comparison of these data to that of three recent DNA sequencing studies of Apioideae (based on ITS, rpoCl intron, and matK sequences) shows that the restriction site analysis provides 2.6± 3.6 times more variable characters for a comparable group of taxa. Moreover, levels of divergence appear to be well suited to studies at the subfamilial and tribal levels of Apiaceae. Cladistic and phenetic analyses of the restriction site data yielded trees that are visually congruent to those derived from the other recent molecular studies. On the basis of these comparisons, six lineages and one paraphyletic grade are provisionally recognized as informal groups. These groups can serve as the starting point for future, more intensive studies of the subfamily. Key words: Apiaceae; Apioideae; chloroplast genome; restriction site analysis; Umbelliferae. Apioideae are the largest and best-known subfamily of tem, and biochemical characters exhibit similarly con- Apiaceae (5 Umbelliferae) and include many familiar ed- founding parallelisms (e.g., Bell, 1971; Harborne, 1971; ible plants (e.g., carrot, parsnips, parsley, celery, fennel, Nielsen, 1971).
    [Show full text]
  • Araliaceae) Roderick J
    Essential Oils from the Leaves of Three New Zealand Species of Pseudopanax (Araliaceae) Roderick J. Weston Industrial Research Ltd., P.O. Box 31-310, Lower Hutt, New Zealand. Fax: +64-4-9313-055. E-mail: [email protected] Z. Naturforsch. 59c, 39Ð42 (2004); received July 22, 2003 Essential oils from three of the eleven endemic New Zealand species of Pseudopanax, P. arboreus, P. discolor and P. lessonii, were found to have a fairly uniform composition which was different from that of the oils of Raukaua species that were formerly classified in the Pseudopanax genus. Oils of the three Pseudopanax species all contained significant propor- tions of viridiflorol and a closely related unidentified hydroazulene alcohol in common. In addition, the oil of P. arboreus contained bicyclogermacrene, linalool and long chain hy- drocarbons. The oil of P. discolor contained nerolidol in abundance (36.3%) together with linalool and epi-α-muurolol. The oil of P. lessonii contained a complex mixture of sesquiter- pene alcohols including epi-α-muurolol and a mixture of long chain hydrocarbons. Nerolidol and linalool provided the oil of P. discolor with a pleasant floral aroma, but the yield of oil was very low (0.01%). Key words: Pseudopanax arboreus, discolor and lessonii, Araliaceae, Essential Oil Introduction species studied in this paper, P. lessonii and P. dis- color, belong to this group and were selected be- The Araliaceae is a family of 65 genera and ap- cause their leaves, when crushed, emit a weak fra- proximately 800 species, which occur mainly in grance. The third group is characterized by its tropical regions, but some genera are found in shorter wider fleshier leaves and includes P.
    [Show full text]
  • Pseudopanax Lessonii
    Pseudopanax lessonii COMMON NAME Houpara SYNONYMS Panax lessonii DC. FAMILY Araliaceae AUTHORITY Pseudopanax lessonii (DC.) K.Koch FLORA CATEGORY Vascular – Native ENDEMIC TAXON Yes ENDEMIC GENUS No Leaves of Pseudopanax lessonii. Photographer: Wayne Bennett ENDEMIC FAMILY No STRUCTURAL CLASS Trees & Shrubs - Dicotyledons NVS CODE PSELES CHROMOSOME NUMBER 2n = 48 CURRENT CONSERVATION STATUS 2012 | Not Threatened Motuoruhi, Coromandel, March. Photographer: John Smith-Dodsworth PREVIOUS CONSERVATION STATUSES 2009 | Not Threatened 2004 | Not Threatened BRIEF DESCRIPTION Coastal tree with fleshy hand-shaped leaves DISTRIBUTION Endemic. Three Kings to Poverty Bay and northern Taranaki HABITAT Coastal forest and scrub FEATURES Small tree to 6 m tall; branches stout, with leaves crowded towards tips of branchlets. Leaves alternate, leaflets 3-5, palmate, lateral leaflets smaller; juvenile leaves larger than adult. Petiole to 15 cm long, stout, sheathing stem at base; stipules absent. Leaflets subsessile, terminal leaflet on short petiolule, obovate-cuneate, sinuate-crenate to bluntly serrate in distal half, subacute to obtuse, dark green above, paler beneath, midvein obvious, lateral veins obscure, c. 5-10 x 2-4 cm. Inflorescence a terminal compound umbel; male (staminate) primary rays (branchlets) 4-8 c. 4-5 cm long, flowers racemosely arranged along secondary rays; pistillate (female) primary rays shorter, flowers in irregular umbellules. Petals greenish, acute; anthers on filaments < petals. Ovary 5-loculed, each containing 1 ovule; style branches 5, conate, tips spreading. Fruit fleshy, dark purple, broadly oblong, 7 x 5 mm, style branches retained on an apical disc. 5 Seeds per fruit, narrowly ovate to ovate or oblong, dimpled, 5.5-8.0 mm long.
    [Show full text]
  • Berberine: Botanical Occurrence, Traditional Uses, Extraction Methods, and Relevance in Cardiovascular, Metabolic, Hepatic, and Renal Disorders
    REVIEW published: 21 August 2018 doi: 10.3389/fphar.2018.00557 Berberine: Botanical Occurrence, Traditional Uses, Extraction Methods, and Relevance in Cardiovascular, Metabolic, Hepatic, and Renal Disorders Maria A. Neag 1, Andrei Mocan 2*, Javier Echeverría 3, Raluca M. Pop 1, Corina I. Bocsan 1, Gianina Cri¸san 2 and Anca D. Buzoianu 1 1 Department of Pharmacology, Toxicology and Clinical Pharmacology, “Iuliu Hatieganu” University of Medicine and Pharmacy, Cluj-Napoca, Romania, 2 Department of Pharmaceutical Botany, “Iuliu Hatieganu” University of Medicine and Pharmacy, Cluj-Napoca, Romania, 3 Department of Environmental Sciences, Universidad de Santiago de Chile, Santiago de Chile, Chile Edited by: Berberine-containing plants have been traditionally used in different parts of the world for Anna Karolina Kiss, the treatment of inflammatory disorders, skin diseases, wound healing, reducing fevers, Medical University of Warsaw, Poland affections of eyes, treatment of tumors, digestive and respiratory diseases, and microbial Reviewed by: Pinarosa Avato, pathologies. The physico-chemical properties of berberine contribute to the high diversity Università degli Studi di Bari Aldo of extraction and detection methods. Considering its particularities this review describes Moro, Italy various methods mentioned in the literature so far with reference to the most important Sylwia Zielinska, Wroclaw Medical University, Poland factors influencing berberine extraction. Further, the common separation and detection *Correspondence: methods like thin layer chromatography, high performance liquid chromatography, and Andrei Mocan mass spectrometry are discussed in order to give a complex overview of the existing [email protected] methods. Additionally, many clinical and experimental studies suggest that berberine Specialty section: has several pharmacological properties, such as immunomodulatory, antioxidative, This article was submitted to cardioprotective, hepatoprotective, and renoprotective effects.
    [Show full text]
  • Araliaceae.Pdf
    ARALIACEAE 五加科 wu jia ke Xiang Qibai (向其柏 Shang Chih-bei)1; Porter P. Lowry II2 Trees or shrubs, sometimes woody vines with aerial roots, rarely perennial herbs, hermaphroditic, andromonoecious or dioecious, often with stellate indumentum or more rarely simple trichomes or bristles, with or without prickles, secretory canals pres- ent in most parts. Leaves alternate, rarely opposite (never in Chinese taxa), simple and often palmately lobed, palmately compound, or 1–3-pinnately compound, usually crowded toward apices of branches, base of petiole often broad and sheathing stem, stipules absent or forming a ligule or membranous border of petiole. Inflorescence terminal or pseudo-lateral (by delayed development), um- bellate, compound-umbellate, racemose, racemose-umbellate, or racemose-paniculate, ultimate units usually umbels or heads, occa- sionally racemes or spikes, flowers rarely solitary; bracts usually present, often caducous, rarely foliaceous. Flowers bisexual or unisexual, actinomorphic. Pedicels often jointed below ovary and forming an articulation. Calyx absent or forming a low rim, some- times undulate or with short teeth. Corolla of (3–)5(–20) petals, free or rarely united, mostly valvate, sometimes imbricate. Stamens usually as many as and alternate with petals, sometimes numerous, distinct, inserted at edge of disk; anthers versatile, introrse, 2- celled (or 4-celled in some non-Chinese taxa), longitudinally dehiscent. Disk epigynous, often fleshy, slightly depressed to rounded or conic, sometimes confluent with styles. Ovary inferior (rarely secondarily superior in some non-Chinese taxa), (1 or)2–10(to many)-carpellate; carpels united, with as many locules; ovules pendulous, 2 per locule, 1 abortive; styles as many as carpels, free or partially united, erect or recurved, or fully united to form a column; stigmas terminal or decurrent on inner face of styles, or sessile on disk, circular to elliptic and radiating.
    [Show full text]
  • Intergeneric Graft Compatibility Within the Family Araliaceae
    RESEARCH UPDATES Fatshedera ( Fatsia x Hedera) that have Materials and methods Intergeneric been grown erect are sold as novelty specimens. Growers usually get a high Twenty-three cultivars of Graft percentage of successful grafts with Araliaceae representing six genera and Compatibility healthy plant material and good graft- 16 species were obtained from com- ing technique. mercial sources. Two species each of within the Family Variegated forms of Aralia elata two genera native to Hawaii, do not root from cuttings and produce Cheirodendron and Tetraplasandra, Araliaceae nonvariegated seedlings. The varie- were collected in the Koolau Moun- gated forms are propagated by bud- tains on Oahu (Table 1). ding onto seedling or vegetatively Rootstocks propagated from tip Kenneth W. Leonhardt1 produced nonvariegated rootstocks of cuttings rooted in equal parts ver- A. elata (Leiss, 1977). One variegated miculite and perlite under intermit- form of A. elata also has been cleft- tent mist and full sun were grown in Additional index words. Aralia, grafted successfully onto a rootstock 15-cm plastic pots containing equal Ginsing, Panax family, propagation of A. spinosa (Raulston, 1985.) parts peat moss, perlite, and field soil The relative ease of the Hedera x (by volume). Lime and a slow-release Summary. Novelty Araliaceae potted Fatshedera graft raised the possibility granular fertilizer were incorporated. plants were created by a wide variety of graft compatibility of Hedera with Rootstocks were established in a green- of interspecific and intergeneric graft other relatives, particularly those grow- house under 25% shade cover until combinations. Twenty-four species of ing tall rapidly or having other desir- grafted.
    [Show full text]
  • Pseudopanax Laetus
    Pseudopanax laetus SYNONYMS Panax arboreus var. laetus Kirk, Nothopanax laetus (Kirk) Cheeseman, Neopanax laetus (Kirk) Philipson FAMILY Araliaceae AUTHORITY Pseudopanax laetus (Kirk) Allan FLORA CATEGORY Vascular – Native ENDEMIC TAXON Yes ENDEMIC GENUS Yes Close up, Pseudopanax laetus mature foliage, ENDEMIC FAMILY Upper Kaueranga Valley. Photographer: John No Smith-Dodsworth STRUCTURAL CLASS Trees & Shrubs - Dicotyledons NVS CODE PSELAE CHROMOSOME NUMBER 2n = 48 CURRENT CONSERVATION STATUS 2018 | At Risk – Declining PREVIOUS CONSERVATION STATUSES 2012 | Not Threatened 2009 | Not Threatened | Qualifiers: RF 2004 | Gradual Decline BRIEF DESCRIPTION bushy shrub with large hand-shaped leaves on red stalks Pseudopanax laetus close up of inflorescence DISTRIBUTION with flowers during male phase, Ex Cult. Puhoi. Photographer: Peter de Lange Endemic to the northern part of the North Island from Coromandel to inland Gisborne and Taranaki. HABITAT Montane forest. FEATURES Small multi-branched tree to 5 m tall, branchlets brittle. Leaves alternate, leaflets 5-7, palmate, on short petiolules. Petiole to 25 cm long, sheathing branchlet at base, stipules present, purplish red. Petiolules stout, purplish red or leaflets subsessile. Leaflets obovate- to cuneate-oblong, thick and coriaceous, green above, paler below, margin coarsely dentate-serrate in distal half, acute or acuminate to subacute; midveins and main lateral veins obvious above and below; teminal lamina 12-25 x 5-10 cm or more, lateral leaflets smaller. Inflorescence a terminal, compound umbel, flowers sometimes subracemose on secondary rays; primary rays (branchlets) 10-15; 15-20 secondary rays. Calyx truncate or obscurely 5-toothed; petals ovate-oblong, acute. Ovary 2-loculed, each containing 1 ovules; style branches 2, spreading. Fruit fleshy, purple, c.
    [Show full text]
  • Ontogenetic Studies on the Determination of the Apical Meristem In
    Ontogenetic studies on the determination of the apical meristem in racemose inflorescences D i s s e r t a t i o n Zur Erlangung des Grades Doktor der Naturwissenschaften Am Fachbereich Biologie Der Johannes Gutenberg-Universität Mainz Kester Bull-Hereñu geb. am 19.07.1979 in Santiago Mainz, 2010 CONTENTS SUMMARY OF THE THESIS............................................................................................ 1 ZUSAMMENFASSUNG.................................................................................................. 2 1 GENERAL INTRODUCTION......................................................................................... 3 1.1 Historical treatment of the terminal flower production in inflorescences....... 3 1.2 Structural understanding of the TF................................................................... 4 1.3 Parallel evolution of the character states referring the TF............................... 5 1.4 Matter of the thesis.......................................................................................... 6 2 DEVELOPMENTAL CONDITIONS FOR TERMINAL FLOWER PRODUCTION IN APIOID UMBELLETS...................................................................................................... 7 2.1 Introduction...................................................................................................... 7 2.2 Materials and Methods..................................................................................... 9 2.2.1 Plant material....................................................................................
    [Show full text]
  • NEWSLETTER April 2021 Previous Issue: December 2020
    NEWSLETTER April 2021 Previous issue: December 2020 ISSN 1171-9982 From the President Articles for web site Following our Summer Camp on Banks Peninsula in January, life has settled We welcome articles for down to monthly field trips and evening meetings, which we now broadcast live consideration for inclusion on via Zoom. our web site: On 15 February we had a surprise return to Covid Level 2 Lockdown, www.wellingtonbotsoc.org.nz necessitating hastily organising a Zoom-only monthly meeting. Luckily our Please send your article to: speaker, Carlos Lehnebach, Curator at Te Papa, was able to present his orchid Richard Herbert conservation talk online, a new experience for him. e-mail [email protected] On 15 March, Winifred Long of the Kōtukutuku Ecological Restoration Writing for the Bulletin Project discussed vegetation surveys and predator control on a 17-hectare Do you have a botanical observation, coastal forest remnant, including innovative use of 1 m x 20 m plots to cope with anecdote, or insight that you could small pockets of bush. 30 people attended the meeting, 22 attended via Zoom, share with others in BotSoc? If so, total 52. please consider contributing it to April saw our sedge workshop at Ōtari’s Leonard Cockayne Centre. This the Wellington Botanical Society comprised two sessions, a week apart on 11 and 18 April, 10 a.m. to 3 p.m. This Bulletin. There is still plenty of space followed on from last year’s popular rush workshop. in the next issue. For more details and Jon Terry assistance, contact Eleanor Burton at [email protected] or New members 479 0497.
    [Show full text]
  • Nzbotsoc No 78 Dec 2004
    NEW ZEALAND BOTANICAL SOCIETY NEWSLETTER NUMBER 78 DECEMBER 2004 New Zealand Botanical Society President: Anthony Wright Secretary/Treasurer: Aaron Wilton Committee: Bruce Clarkson, Colin Webb, Carol West Address: c/- Canterbury Museum Rolleston Avenue CHRISTCHURCH 8001 Subscriptions The 2004 ordinary and institutional subscriptions are $25 (reduced to $18 if paid by the due date on the subscription invoice). The 2004 student subscription, available to full-time students, is $9 (reduced to $7 if paid by the due date on the subscription invoice). Back issues of the Newsletter are available at $2.50 each from Number 1 (August 1985) to Number 46 (December 1996), $3.00 each from Number 47 (March 1997) to Number 50 (December 1997), and $3.75 each from Number 51 (March 1998) onwards. Since 1986 the Newsletter has appeared quarterly in March, June, September and December. New subscriptions are always welcome and these, together with back issue orders, should be sent to the Secretary/Treasurer (address above). Subscriptions are due by 28th February each year for that calendar year. Existing subscribers are sent an invoice with the December Newsletter for the next years subscription which offers a reduction if this is paid by the due date. If you are in arrears with your subscription a reminder notice comes attached to each issue of the Newsletter. Deadline for next issue The deadline for the March 2005 issue (79) is 25 February 2005. Please post contributions to: Joy Talbot 17 Ford Road Christchurch 8002 Send email contributions to [email protected] or [email protected]. Files are preferably in MS Word (Word XP or earlier) or saved as RTF or ASCII.
    [Show full text]
  • ABSTRACT ROUNSAVILLE, TODD JEFFREY. Cytogenetics
    ABSTRACT ROUNSAVILLE, TODD JEFFREY. Cytogenetics, Micropropagation, and Reproductive Biology of Berberis, Mahonia, and Miscanthus. (Under the direction of Thomas G. Ranney). Research was conducted to determine the genome sizes and ploidy levels for a diverse collection of Berberis L. and Mahonia Nutt. genotypes, develop a micropropagation protocol for Mahonia „Soft Caress‟, and examine the fertility and reproductive pathways among clones of diploid and triploid Miscanthus sinensis Andersson. Berberis and Mahonia are sister taxa within the Berberidaceae with strong potential for ornamental improvement. Propidium iodide (PI) flow cytometric analysis was conducted to determine genome sizes. Mean 1CX genome size varied between the two Mahonia subgenera (Occidentales = 1.17 pg, Orientales = 1.27 pg), while those of Berberis subgenera were similar (Australes = 1.45 pg, Septentrionales = 1.47 pg), but larger than those of Mahonia. Traditional cytology was performed on representative species to calibrate genome sizes with ploidy levels. While the majority of species were determined to be diploid with 2n = 2x = 28, artificially-induced autopolyploid Berberis thunbergii seedlings were confirmed to be tetraploid and an accession of Mahonia nervosa was confirmed to be hexaploid. Genome sizes and ploidy levels are presented for the first time for the majority of taxa sampled and will serve as a resource for plant breeders, ecologists, and systematists. Mahonia „Soft Caress‟ is a unique new cultivar exhibiting a compact form and delicate evergreen leaves, though propagation can be a limiting factor for production. Micropropagation protocols for M. „Soft Caress‟ were developed to expedite multiplication and serve as a foundation for future work with other Mahonia taxa.
    [Show full text]