S: Hexacene, Heptacene, and Derivatives

Total Page:16

File Type:pdf, Size:1020Kb

S: Hexacene, Heptacene, and Derivatives SYNTHESIS AND STUDY OF HIGHER POLY(ACENE)S: HEXACENE, HEPTACENE, AND DERIVATIVES Rajib Mondal A Dissertation Submitted to the Graduate College of Bowling Green State University in partial fulfillment of the requirements for the degree of DOCTOR OF PHILOSOPHY December 2007 Committee: Douglas C. Neckers, Advisor Daniel M. Pavuk Graduate Faculty Representative Thomas H. Kinstle Michael A. J. Rodgers © 2007 Rajib Mondal All Rights Reserved iii ABSTRACT Douglas C. Neckers, Advisor Poly(acene)s, linear poly(benzenoid) hydrocarbons, consist of an aromatic linear array. The largest whose synthesis has been authenticated is hexacene, C26H16. However, all reported syntheses of hexacene are difficult to repeat. Synthesis of higher acenes (seven member and higher) have challenged chemists for a long time. Heptacene has been elusive by the attempted classical synthetic routes because such procedures instantly yield an array of dimers. Recently, pentacene and its derivatives have been shown to be excellent candidates with enhanced π-stacking ability for application in OFET and in other electronic devices. Hexacene and heptacene can be considered potential molecules for opto-electronic applications. A classical synthetic procedure to produce heptacene was followed first, which involved Meerwein-Ponndorf-Verley (MPV) reduction of corresponding quinone. Product appeared to be a mixture of dimers of heptacene. In order to minimize dimerization processes, several reactions to substitute at the carbonyl group of quinone with a bulkier group were attempted. However, none of these reactions was successful. The insolubility of the precursor dione seems to be the primary reason for the failure of these reactions. To enhance the solubility and stability of heptacene and precursors, substituted heptacenes retaining the polyacene backbone were designed. Symmetric quinones were considered as the key synthons. While many reduction methods failed to yield the final product from substituted quinones, the borane-THF complex reduced 6,8,15,17- tetraarylheptacene-7,16-quinones to the 7,16-dihydro derivatives. An alternative approach using coupling between in-situ generated dibenzyne and naphthofuran also failed to yield any heptacene core. Dihydroheptacene derivatives emit in the region of 420 – 428 nm in several solvents (ΦF = 0.15 – 0.21 in CH2Cl2) and in the solid state (ΦF = 0.37 – 0.44). These compounds have good solubility in common organic solvents, are reasonably stable, and retain color purity even after annealing for 24 hours at 110 oC. Though their dilute solutions showed blue emission (λmax ~ 420 nm), they showed excimer emission (λmax ~ 480 and 510 nm) at higher concentration. The OLED devices containing 6,8,15,17- tetraphenyldihydroheptacene showed green emission (λmax ~ 515 and 550 nm) that is even further red shifted than the emission of excimer. This indicates that an inter-ion pair, electromer, is responsible for the electroluminescence. Pump-probe experiments of dihydroheptacenes revealed that the S1 state shows a broad absorption (~ 500-650 nm) in dichloromethane with a lifetime of ~ 0.23–0.33 ns. Another synthetic strategy employed was photochemical expulsion of two molecules of carbon monoxide from α-diketones of ethano polyacenes. Photo-precursors iv of hexacene and heptacene were synthesized. The Strating-Zwanenburg photodecarbonylation of these photoprecursors in a poly(methyl methacrylate) matrix yielded the target hexacene and heptacene, respectively. The semi-rigid ploymer matrix enabled retention of highly reactive hexacene and heptacene through the prevention of thermal dimerization and oxidation. Heptacene was also generated in inert gas matrices at low temperature. Uv-vis-NIR absorption and IR spectra of heptacene were recorded in argon matrix at 10 K. When heptacene was generated in nitrogen matrix, it was stable up to 34 K. However, it was stable up to ~50 K, when generated in argon matrix. Steady state photolysis, nanosecond laser flash photolysis, and femtosecond pump-probe experiments of α-diketone precursors of acenes were carried out to understand the mechanism of the Strating-Zwanenburg photodecarbonylation. It appears that both the singlet and triplet states of the diketones are involved in the decarbonylation process. These compounds have a small singlet-triplet energy gap (~ 4 kcal/mol). The lifetimes of the singlet excited states are in the range of 20-218 ps and decrease as the number of the benzenoid ring increases in the molecule. The triplet states are short lived (> 370 ps < 7 ns) and do not appear during the nanosecond experiments. It seems that the decarbonylation occurs within 7 ns. During the LFP experiment of heptacene precursor, the triplet state of the photoproducts, i.e., heptacene (λmax = 580 nm, τ ~ 11 μs), was also observed. Rapid oxidation of heptacene occurs when a polymer film containing heptacene is exposed to air and this could be easily monitored by following gradual disappearance of its absorption in the visible region. The rates of disappearance of heptacene in different polymer films were observed to follow pseudo first order kinetics. Interestingly, those rates measured in the films of polystyrene (7.25 × 10-4 s-1), poly(ethyl methacrylate) (4.27 × 10-4 s-1), poly(methyl methacrylate) (1.60 × 10-4 s-1), and poly(vinyl chloride) (1.03 × 10-4 s-1) were found to correlate well with their oxygen permeability values. This indicates that the high reactivity of heptacene towards molecular oxygen can be used to determine the oxygen permeability of polymers. v This dissertation is dedicated to my parents (Mr. Bibekananda Mondal & Mrs. Sona Rani Mondal), my uncle (Dr. Rabindranath Mandal), and my respected teacher (Mr. Ranjit K. Das)………… vi ACKNOWLEDGMENTS I wish to take this unique opportunity to express my deep sense of indebtedness, gratitude, and respect to my advisor, Dr. Douglas C. Neckers. He initiated me into this very fascinating and challenging field of organic electronics. His constant support, encouragement and timely interventions are responsible for making this thesis a reality. I enjoyed the full freedom in working under his guidance. I feel honored to acknowledge his seminal role behind this dissertation. It is my pleasure to acknowledge Dr. Bipin K. Shah for encouraging, reviewing, and criticizing almost all the research presented in this dissertation. I am thankful to Dr. Holger F. Bettinger at Ruhr University at Bochum for making this project exciting with a wonderful collaboration. Thanks are due to Dr. Brigitte Wex (Lebanese American University), Dr. Bilal R. Kaafarani (American University of Beirut), Dr. Albert N. Okhrimenko, and Ravi M. Adhikari for their help with several experiments and fruitful discussions. Dr. Thomas H. Kinstle - one of my committee members, my organic teacher, and my landlord – has been always very helpful. I’ve asked him almost anything ranging from his favorite truck to answers to various scientific problems. Thanking him might not be the right way to acknowledge him. I’d like to thank Dr. Michael A. J. Rodgers for serving in my committee and for his inspiration to maintain the good work. All present and former DCN group members, namely Sujeewa, Thilini, Hannah, Kelechi, Koushik, Sunil, Andrey, Dmitry, Priya, Jiang, and others, who have been very helpful, collaborative, and friendly inside and outside the lab during these past few years. Besides them, thanks are due to my friends in BG (Jaydeep, Padmanava, Ramesh, Siri, Aritra, Mallar, Mithun, Neeraj, Upali, Saptarshi, Madhumita), Ujjal, Amit, Sanjukta, Aparajita, and Debbani for sharing all joys and sorrows with me. I wish to thank Nora, Alita, Midge, Karen, Mary for all the administrative help in the department, and Craig, Doug, Larry, Chen, Romanowicz for taking care of all the vii technical issues regarding the research. Help of Center for International Program is highly appreciated. Financial support from the McMaster Endowment is greatly acknowledged for providing me the research fellowship. Finally, I would like to give my deep appreciation to my family members: my parents – Bibekananda Mondal and Sona Rani Mondal, my brother and sister – Rakesh and Moumita, my uncle – Rabindranath Mandal, and my beloved nephew and niece – Toton and Titli. Their emotional support, love, and encouragement have inspired me to complete this thesis. I thank each and every person associated directly or indirectly with the success of this endeavor. viii TABLE OF CONTENTS Page CHAPTER 1. POLY(ACENE)S: PROPERTIES AND APPLICATIONS ........................... 1 1.1 Introduction…………………………………………………………………… 1 1.2 Acenes and Erich Clar ....................................................................................... 1 1.3 Structure, Reactivity and Properties of Acenes ................................................. 2 1.4 Principles of Photophysical Processes ............................................................... 8 1.5 Organic Electronic Devices ............................................................................... 10 1.5.1 Organic Light-Emitting Devices ......................................................... 11 1.5.2 Organic Field Effect Transistors ......................................................... 12 1.5.3 Photovoltaic Devices ......................................................................... 14 1.6 Objectives and Scopes of the Project ................................................................. 15 1.7 References .........................................................................................................
Recommended publications
  • Appendix 1 Table of Contents
    @ECHA EUROPEAN CHEMICALS AGENCY Appendix 1 Table of Contents: Supplementary Table C:Substances on Annex II of the Cosmetic Products Regulation ... 1 Supplementary Table D: Substances proposed to be restricted due their use restriction in CPR Annex IV column 9..,,.. 119 Supplementary Table E: Substances allowed in tattoo inks subject to the conditions specified in CPR Annex IV columns h and i ......r29 Annankatu 18. P.O. Box 400, FI-00121 Helsinki, Finland I Tel. +358 9 686180 | Fax +358 9 68618210 | echa.europa.eu ANNEX XV RESTRICTION REPORT - SUBSTANCES IN TATTOO INKS AND PERMANENT MAKE UP Su lemen Table C:Substances on Annex II of the Cosmetic Products Re ulationl Substance EC# cAs # Substance EC# cAs # R T T T A- s c R I T Name Name e b b b II s M 7 c I s I I I #4 5 6 D 9 2 1 2 3 a 3 3 3 N-(s- Chlorobenzoxa zol-2- 35783- vl)acetamide 57-4 1 (2- Acetoxyethyl)t rimethylammo (2- nium acetoxyethyl hydroxide )trimethyla 200- (Acetylcholine) 200- mmonium 124-9 5 1-84-3 and its salts t2a-9 51-84-3 2 Deanol Deanol 222- 3342- aceglumate 222- 3342- aceqlumate 085-5 61-8 (INN) 085-5 61-8 3 Spironolacto 200- Spironolactone 200- ne 133-6 52-O1-7 rINN) 133-6 52-0L-7 4 14-(4- Hydroxy-3- iodophenoxy)- 3,5- diiodophenylla cetic acid (Tiratricol 200- (INN)) and its 200- Tiratricol 086- 1 5r-24-7 salts 086- 1 5l-24-7 5 Methotrexat 200- Methotrexate 200- e 413-8 59-05-2 (INN) 413-8 59-05-2 6 Aminocaproic Aminocaproi 200- acid (INN) and 200- c acid 469-3 60-32-2 its salts 469-3 60-32-2 7 Cinchophen (rNN), its salts, derivatives and salts of 205- 132-60- these 205- 132-60- Cinchophen 067-r 5 derivatives 067-l 5 Thyropropic acid (INN) and its salts 5L-26-3 9 Trichloroacet 200- Trichloroacetic 200- ic acid 927-2 75-03-9 acid 927-2 76-03-9 l0 Aconitum napellus L.
    [Show full text]
  • Refining Crude Oil
    REFINING CRUDE OIL New Zealand buys crude oil from overseas, as well as drilling for some oil locally. This oil is a mixture of many hydrocarbons that has to be refined before it can be used for fuel. All crude oil in New Zealand is refined by The New Zealand Refining Company at their Marsden Point refinery where it is converted to petrol, diesel, kerosene, aviation fuel, bitumen, refinery gas (which fuels the refinery) and sulfur. The refining process depends on the chemical processes of distillation (separating liquids by their different boiling points) and catalysis (which speeds up reaction rates), and uses the principles of chemical equilibria. Chemical equilibrium exists when the reactants in a reaction are producing products, but those products are being recombined again into reactants. By altering the reaction conditions the amount of either products or reactants can be increased. Refining is carried out in three main steps. Step 1 - Separation The oil is separated into its constituents by distillation, and some of these components (such as the refinery gas) are further separated with chemical reactions and by using solvents which dissolve one component of a mixture significantly better than another. Step 2 - Conversion The various hydrocarbons produced are then chemically altered to make them more suitable for their intended purpose. For example, naphthas are "reformed" from paraffins and naphthenes into aromatics. These reactions often use catalysis, and so sulfur is removed from the hydrocarbons before they are reacted, as it would 'poison' the catalysts used. The chemical equilibria are also manipulated to ensure a maximum yield of the desired product.
    [Show full text]
  • General Disclaimer One Or More of the Following Statements May Affect
    General Disclaimer One or more of the Following Statements may affect this Document This document has been reproduced from the best copy furnished by the organizational source. It is being released in the interest of making available as much information as possible. This document may contain data, which exceeds the sheet parameters. It was furnished in this condition by the organizational source and is the best copy available. This document may contain tone-on-tone or color graphs, charts and/or pictures, which have been reproduced in black and white. This document is paginated as submitted by the original source. Portions of this document are not fully legible due to the historical nature of some of the material. However, it is the best reproduction available from the original submission. Produced by the NASA Center for Aerospace Information (CASI) NASA CR - 159480 EXXON/GRUS. 1KWD. 78 NIGH PERFORMANCE, HIGH DENSITY HYDROCARBON FUELS J. W. Frankenfeld, T. W. Hastings, M. Lieberman and W. F. Taylor EXXON RESEARCH AND ENGINEERING COMPANY prepared for NATIONAL AERONAUTICS AND SPACE ADMINISTRATION (NASA-CR-159''PO) HIGH PEPPOFMANCF, HIGH V79-20267 DENSTTv HYDR I-CARBON FTIELS (Exxon P.esearch and Engineering Co.) 239 rp HC A11/MF A01 CSCL 21D 'Inclas G3/28 19456 NASA Lewis Research Center Contract NAS 3-20394 Qnr{l,,Y^ ^'Pr I€ ^i NASA CR - 159480 EXXON/GRUS . 1KWD . 78 L: HIGH PERFORMANCE, HIGH DENSITY HYDROCARBON FUELS J. W. Frankenfeld, T. W. Hastings, M. Lieberman and W. F. Taylor EXXON RESEARCH AND ENGINEERING COMPANY prepared for NATIONAL AERONAUTICS AND SPACE ADMINISTRATION NASA Lewis Research Center Contract NAS 3-20394 FOREWARD The research described in this report was performed at Exxon Research and Engineering Company, Linden, New Jersey and Contract NAS 320394 with Mr.
    [Show full text]
  • Polycyclic Aromatic Hydrocarbon Structure Index
    NIST Special Publication 922 Polycyclic Aromatic Hydrocarbon Structure Index Lane C. Sander and Stephen A. Wise Chemical Science and Technology Laboratory National Institute of Standards and Technology Gaithersburg, MD 20899-0001 December 1997 revised August 2020 U.S. Department of Commerce William M. Daley, Secretary Technology Administration Gary R. Bachula, Acting Under Secretary for Technology National Institute of Standards and Technology Raymond G. Kammer, Director Polycyclic Aromatic Hydrocarbon Structure Index Lane C. Sander and Stephen A. Wise Chemical Science and Technology Laboratory National Institute of Standards and Technology Gaithersburg, MD 20899 This tabulation is presented as an aid in the identification of the chemical structures of polycyclic aromatic hydrocarbons (PAHs). The Structure Index consists of two parts: (1) a cross index of named PAHs listed in alphabetical order, and (2) chemical structures including ring numbering, name(s), Chemical Abstract Service (CAS) Registry numbers, chemical formulas, molecular weights, and length-to-breadth ratios (L/B) and shape descriptors of PAHs listed in order of increasing molecular weight. Where possible, synonyms (including those employing alternate and/or obsolete naming conventions) have been included. Synonyms used in the Structure Index were compiled from a variety of sources including “Polynuclear Aromatic Hydrocarbons Nomenclature Guide,” by Loening, et al. [1], “Analytical Chemistry of Polycyclic Aromatic Compounds,” by Lee et al. [2], “Calculated Molecular Properties of Polycyclic Aromatic Hydrocarbons,” by Hites and Simonsick [3], “Handbook of Polycyclic Hydrocarbons,” by J. R. Dias [4], “The Ring Index,” by Patterson and Capell [5], “CAS 12th Collective Index,” [6] and “Aldrich Structure Index” [7]. In this publication the IUPAC preferred name is shown in large or bold type.
    [Show full text]
  • On‐Surface Synthesis of Ethynylene‐Bridged Anthracene Polymers
    Angewandte Communications Chemie International Edition:DOI:10.1002/anie.201814154 Surface Chemistry German Edition:DOI:10.1002/ange.201814154 On-Surface Synthesis of Ethynylene-Bridged Anthracene Polymers Ana Sµnchez-Grande,Bruno de la Torre,JosØ Santos,Borja Cirera, Koen Lauwaet, Taras Chutora, Shayan Edalatmanesh, Pingo Mutombo,Johanna Rosen, Radek Zborˇil, Rodolfo Miranda, Jonas Bjçrk,* Pavel Jelínek,* Nazario Martín,* and David Écija* Abstract: Engineering low-band-gap p-conjugated polymers conjugated nanomaterials to be synthesized by wet chemis- is agrowing area in basic and applied research. The main try.[2,3] synthetic challenge lies in the solubility of the starting materials, On-surface synthesis has become apowerful discipline to which precludes advancements in the field. Here,wereport an design many novel molecular compounds,polymers,and on-surface synthesis protocol to overcome such difficulties and nanomaterials with atomistic precision,[4–12] some of them not produce poly(p-anthracene ethynylene) molecular wires on accessible by standard synthetic methods.Additionally,on- Au(111). To this aim, aquinoid anthracene precursor with surface chemistry enables the structural and electronic =CBr2 moieties is deposited and annealed to 400 K, resulting in characterization of the designed products with advanced anthracene-based polymers.High-resolution nc-AFM meas- surface-science techniques.[10,13,14] Recently,and within the urements confirm the nature of the ethynylene-bridge bond scope of on-surface synthesis,particular success
    [Show full text]
  • Synthesis and Properties of Heterocyclic Acene Diimides
    ORGANIC LETTERS XXXX Synthesis and Properties of Heterocyclic Vol. XX, No. XX Acene Diimides 000–000 Cheng Li,†,‡ Chengyi Xiao,†,‡ Yan Li,*,† and Zhaohui Wang*,† Beijing National Laboratory for Molecular Sciences, Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China, and University of Chinese Academy of Sciences, Beijing 100049, China [email protected]; [email protected] Received December 27, 2012 ABSTRACT A series of heterocyclic acene diimides were synthesized effectively based on the condensation of o-phenylenediamine, 1,2-benzenedithiol, and 2-aminothiophenol with 2,3,6,7-tetrabromo-1,4,5,8-naphthalene tetracarboxylic diimide. The diimides exhibit interesting optical and electrical properties with one of them showing a hole mobility up to 0.02 cm2 VÀ1 sÀ1. In recent years, naphthalene tetracarboxylic diimides has been applied as high-performance solution-deposited (NDIs, 1, Figure 1) and their core-expanded derivatives ambipolar organic transistors.2 In contrast, the expansion have attracted a great deal of attention due to their of the π-system along the lateral position of NDIs has been interesting electro-optical properties and potential appli- demonstrated only recently due to the synthetic difficulties. cations as organic semiconductors in organic electronics.1 Recently, the synthesis of tetracene tetracarboxylic The π-skeleton of NDIs could be expanded along two diimides based on two methods of direct double ring directions: the peri position (1, 4, 5, 8) and the lateral extension of electron-deficient NDIs involving metal- position (2, 3, 6, 7). The expansion of the π-system along lacyclopentadienes and bismuth-triflate-mediated double- the peri position has been studied for many decades cyclization reaction of acid chlorides and isocyanates has because it induces impressive bathochromic shifts and been reported, which displays dramatic bathochromic shifts, smaller energy band gaps, and is a promising can- 3 † Institute of Chemistry, Chinese Academy of Sciences.
    [Show full text]
  • Chemistry of Acenes, [60]Fullerenes, Cyclacenes and Carbon Nanotubes
    University of New Hampshire University of New Hampshire Scholars' Repository Doctoral Dissertations Student Scholarship Spring 2011 Chemistry of acenes, [60]fullerenes, cyclacenes and carbon nanotubes Chandrani Pramanik University of New Hampshire, Durham Follow this and additional works at: https://scholars.unh.edu/dissertation Recommended Citation Pramanik, Chandrani, "Chemistry of acenes, [60]fullerenes, cyclacenes and carbon nanotubes" (2011). Doctoral Dissertations. 574. https://scholars.unh.edu/dissertation/574 This Dissertation is brought to you for free and open access by the Student Scholarship at University of New Hampshire Scholars' Repository. It has been accepted for inclusion in Doctoral Dissertations by an authorized administrator of University of New Hampshire Scholars' Repository. For more information, please contact [email protected]. CHEMISTRY OF ACENES, [60]FULLERENES, CYCLACENES AND CARBON NANOTUBES BY CHANDRANI PRAMANIK B.Sc., Jadavpur University, Kolkata, India, 2002 M.Sc, Indian Institute of Technology Kanpur, India, 2004 DISSERTATION Submitted to the University of New Hampshire in Partial Fulfillment of the Requirements for the Degree of Doctor of Philosophy in Materials Science May 2011 UMI Number: 3467368 All rights reserved INFORMATION TO ALL USERS The quality of this reproduction is dependent upon the quality of the copy submitted. In the unlikely event that the author did not send a complete manuscript and there are missing pages, these will be noted. Also, if material had to be removed, a note will indicate the deletion. UMI Dissertation Publishing UMI 3467368 Copyright 2011 by ProQuest LLC. All rights reserved. This edition of the work is protected against unauthorized copying under Title 17, United States Code. ProQuest LLC 789 East Eisenhower Parkway P.O.
    [Show full text]
  • Community Soil Study
    Tonawanda Community Fund An affiliate of “The Wellness Institute of Greater Buffalo” Community Soil Study Fact Sheet In November 2012, Tonawanda Community Fund (TCF) led a preliminary study in a Tonawanda neighborhood to find out if air toxins were contaminating surface soil; and, if pollutants were present, do levels pose a health risk. TCF tested the soil for toxic chemicals on Kaufman Ave/James Ave/Sawyers Ave. streets in the Town of Tonawanda, NY. This neighborhood is located off of River Rd in the heart of Tonawanda’s industrial corridor. The study was initiated due to recent community complaints of a black gooey substance apparently coming from a close by air source and depositing on soil, vegetation and vehicles. The study gained more significance when Jackie James Creedon, TCF member and former director of the Clean Air Coalition of WNY, learned that a similar community’s surface soil in Birmingham, AL, where two foundry coke plants reside, was contaminated with a dangerous chemical called Benzo[a]pyrene (BAP). How the Soil was Sampled and Tested Ken‐Ton residents and TCF members, Charles Matteliano from TEQ Solutions, and Andrew Baumgartner, a student at University of Buffalo mentoring under Chemistry professor Dr .Joe Gardella, collected soil samples from a playground and 5 homes in the neighborhood. They also collected a background sample at Beaver Island State Park. Each soil sample, a composite of 6 sub samples, was tested at Test America (Amherst, NY) for 16 polycyclic aromatic hydrocarbon (PAH) compounds and 8 heavy metals. What Was Found Harmful Chemicals: Many chemicals were elevated above background sample.
    [Show full text]
  • A Unified Mechanism on the Formation of Acenes, Helicenes
    Angewandte Research Articles Chemie International Edition:DOI:10.1002/anie.201913037 PolycyclicAromatic Hydrocarbons German Edition:DOI:10.1002/ange.201913037 AUnified Mechanism on the Formation of Acenes,Helicenes,and Phenacenes in the Gas Phase Long Zhao,Ralf I. Kaiser,* Bo Xu, Utuq Ablikim, Musahid Ahmed,* Mikhail M. Evseev, Eugene K. Bashkirov, Valeriy N. Azyazov,and Alexander M. Mebel* Abstract: Aunified low-temperature reaction mechanismon as molecular tracers in untangling the underlying molecular the formation of acenes,phenacenes,and helicenes—polycyclic mass growth processes leading to PAHs in combustion aromatic hydrocarbons (PAHs) that are distinct via the linear, systems and in the interstellar medium (ISM) at the most zigzag,and ortho-condensed arrangements of fused benzene fundamental, microscopic level (Scheme 1). Although the rings—is revealed. This mechanism is mediated through presence of PAHs[4] along with their methylated and hetero- abarrierless,vinylacetylene mediated gas-phase chemistry utilizing tetracene,[4]phenacene,and [4]helicene as bench- marks contesting established ideas that molecular mass growth processes to PAHs transpire at elevated temperatures.This mechanism opens up an isomer-selective route to aromatic structures involving submerged reaction barriers,resonantly stabilized free-radical intermediates,and systematic ring an- nulation potentially yielding molecular wires along with racemic mixtures of helicenes in deep space.Connecting helicene templates to the Origins of Life ultimately changes our
    [Show full text]
  • Excited States of Molecules with Density Functional Theory and Many Body Perturbation Theory
    Excited States of Molecules with Density Functional Theory and Many Body Perturbation Theory by Samia M. Hamed A dissertation submitted in partial satisfaction of the requirements for the degree of Doctor of Philosophy in Chemistry in the Graduate Division of the University of California, Berkeley Committee in charge: Professor Jeffrey B. Neaton, Chair Professor Martin Head-Gordon, Co-chair Professor Naomi Ginsberg Professor Michael F. Crommie Summer 2020 Excited States of Molecules with Density Functional Theory and Many Body Perturbation Theory Copyright 2020 by Samia M. Hamed 1 Abstract Excited States of Molecules with Density Functional Theory and Many Body Perturbation Theory by Samia M. Hamed Doctor of Philosophy in Chemistry University of California, Berkeley Professor Jeffrey B. Neaton, Chair Professor Martin Head-Gordon, Co-chair The accurate prediction of electronic excitation energies in molecules is an area of intense research of significant fundamental interest and is critical for many applications. Today, most excited state calculations use time-dependent density functional theory (TDDFT) in conjunction with an approximate exchange-correlation functional. In this dissertation, I have examined and critically assessed an alternative method for predicting charged and low-lying neutral excitations with similar computational cost: the ab initio Bethe-Salpeter equation (BSE) approach. Rigorously based on many-body Green's function theory but incorporating information from density functional theory, the predictive power of the BSE approach remained at the beginning of this work unexplored for the neutral and charged electronic excitations of organic molecules. Here, the results and implications of several systematic benchmarks are laid out in detail. i Contents Contents i List of Figures iii List of Tables vii 1 Electronic excited state calculations in molecules: challenges and oppor- tunities 1 1.1 Case Study 1: Biomimetic light harvesting complexes .
    [Show full text]
  • Spectroscopic Study of Anisotropic Excitons in Single Crystal Hexacene † † ‡ ‡ ‡ † Alexey Chernikov,*, Omer Yaffe, Bharat Kumar, Yu Zhong, Colin Nuckolls, and Tony F
    Letter pubs.acs.org/JPCL Spectroscopic Study of Anisotropic Excitons in Single Crystal Hexacene † † ‡ ‡ ‡ † Alexey Chernikov,*, Omer Yaffe, Bharat Kumar, Yu Zhong, Colin Nuckolls, and Tony F. Heinz*, † Departments of Physics and Electrical Engineering, Columbia University, New York, New York 10027, United States ‡ Department of Chemistry, Columbia University, New York, New York 10027, United States *S Supporting Information ABSTRACT: The linear optical response of hexacene single crystals over a spectral range of 1.3−1.9 eV was studied using polarization-resolved reflectance spectroscopy at cryogenic temperatures. We observe strong polarization anisotropy for all optical transitions. Pronounced deviations from the single-molecule, solution-phase spectra are present, with a measured Davydov splitting of 180 meV, indicating strong intermolecular coupling. The energies and oscillator strengths of the relevant optical transitions and polarization-dependent absorption coefficients are extracted from quantitative analysis of the data. SECTION: Spectroscopy, Photochemistry, and Excited States inear acenes, that is, naphthalene, anthracene, tetracene, established between the degree of CT character and the so- L and pentacene, form a unique family of organic semi- called Davydov splitting (DS)19 of the low-lying excitons conductors. These materials readily form large (>100 μm2) observed in polarization-resolved optical absorption spectra.6 single crystals that exhibit a “herring-bone” packing motif in Thus, experimental characterization of the intrinsic optical 1 which aromatic edge-to-face interactions dominate. During the properties of organic crystals also facilitates rational design of last few decades, this family has been the subject of many advanced optoelectronic devices. Naturally, the steady increase 2 experimental and theoretical studies, especially motivated by of the intermolecular coupling from naphthalene to pentacene fl potential applications in exible, low-cost optoelectronic crystals provides a strong impetus for a systematic study of even 3−5 devices.
    [Show full text]
  • WO 2016/074683 Al 19 May 2016 (19.05.2016) W P O P C T
    (12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT) (19) World Intellectual Property Organization International Bureau (10) International Publication Number (43) International Publication Date WO 2016/074683 Al 19 May 2016 (19.05.2016) W P O P C T (51) International Patent Classification: (81) Designated States (unless otherwise indicated, for every C12N 15/10 (2006.01) kind of national protection available): AE, AG, AL, AM, AO, AT, AU, AZ, BA, BB, BG, BH, BN, BR, BW, BY, (21) International Application Number: BZ, CA, CH, CL, CN, CO, CR, CU, CZ, DE, DK, DM, PCT/DK20 15/050343 DO, DZ, EC, EE, EG, ES, FI, GB, GD, GE, GH, GM, GT, (22) International Filing Date: HN, HR, HU, ID, IL, IN, IR, IS, JP, KE, KG, KN, KP, KR, 11 November 2015 ( 11. 1 1.2015) KZ, LA, LC, LK, LR, LS, LU, LY, MA, MD, ME, MG, MK, MN, MW, MX, MY, MZ, NA, NG, NI, NO, NZ, OM, (25) Filing Language: English PA, PE, PG, PH, PL, PT, QA, RO, RS, RU, RW, SA, SC, (26) Publication Language: English SD, SE, SG, SK, SL, SM, ST, SV, SY, TH, TJ, TM, TN, TR, TT, TZ, UA, UG, US, UZ, VC, VN, ZA, ZM, ZW. (30) Priority Data: PA 2014 00655 11 November 2014 ( 11. 1 1.2014) DK (84) Designated States (unless otherwise indicated, for every 62/077,933 11 November 2014 ( 11. 11.2014) US kind of regional protection available): ARIPO (BW, GH, 62/202,3 18 7 August 2015 (07.08.2015) US GM, KE, LR, LS, MW, MZ, NA, RW, SD, SL, ST, SZ, TZ, UG, ZM, ZW), Eurasian (AM, AZ, BY, KG, KZ, RU, (71) Applicant: LUNDORF PEDERSEN MATERIALS APS TJ, TM), European (AL, AT, BE, BG, CH, CY, CZ, DE, [DK/DK]; Nordvej 16 B, Himmelev, DK-4000 Roskilde DK, EE, ES, FI, FR, GB, GR, HR, HU, IE, IS, IT, LT, LU, (DK).
    [Show full text]