Glacial Geology
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
A Decade of Antarctic Science Support Through Amps
A DECADE OF ANTARCTIC SCIENCE SUPPORT THROUGH AMPS BY JORDAN G. POWERS, KEVIN W. MANNING, DAVID H. BROMWICH, JOHN J. CASSANO, AND ARTHUR M. CAYETTE AMPS, a real-time mesoscale modeling system, has provided a decade of service for scientific and logistical needs and has helped advance polar numerical weather prediction as well as understanding of Antarctica. ith 2011 marking the 100th anniversary of Roald Amundsen’s being the first to reach W the South Pole, the Antarctic endeavor has come a long way. The capabilities to support it have as well. In the critical area of weather forecasting, the Antarctic Mesoscale Prediction System (AMPS) has exemplified this progress for the past decade. AMPS is a real-time implementation of the Weather Research and Forecasting model (WRF; Skamarock et al. 2008) to support the U.S. Antarctic Program (USAP). Because the need for accurate weather fore- casting in Antarctica has been acute since the earliest explorations, AMPS has been a vital effort. AMPS began in 2000, when the National Science Foundation’s (NSF’s) Office of Polar Programs (OPP) sought to improve the weather forecasting support for FIG. 1. Antarctica, with referenced locations and the USAP. The concern at the time was the numerical regions shown. weather prediction (NWP) guidance available to the USAP forecasters, who were relying on an assortment It became evident early in the effort that the of models (mostly global) that were tailored neither to system could be of value to Antarctic activities their needs nor to their singular area of responsibility. beyond those tied to the McMurdo forecasters. -
Multi-Year Record of Atmospheric Mercury at Dumont D'urville, East Antarctic Coast: Continental Outflow and Oceanic Influences
Atmos. Chem. Phys. Discuss., doi:10.5194/acp-2016-257, 2016 Manuscript under review for journal Atmos. Chem. Phys. Published: 1 April 2016 c Author(s) 2016. CC-BY 3.0 License. 1 Multi-year record of atmospheric mercury at Dumont 2 d’Urville, East Antarctic coast: continental outflow and 3 oceanic influences 4 5 Hélène Angot 1, Iris Dion 1, Nicolas Vogel 1, Michel Legrand 1, 2 , Olivier Magand 2, 1, 6 Aurélien Dommergue 1, 2 7 1Univ. Grenoble Alpes, Laboratoire de Glaciologie et Géophysique de l’Environnement 8 (LGGE), 38041 Grenoble, France 9 2CNRS, Laboratoire de Glaciologie et Géophysique de l’Environnement (LGGE), 38041 10 Grenoble, France 11 Correspondence to: A. Dommergue ([email protected]) 12 13 Abstract 14 Under the framework of the Global Mercury Observation System (GMOS) project, a 3.5-year 15 record of atmospheric gaseous elemental mercury (Hg(0)) has been gathered at Dumont 16 d’Urville (DDU, 66°40’S, 140°01’E, 43 m above sea level) on the East Antarctic coast. 17 Additionally, surface snow samples were collected in February 2009 during a traverse 18 between Concordia Station located on the East Antarctic plateau and DDU. The record of 19 atmospheric Hg(0) at DDU reveals particularities that are not seen at other coastal sites: a 20 gradual decrease of concentrations over the course of winter, and a daily maximum 21 concentration around midday in summer. Additionally, total mercury concentrations in 22 surface snow samples were particularly elevated near DDU (up to 194.4 ng L-1) as compared 23 to measurements at other coastal Antarctic sites. -
Trophic Interactions Within the Ross Sea Continental Shelf Ecosystem Walker O
Phil. Trans. R. Soc. B (2007) 362, 95–111 doi:10.1098/rstb.2006.1956 Published online 6 December 2006 Trophic interactions within the Ross Sea continental shelf ecosystem Walker O. Smith Jr1,*, David G. Ainley2 and Riccardo Cattaneo-Vietti3 1Virginia Institute of Marine Sciences, College of William and Mary, Gloucester Point, VA 23062, USA 2H.T. Harvey and Associates, 3150 Almaden Expressway, Suite 145, San Jose, CA 95118, USA 3Dipartimento per lo Studio del Territorio e delle sue Risorse, Universita` di Genova, Corso Europa 26, 16132 Genova, Italy The continental shelf of the Ross Sea is one of the Antarctic’s most intensively studied regions. We review the available data on the region’s physical characteristics (currents and ice concentrations) and their spatial variations, as well as components of the neritic food web, including lower and middle levels (phytoplankton, zooplankton, krill, fishes), the upper trophic levels (seals, penguins, pelagic birds, whales) and benthic fauna. A hypothetical food web is presented. Biotic interactions, such as the role of Euphausia crystallorophias and Pleuragramma antarcticum as grazers of lower levels and food for higher trophic levels, are suggested as being critical. The neritic food web contrasts dramatically with others in the Antarctic that appear to be structured around the keystone species Euphausia superba. Similarly, we suggest that benthic–pelagic coupling is stronger in the Ross Sea than in most other Antarctic regions. We also highlight many of the unknowns within the food web, and discuss the impacts of a changing Ross Sea habitat on the ecosystem. Keywords: Ross Sea; neritic food web; bio-physical coupling; ecosystem function; ecosystem structure; pelagic–benthic coupling 1. -
S. Antarctic Projects Officer Bullet
S. ANTARCTIC PROJECTS OFFICER BULLET VOLUME III NUMBER 8 APRIL 1962 Instructions given by the Lords Commissioners of the Admiralty ti James Clark Ross, Esquire, Captain of HMS EREBUS, 14 September 1839, in J. C. Ross, A Voya ge of Dis- covery_and Research in the Southern and Antarctic Regions, . I, pp. xxiv-xxv: In the following summer, your provisions having been completed and your crews refreshed, you will proceed direct to the southward, in order to determine the position of the magnet- ic pole, and oven to attain to it if pssble, which it is hoped will be one of the remarka- ble and creditable results of this expedition. In the execution, however, of this arduous part of the service entrusted to your enter- prise and to your resources, you are to use your best endoavours to withdraw from the high latitudes in time to prevent the ships being besot with the ice Volume III, No. 8 April 1962 CONTENTS South Magnetic Pole 1 University of Miohigan Glaoiologioal Work on the Ross Ice Shelf, 1961-62 9 by Charles W. M. Swithinbank 2 Little America - Byrd Traverse, by Major Wilbur E. Martin, USA 6 Air Development Squadron SIX, Navy Unit Commendation 16 Geological Reoonnaissanoe of the Ellsworth Mountains, by Paul G. Schmidt 17 Hydrographio Offices Shipboard Marine Geophysical Program, by Alan Ballard and James Q. Tierney 21 Sentinel flange Mapped 23 Antarctic Chronology, 1961-62 24 The Bulletin is pleased to present four firsthand accounts of activities in the Antarctic during the recent season. The Illustration accompanying Major Martins log is an official U.S. -
Ice Caves of Terra Nova Bay (Victoria Land, Antarctica)
SPECIALE GLACIER CAVES NIMBUS 23-24 Ice Caves of Terra Nova Bay (Victoria Land, Antarctica) Mirco Meneghel - Dipartimento di Geografia, University of Padova, Italy Giovanni Badino - Dipartimento di Fisica Generale, University of Torino, Italy Associazione La Venta Abstract Baia Terra Nova, sulla costa occi- wider Terra Nova Bay, on the we- In the 2000/2001 expedition of dentale del Mare di Ross. Sono stern coast of the Ross Sea, at 74° the Italian Programme of Resear- state esplorate tre grotte nella 41' 42" S lat. and 164° 07' 23" E ch in Antarctica (PNRA) an inve- fronte dei ghiacciai al contatto col long. The Transantarctic Mts, stigation on the presence of ca- mare e un'altra sulla sommità del whose relief is often higher than ves in ice has been carried out monte Melbourne, un cono vulca- 3000 m, fringe the coast. South near the Italian Station of Terra nico di 2700 metri di altezza. Le of the Base the mountain chaine Nova Bay, on the western coast of grotte sulla costa sono crepacci is crossed by outlet glaciers that the Ross Sea (Northern Victoria ampliati dalla sublimazione del drain the ice of the inlandsis. On Land). Three caves have been ex- ghiaccio a causa della differenza the north huge valley glaciers plored at the snout of glaciers di temperatura fra il ghiaccio e flow from the mountains to the reaching the sea and an other l'acqua marina. La grotta subgla- sea. The Italian Base is placed one on the summit of Mt Mel- ciale sul monte Melbourne è ge- between the region of the Dry bourne, a volcanic cone 2700 m nerata dal calore delle rocce vul- Valleys to the south, where broad 1 - Below - high. -
Federal Register/Vol. 84, No. 78/Tuesday, April 23, 2019/Rules
Federal Register / Vol. 84, No. 78 / Tuesday, April 23, 2019 / Rules and Regulations 16791 U.S.C. 3501 et seq., nor does it require Agricultural commodities, Pesticides SUPPLEMENTARY INFORMATION: The any special considerations under and pests, Reporting and recordkeeping Antarctic Conservation Act of 1978, as Executive Order 12898, entitled requirements. amended (‘‘ACA’’) (16 U.S.C. 2401, et ‘‘Federal Actions to Address Dated: April 12, 2019. seq.) implements the Protocol on Environmental Justice in Minority Environmental Protection to the Richard P. Keigwin, Jr., Populations and Low-Income Antarctic Treaty (‘‘the Protocol’’). Populations’’ (59 FR 7629, February 16, Director, Office of Pesticide Programs. Annex V contains provisions for the 1994). Therefore, 40 CFR chapter I is protection of specially designated areas Since tolerances and exemptions that amended as follows: specially managed areas and historic are established on the basis of a petition sites and monuments. Section 2405 of under FFDCA section 408(d), such as PART 180—[AMENDED] title 16 of the ACA directs the Director the tolerance exemption in this action, of the National Science Foundation to ■ do not require the issuance of a 1. The authority citation for part 180 issue such regulations as are necessary proposed rule, the requirements of the continues to read as follows: and appropriate to implement Annex V Regulatory Flexibility Act (5 U.S.C. 601 Authority: 21 U.S.C. 321(q), 346a and 371. to the Protocol. et seq.) do not apply. ■ 2. Add § 180.1365 to subpart D to read The Antarctic Treaty Parties, which This action directly regulates growers, as follows: includes the United States, periodically food processors, food handlers, and food adopt measures to establish, consolidate retailers, not States or tribes. -
Size Distribution and Ionic Composition of Marine Summer Aerosol at the Continental Antarctic Site Kohnen
Atmos. Chem. Phys., 18, 2413–2430, 2018 https://doi.org/10.5194/acp-18-2413-2018 © Author(s) 2018. This work is distributed under the Creative Commons Attribution 4.0 License. Size distribution and ionic composition of marine summer aerosol at the continental Antarctic site Kohnen Rolf Weller1, Michel Legrand2, and Susanne Preunkert2 1Glaciology Department, Alfred Wegener Institute for Polar and Marine Research, Am Handelshafen 12, 27570 Bremerhaven, Germany 2Université Grenoble Alpes, CNRS, Laboratoire de Glaciologie et Géophysique de l’Environnement (LGGE), Grenoble, France Correspondence: Rolf Weller ([email protected]) Received: 27 June 2017 – Discussion started: 25 October 2017 Revised: 21 December 2017 – Accepted: 22 January 2018 – Published: 19 February 2018 Abstract. We measured aerosol size distributions and con- were associated with enhanced marine aerosol entry, aerosol ducted bulk and size-segregated aerosol sampling dur- deposition on-site during austral summer should be largely ing two summer campaigns in January 2015 and January dominated by typical steady clear sky conditions. 2016 at the continental Antarctic station Kohnen (Dron- ning Maud Land). Physical and chemical aerosol prop- erties differ conspicuously during the episodic impact of a distinctive low-pressure system in 2015 (LPS15) com- 1 Introduction pared to the prevailing clear sky conditions. The approx- imately 3-day LPS15 located in the eastern Weddell Sea The impact of aerosols on global climate, which is in partic- was associated with the following: marine boundary layer ular mediated by governing cloud droplet concentrations and air mass intrusion; enhanced condensation particle con- hence cloud optical properties (Rosenfeld et al., 2014; Sein- centrations (1400 ± 700 cm−3 compared to 250 ± 120 cm−3 feld et al., 2016), is of crucial importance but likewise no- under clear sky conditions; mean ± SD); the occurrence toriously charged with the largest uncertainties (Boucher et of a new particle formation event exhibiting a continu- al., 2013; Seinfeld et al., 2016). -
Terra Antartica Reports No. 16
© Terra Antartica Publication Terra Antartica Reports No. 16 Geothematic Mapping of the Italian Programma Nazionale di Ricerche in Antartide in the Terra Nova Bay Area Introductory Notes to the Map Case Editors C. Baroni, M. Frezzotti, A. Meloni, G. Orombelli, P.C. Pertusati & C.A. Ricci This case contains four geothematic maps of the Terra Nova Bay area where the Italian Programma Nazionale di Ricerche in Antartide (PNRA) begun its activies in 1985 and the Italian coastal station Mario Zucchelli was constructed. The production of thematic maps was possible only thanks to the big financial and logistical effort of PNRA, and involved many persons (technicians, field guides, pilots, researchers). Special thanks go to the authors of the photos: Carlo Baroni, Gianni Capponi, Robert McPhail (NZ pilot), Giuseppe Orombelli, Piero Carlo Pertusati, and PNRA. This map case is dedicated to the memory of two recently deceased Italian geologists who significantly contributed to the geological mapping in Antarctica: Bruno Lombardo and Marco Meccheri. Recurrent acronyms ASPA Antarctic Specially Protected Area GIGAMAP German-Italian Geological Antarctic Map Programme HSM Historical Site or Monument NVL Northern Victoria Land PNRA Programma Nazionale di Ricerche in Antartide USGS United States Geological Survey Terra anTarTica reporTs, no. 16 ISBN 978-88-88395-13-5 All rights reserved © 2017, Terra Antartica Publication, Siena Terra Antartica Reports 2017, 16 Geothematic Mapping of the Italian Programma Nazionale di Ricerche in Antartide in the Terra Nova -
A Survey of Mesoscale Cyclonic Activity Near Mcmurdo Station, Antarctica JORGE F
that a weak maximum wind speed appears at 600-700 m. Tra- Coast and the Ross Ice Shelf, Monthly Weather Review, 122(7), jectory analyses (not shown) reveal that air parcels travel much faster in run 2 than in run 1, especially over the Siple Coast area. The cyclones over the southern Amundsen Sea have a great impact on the surface winds within the Siple Coast confluence zone. With the assistance of the cyclone, the wind speeds are nearly double those in run 1. Studies (Bromwich et al. 1992, for example) have shown a close rela- tionship between the strong winds over Siple Coast and the cyclonic activity over the Amundsen Sea. Figure 3 shows the 0500 LST temperature structures along the same transect as in figure 1 for the first run (A) and the second run A. Because of the differing initial conditions, we here concentrate on the overall patterns within the lowest few hundreds meters above the ground instead of looking at the specific temperature values. In figure 3A the inversion depth is 400-500 m in the north and 500-600 m in the south. The greater depth in the south suggests the impacts of vertical mixing and blocking. For run 2 in figure 3B, the depth is quite uniform along the transect but resides 100-200 m higher. The fairly well-mixed layer in lowest 200-300 m in the south is associated with the strong surface winds as shown in figure 2. This research was supported by National Science Foun- dation grants OPP 89-16921 and OPP 92-18949 to D.H. -
US Geological Survey Scientific Activities in the Exploration Of
Prepared in cooperation with United States Antarctic Program, National Science Foundation U.S. Geological Survey Scientific Activities in the Exploration of Antarctica: 1995–96 Field Season By Tony K. Meunier Richard S. Williams, Jr., and Jane G. Ferrigno, Editors W 0° E 60°S Fimbul Riiser-Larsen Ice Shelf Ice Shelf Lazarev Brunt Ice Shelf Ice Shelf Weddell Larsen Sea Ice Shelf Filchner Ice Shelf ANTARCTIC 80 S T ° PENINSULA R Amery Ronne A Wordie Ice N Ice Shelf Ice Shelf Shelf S A N EAST West George VI T A Ice Shelf Sound R Amundsen-Scott 90°W WEST C 90°E T South Pole Station Abbot I ANTARCTICA C Ice Shelf M ANTARCTICA O Leverett Glacier U N T A Shackleton Glacier Ross IN Shackleton S Ice Shelf Ice Shelf Skelton Glacier Getz Taylor Glacier Ice Shelf Sulzberger McMurdo McMurdo Dry Valleys Ice Shelf Station Voyeykov Ice Shelf Cook Ice Shelf 0 1000 KILOMETERS W 180° E Open-File Report 2006–1114 U.S. Department of the Interior U.S. Geological Survey U.S. Department of the Interior DIRK KEMPTHORNE, Secretary U.S. Geological Survey Mark D. Myers, Director U.S. Geological Survey, Reston, Virginia 2007 For product and ordering information: World Wide Web: http://www.usgs.gov/pubprod Telephone: 1-888-ASK-USGS For more information on the USGS—the Federal source for science about the Earth, its natural and living resources, natural hazards, and the environment: World Wide Web: http://www.usgs.gov Telephone: 1-888-ASK-USGS Although this report is in the public domain, permission must be secured from the individual copyright owners to reproduce any copyrighted material contained within this report. -
Fault Kinematic Studies in the Transantarctic Mountains, Southern Victoria Land TERRY J
studies. Together these data will be used to develop a model to plate tectonic modeling. In R.A. Hodgson, S.P. Gay, Jr., and J.Y. of the structural architecture and motion history associated Benjamins (Eds.), Proceedings of the First International Conference with the Transantarctic Mountains in southern Victoria Land. on the New Basement Tectonics (Publication number 5). Utah Geo- logical Association. We thank Jane Ferrigno for cooperation and advice on Lucchita, B.K., J. Bowell, K.L. Edwards, E.M. Eliason, and H.M. Fergu- image selection; John Snowden, David Cunningham, and son. 1987. Multispectral Landsat images of Antarctica (U.S. Geo- Tracy Douglass at the Ohio State University Center for Map- logical Survey bulletin 1696). Washington, D.C.: U.S. Government ping for help with computer processing; and Carolyn Merry, Printing Office. Gary Murdock, and Ralph von Frese for helpful discussions Wilson, T.J. 1992. Mesozoic and Cenozoic kinematic evolution of the Transantarctic Mountains. In Y. Yoshida, K. Kaminuma, and K. concerning image analysis. This research was supported by Shiraishi (Eds.), Recent progress in antarctic earth science. Tokyo: National Science Foundation grant OPP 90-18055 and by the Terra Scientific. Byrd Polar Research Center of Ohio State University. Wilson, T.J. 1993. Jurassic faulting and magmatism in the Transantarctic Mountains: Implication for Gondwana breakup. In R.H. Findlay, M.R. Banks, R. Unrug, and J. Veevers (Eds.), Gond- References wana 8—Assembly, evolution, and dispersal. Rotterdam: A.A. Balkema. Wilson, T.J., P. Braddock, R.J. Janosy, and R.J. Elliot. 1993. Fault kine- Isachsen, Y.W. 1974. -
Terra Nova Bay, Ross Sea
MEASURE 14 - ANNEX Management Plan for Antarctic Specially Protected Area No 161 TERRA NOVA BAY, ROSS SEA 1. Description values to be protected A coastal marine area encompassing 29.4km2 between Adélie Cove and Tethys Bay, Terra Nova Bay, is proposed as an Antarctic Specially Protected Area (ASPA) by Italy on the grounds that it is an important littoral area for well-established and long-term scientific investigations. The Area is confined to a narrow strip of waters extending approximately 9.4km in length immediately to the south of the Mario Zucchelli Station (MZS) and up to a maximum of 7km from the shore. No marine resource harvesting has been, is currently, or is planned to be, conducted within the Area, nor in the immediate surrounding vicinity. The site typically remains ice-free in summer, which is rare for coastal areas in the Ross Sea region, making it an ideal and accessible site for research into the near-shore benthic communities of the region. Extensive marine ecological research has been carried out at Terra Nova Bay since 1986/87, contributing substantially to our understanding of these communities which had not previously been well-described. High diversity at both species and community levels make this Area of high ecological and scientific value. Studies have revealed a complex array of species assemblages, often co-existing in mosaics (Cattaneo-Vietti, 1991; Sarà et al., 1992; Cattaneo-Vietti et al., 1997; 2000b; 2000c; Gambi et al., 1997; Cantone et al., 2000). There exist assemblages with high species richness and complex functioning, such as the sponge and anthozoan communities, alongside loosely structured, low diversity assemblages.