An Optimized R5RS Macro Expander

Total Page:16

File Type:pdf, Size:1020Kb

An Optimized R5RS Macro Expander Brigham Young University BYU ScholarsArchive Theses and Dissertations 2013-02-05 An Optimized R5RS Macro Expander Sean P. Reque Brigham Young University - Provo Follow this and additional works at: https://scholarsarchive.byu.edu/etd Part of the Computer Sciences Commons BYU ScholarsArchive Citation Reque, Sean P., "An Optimized R5RS Macro Expander" (2013). Theses and Dissertations. 3509. https://scholarsarchive.byu.edu/etd/3509 This Thesis is brought to you for free and open access by BYU ScholarsArchive. It has been accepted for inclusion in Theses and Dissertations by an authorized administrator of BYU ScholarsArchive. For more information, please contact [email protected], [email protected]. An Optimized R5RS Macro Expander Sean Reque A thesis submitted to the faculty of Brigham Young University in partial fulfillment of the requirements for the degree of Master of Science Jay McCarthy, Chair Eric Mercer Quinn Snell Department of Computer Science Brigham Young University February 2013 Copyright c 2013 Sean Reque All Rights Reserved ABSTRACT An Optimized R5RS Macro Expander Sean Reque Department of Computer Science, BYU Master of Science Macro systems allow programmers abstractions over the syntax of a programming language. This gives the programmer some of the same power posessed by a programming language designer, namely, the ability to extend the programming language to fit the needs of the programmer. The value of such systems has been demonstrated by their continued adoption in more languages and platforms. However, several barriers to widespread adoption of macro systems still exist. The language Racket [6] defines a small core of primitive language constructs, including a powerful macro system, upon which all other features are built. Because of this design, many features of other programming languages can be implemented through libraries, keeping the core language simple without sacrificing power or flexibility. However, slow macro expansion remains a lingering problem in the language's primary implementation, and in fact macro expansion currently dominates compile times for Racket modules and programs. Besides the typical problems associated with slow compile times, such as slower testing feedback, increased mental disruption during the programming process, and unscalable build times for large projects, slow macro expansion carries its own unique problems, such as poorer performance for IDEs and other software analysis tools. In order to improve macro expansion times for Racket, we implement an existing expansion algorithm for R5RS Scheme macros, which comprise a subset of Racket's macro system, and use that implementation to explore optimization opportunities. Our resulting expander appears to be the fastest implementation of a R5RS macro expander in a high-level language and performs several times faster than the existing C-based Racket implementation. Keywords: Macros, R5RS, Optimizations, Expander ACKNOWLEDGMENTS Without the support and guidance provided by Dr. McCarthy, this work would not have been possible. I am also indebted to BYU for providing an excellent learning environment and culture. I last of all thank my family for being the teachers in the most important school of my life. Table of Contents List of Figures viii List of Tables ix 1 Introduction 1 1.1 Thesis Statement . .1 1.2 Scheme Macros . .1 1.3 R5RS Scheme . .3 1.4 Problems with Conventional Macro Systems . .6 1.5 Related Work . 11 1.5.1 Gensym . 11 1.5.2 Timestamp Expander . 12 1.5.3 Syntactic Closures . 13 1.5.4 Explicit Renaming . 13 1.5.5 Mark/Antimark . 14 1.5.6 Fast Imperative Expander . 15 1.5.7 MetaML and MacroML . 15 1.5.8 Template Haskell . 16 1.5.9 Nemerle . 17 1.6 Optimization Approach . 17 1.7 Summary . 18 2 Explicit Renaming Algorithm 19 iv 2.1 Algorithm Overview . 19 2.2 R5RS syntax-rules ................................ 21 2.2.1 syntax-rules Grammar . 21 2.2.2 Interpreting syntax-rules Definitions . 23 2.2.3 Implementation Concerns . 25 2.3 Example Macro Expansion . 26 2.4 Summary . 29 3 Correctness and Performance Verification 30 3.1 Correctness and Performance Tests . 30 3.2 Testing Hardware . 30 3.3 Performance Goals . 31 3.4 Test Programs . 32 3.4.1 CK . 32 3.4.2 Dirty R5RS . 32 3.4.3 Macro Lambda . 33 3.4.4 Prime Numbers and the Sieve of Eratosthenes . 33 3.4.5 Fibonacci . 33 3.4.6 Schelog . 34 3.4.7 Monads . 34 3.5 Benchmarked Implementations . 35 3.5.1 Gambit . 35 3.5.2 Chicken . 35 3.5.3 Ikarus . 35 3.5.4 Chez . 36 3.5.5 Racket . 36 3.5.6 Fast Imperative Expander . 36 3.5.7 Other expanders . 36 v 3.6 Initial Benchmark Results . 36 3.7 Summary . 40 4 Optimizations 42 4.1 Data Structure Optimizations . 43 4.1.1 Pattern Matching Environment . 43 4.1.2 Template Regular Identifier Environments . 43 4.1.3 Removing the Quote Environment . 44 4.2 Lazy Computation Optimizations . 44 4.2.1 Lazy List Matching . 44 4.2.2 No Match Failure Diagnostics . 47 4.3 Redundant Computation Optimizations . 47 4.3.1 Unsafe Operations . 47 4.3.2 Optimizing body expansion . 49 4.3.3 Template List Rewriting . 50 4.4 Static Analysis Optimizations . 52 4.4.1 Constant Wrapping . 52 4.4.2 Template Pre-expansion . 52 4.4.3 Identifier Analysis . 54 4.5 Other Racket-Specific Optimizations . 56 4.5.1 Racket Keyword Arguments . 56 4.5.2 Hasheq vs Hash . 56 4.6 Optimization Results . 56 4.6.1 Lazy List Matching . 56 4.6.2 Unsafe Operations . 57 4.6.3 No Error Diagnosis . 58 4.6.4 Optimized Body Expansion . 58 4.6.5 Pattern Environment Vectors and Regular Identifier Vectors . 59 vi 4.6.6 Quote Environment Removal . 59 4.6.7 Optimized Template List Rewriting . 59 4.6.8 Hasheq and Keyword Arguments . 60 4.6.9 Template Pre-expansion . 60 4.6.10 Binding Inference . 60 4.6.11 Final Results . 61 4.7 Summary . 66 5 Conclusions 67 5.1 Current Issues . 68 5.2 Future Work . 68 5.3 Final Thoughts . 69 References 71 vii List of Figures 1.1 An example showing the use of the "and" macro with its subsequent expansion. 6 2.1 Explicit Renaming Example . 20 2.2 Simplified let definition and example use . 26 3.1 Initial \Heavyweight" Benchmarks . 38 3.2 Initial \Lightweight" Benchmarks . 39 4.1 R5RS letrec Definition . 46 4.2 Recursive rule of letrec . 46 4.3 Base case of letrec . 46 4.4 Optimized letrec pseudocode . 49 4.5 Specialized Definitions of map and foldr . 51 4.6 An example of template pre-expansion using the assert-eq macro . 53 4.7 Definition of glambda from the \dirtier macros" benchmark . 55 4.8 Impact of Optimizations on `Heavyweight' Benchmarks . 62 4.9 Impact of Optimizations on `Lightweight' Benchmarks . 63 4.10 Final \Heavyweight" Benchmarks . 64 4.11 Final \Lightweight" Benchmarks . 65 viii List of Tables 2.1 Simplified R5RS syntax-rules Grammar . 22 2.2 The Top-level Sub-Patterns, Matched Syntax, and Output Environments . 27 2.3 Sub-Templates of lambda Template and Their Output Syntax . 28 3.1 Benchmark Programs . 37 4.1 Mean and Median Performance Deltas Per Optimization . 57 ix Chapter 1 Introduction 1.1 Thesis Statement R5RS macro expansion can be optimized to enable the expansion of Scheme programs in a fraction of the time required by.
Recommended publications
  • Introduction to Programming in Lisp
    Introduction to Programming in Lisp Supplementary handout for 4th Year AI lectures · D W Murray · Hilary 1991 1 Background There are two widely used languages for AI, viz. Lisp and Prolog. The latter is the language for Logic Programming, but much of the remainder of the work is programmed in Lisp. Lisp is the general language for AI because it allows us to manipulate symbols and ideas in a commonsense manner. Lisp is an acronym for List Processing, a reference to the basic syntax of the language and aim of the language. The earliest list processing language was in fact IPL developed in the mid 1950’s by Simon, Newell and Shaw. Lisp itself was conceived by John McCarthy and students in the late 1950’s for use in the newly-named field of artificial intelligence. It caught on quickly in MIT’s AI Project, was implemented on the IBM 704 and by 1962 to spread through other AI groups. AI is still the largest application area for the language, but the removal of many of the flaws of early versions of the language have resulted in its gaining somewhat wider acceptance. One snag with Lisp is that although it started out as a very pure language based on mathematic logic, practical pressures mean that it has grown. There were many dialects which threaten the unity of the language, but recently there was a concerted effort to develop a more standard Lisp, viz. Common Lisp. Other Lisps you may hear of are FranzLisp, MacLisp, InterLisp, Cambridge Lisp, Le Lisp, ... Some good things about Lisp are: • Lisp is an early example of an interpreted language (though it can be compiled).
    [Show full text]
  • Processing an Intermediate Representation Written in Lisp
    Processing an Intermediate Representation Written in Lisp Ricardo Pena,˜ Santiago Saavedra, Jaime Sanchez-Hern´ andez´ Complutense University of Madrid, Spain∗ [email protected],[email protected],[email protected] In the context of designing the verification platform CAVI-ART, we arrived to the need of deciding a textual format for our intermediate representation of programs. After considering several options, we finally decided to use S-expressions for that textual representation, and Common Lisp for processing it in order to obtain the verification conditions. In this paper, we discuss the benefits of this decision. S-expressions are homoiconic, i.e. they can be both considered as data and as code. We exploit this duality, and extensively use the facilities of the Common Lisp environment to make different processing with these textual representations. In particular, using a common compilation scheme we show that program execution, and verification condition generation, can be seen as two instantiations of the same generic process. 1 Introduction Building a verification platform such as CAVI-ART [7] is a challenging endeavour from many points of view. Some of the tasks require intensive research which can make advance the state of the art, as it is for instance the case of automatic invariant synthesis. Some others are not so challenging, but require a lot of pondering and discussion before arriving at a decision, in order to ensure that all the requirements have been taken into account. A bad or a too quick decision may have a profound influence in the rest of the activities, by doing them either more difficult, or longer, or more inefficient.
    [Show full text]
  • An Optimized R5RS Macro Expander
    An Optimized R5RS Macro Expander Sean Reque A thesis submitted to the faculty of Brigham Young University in partial fulfillment of the requirements for the degree of Master of Science Jay McCarthy, Chair Eric Mercer Quinn Snell Department of Computer Science Brigham Young University February 2013 Copyright c 2013 Sean Reque All Rights Reserved ABSTRACT An Optimized R5RS Macro Expander Sean Reque Department of Computer Science, BYU Master of Science Macro systems allow programmers abstractions over the syntax of a programming language. This gives the programmer some of the same power posessed by a programming language designer, namely, the ability to extend the programming language to fit the needs of the programmer. The value of such systems has been demonstrated by their continued adoption in more languages and platforms. However, several barriers to widespread adoption of macro systems still exist. The language Racket [6] defines a small core of primitive language constructs, including a powerful macro system, upon which all other features are built. Because of this design, many features of other programming languages can be implemented through libraries, keeping the core language simple without sacrificing power or flexibility. However, slow macro expansion remains a lingering problem in the language's primary implementation, and in fact macro expansion currently dominates compile times for Racket modules and programs. Besides the typical problems associated with slow compile times, such as slower testing feedback, increased mental disruption during the programming process, and unscalable build times for large projects, slow macro expansion carries its own unique problems, such as poorer performance for IDEs and other software analysis tools.
    [Show full text]
  • Towards a Portable and Mobile Scheme Interpreter
    Towards a Portable and Mobile Scheme Interpreter Adrien Pi´erard Marc Feeley Universit´eParis 6 Universit´ede Montr´eal [email protected] [email protected] Abstract guage. Because Mobit implements R4RS Scheme [6], we must also The transfer of program data between the nodes of a distributed address the serialization of continuations. Our main contribution is system is a fundamental operation. It usually requires some form the demonstration of how this can be done while preserving the in- of data serialization. For a functional language such as Scheme it is terpreter’s maintainability and with local changes to the original in- clearly desirable to also allow the unrestricted transfer of functions terpreter’s structure, mainly through the use of unhygienic macros. between nodes. With the goal of developing a portable implemen- We start by giving an overview of the pertinent features of the tation of the Termite system we have designed the Mobit Scheme Termite dialect of Scheme. In Section 3 we explain the structure interpreter which supports unrestricted serialization of Scheme ob- of the interpreter on which Mobit is based. Object serialization is jects, including procedures and continuations. Mobit is derived discussed in Section 4. Section 5 compares Mobit’s performance from an existing Scheme in Scheme fast interpreter. We demon- with other interpreters. We conclude with related and future work. strate how macros were valuable in transforming the interpreter while preserving its structure and maintainability. Our performance 2. Termite evaluation shows that the run time speed of Mobit is comparable to Termite is a Scheme adaptation of the Erlang concurrency model.
    [Show full text]
  • PUB DAM Oct 67 CONTRACT N00014-83-6-0148; N00014-83-K-0655 NOTE 63P
    DOCUMENT RESUME ED 290 438 IR 012 986 AUTHOR Cunningham, Robert E.; And Others TITLE Chips: A Tool for Developing Software Interfaces Interactively. INSTITUTION Pittsburgh Univ., Pa. Learning Research and Development Center. SPANS AGENCY Office of Naval Research, Arlington, Va. REPORT NO TR-LEP-4 PUB DAM Oct 67 CONTRACT N00014-83-6-0148; N00014-83-K-0655 NOTE 63p. PUB TYPE Reports - Research/Technical (143) EDRS PRICE MF01/PC03 Plus Postage. DESCRIPTORS *Computer Graphics; *Man Machine Systems; Menu Driven Software; Programing; *Programing Languages IDENTIF7ERS Direct Manipulation Interface' Interface Design Theory; *Learning Research and Development Center; LISP Programing Language; Object Oriented Programing ABSTRACT This report provides a detailed description of Chips, an interactive tool for developing software employing graphical/computer interfaces on Xerox Lisp machines. It is noted that Chips, which is implemented as a collection of customizable classes, provides the programmer with a rich graphical interface for the creation of rich graphical interfaces, and the end-user with classes for modeling the graphical relationships of objects on the screen and maintaining constraints between them. This description of the system is divided into five main sections: () the introduction, which provides background material and a general description of the system; (2) a brief overview of the report; (3) detailed explanations of the major features of Chips;(4) an in-depth discussion of the interactive aspects of the Chips development environment; and (5) an example session using Chips to develop and modify a small portion of an interface. Appended materials include descriptions of four programming techniques that have been sound useful in the development of Chips; descriptions of several systems developed at the Learning Research and Development Centel tsing Chips; and a glossary of key terms used in the report.
    [Show full text]
  • The Evolution of Lisp
    1 The Evolution of Lisp Guy L. Steele Jr. Richard P. Gabriel Thinking Machines Corporation Lucid, Inc. 245 First Street 707 Laurel Street Cambridge, Massachusetts 02142 Menlo Park, California 94025 Phone: (617) 234-2860 Phone: (415) 329-8400 FAX: (617) 243-4444 FAX: (415) 329-8480 E-mail: [email protected] E-mail: [email protected] Abstract Lisp is the world’s greatest programming language—or so its proponents think. The structure of Lisp makes it easy to extend the language or even to implement entirely new dialects without starting from scratch. Overall, the evolution of Lisp has been guided more by institutional rivalry, one-upsmanship, and the glee born of technical cleverness that is characteristic of the “hacker culture” than by sober assessments of technical requirements. Nevertheless this process has eventually produced both an industrial- strength programming language, messy but powerful, and a technically pure dialect, small but powerful, that is suitable for use by programming-language theoreticians. We pick up where McCarthy’s paper in the first HOPL conference left off. We trace the development chronologically from the era of the PDP-6, through the heyday of Interlisp and MacLisp, past the ascension and decline of special purpose Lisp machines, to the present era of standardization activities. We then examine the technical evolution of a few representative language features, including both some notable successes and some notable failures, that illuminate design issues that distinguish Lisp from other programming languages. We also discuss the use of Lisp as a laboratory for designing other programming languages. We conclude with some reflections on the forces that have driven the evolution of Lisp.
    [Show full text]
  • Allegro CL User Guide
    Allegro CL User Guide Volume 1 (of 2) version 4.3 March, 1996 Copyright and other notices: This is revision 6 of this manual. This manual has Franz Inc. document number D-U-00-000-01-60320-1-6. Copyright 1985-1996 by Franz Inc. All rights reserved. No part of this pub- lication may be reproduced, stored in a retrieval system, or transmitted, in any form or by any means electronic, mechanical, by photocopying or recording, or otherwise, without the prior and explicit written permission of Franz incorpo- rated. Restricted rights legend: Use, duplication, and disclosure by the United States Government are subject to Restricted Rights for Commercial Software devel- oped at private expense as specified in DOD FAR 52.227-7013 (c) (1) (ii). Allegro CL and Allegro Composer are registered trademarks of Franz Inc. Allegro Common Windows, Allegro Presto, Allegro Runtime, and Allegro Matrix are trademarks of Franz inc. Unix is a trademark of AT&T. The Allegro CL software as provided may contain material copyright Xerox Corp. and the Open Systems Foundation. All such material is used and distrib- uted with permission. Other, uncopyrighted material originally developed at MIT and at CMU is also included. Appendix B is a reproduction of chapters 5 and 6 of The Art of the Metaobject Protocol by G. Kiczales, J. des Rivieres, and D. Bobrow. All this material is used with permission and we thank the authors and their publishers for letting us reproduce their material. Contents Volume 1 Preface 1 Introduction 1.1 The language 1-1 1.2 History 1-1 1.3 Format
    [Show full text]
  • The Semantics of Syntax Applying Denotational Semantics to Hygienic Macro Systems
    The Semantics of Syntax Applying Denotational Semantics to Hygienic Macro Systems Neelakantan R. Krishnaswami University of Birmingham <[email protected]> 1. Introduction body of a macro definition do not interfere with names oc- Typically, when semanticists hear the words “Scheme” or curring in the macro’s arguments. Consider this definition of and “Lisp”, what comes to mind is “untyped lambda calculus a short-circuiting operator: plus higher-order state and first-class control”. Given our (define-syntax and typical concerns, this seems to be the essence of Scheme: it (syntax-rules () is a dynamically typed applied lambda calculus that sup- ((and e1 e2) (let ((tmp e1)) ports mutable data and exposes first-class continuations to (if tmp the programmer. These features expose a complete com- e2 putational substrate to programmers so elegant that it can tmp))))) even be characterized mathematically; every monadically- representable effect can be implemented with state and first- In this definition, even if the variable tmp occurs freely class control [4]. in e2, it will not be in the scope of the variable definition However, these days even mundane languages like Java in the body of the and macro. As a result, it is important to support higher-order functions and state. So from the point interpret the body of the macro not merely as a piece of raw of view of a working programmer, the most distinctive fea- syntax, but as an alpha-equivalence class. ture of Scheme is something quite different – its support for 2.2 Open Recursion macros. The intuitive explanation is that a macro is a way of defining rewrites on abstract syntax trees.
    [Show full text]
  • Structured Foreign Types
    Ftypes: Structured foreign types Andrew W. Keep R. Kent Dybvig Indiana University fakeep,[email protected] Abstract When accessing scalar elements within an ftype, the value of the High-level programming languages, like Scheme, typically repre- scalar is automatically marshaled into the equivalent Scheme rep- sent data in ways that differ from the host platform to support resentation. When setting scalar elements, the Scheme value is consistent behavior across platforms and automatic storage man- checked to ensure compatibility with the specified foreign type, and agement, i.e., garbage collection. While crucial to the program- then marshaled into the equivalent foreign representation. Ftypes ming model, differences in data representation can complicate in- are well integrated into the system, with compiler support for ef- teraction with foreign programs and libraries that employ machine- ficient access to foreign data and debugger support for convenient dependent data structures that do not readily support garbage col- inspection of foreign data. lection. To bridge this gap, many high-level languages feature for- The ftype syntax is convenient and flexible. While it is similar in eign function interfaces that include some ability to interact with some ways to foreign data declarations in other Scheme implemen- foreign data, though they often do not provide complete control tations, and language design is largely a matter of taste, we believe over the structure of foreign data, are not always fully integrated our syntax is cleaner and more intuitive than most. Our system also into the language and run-time system, and are often not as effi- has a more complete set of features, covering all C data types along cient as possible.
    [Show full text]
  • Chez Scheme Version 5 Release Notes Copyright C 1994 Cadence Research Systems All Rights Reserved October 1994 Overview 1. Funct
    Chez Scheme Version 5 Release Notes Copyright c 1994 Cadence Research Systems All Rights Reserved October 1994 Overview This document outlines the changes made to Chez Scheme for Version 5 since Version 4. New items include support for syntax-case and revised report high-level lexical macros, support for multiple values, support for guardians and weak pairs, support for generic ports, improved trace output, support for shared incremental heaps, support for passing single floats to and returning single floats from foreign procedures, support for passing structures to and returning structures from foreign procedures on MIPS-based computers, and various performance enhancements, including a dramatic improvement in the time it takes to load Scheme source and object files on DEC Ultrix MIPS-based computers. Overall performance of generated code has increased by an average of 15–50 percent over Version 4 depending upon optimize level and programming style. Programs that make extensive use of locally-defined procedures will benefit more than programs that rely heavily on globally-defined procedures, and programs compiled at higher optimize levels will improve more than programs compiled at lower optimize levels. Compile time is approximately 25 percent faster. Refer to the Chez Scheme System Manual, Revision 2.5 for detailed descriptions of the new or modified procedures and syntactic forms mentioned in these notes. Version 5 is available for the following platforms: • Sun Sparc SunOS 4.X & Solaris 2.X • DEC Alpha AXP OSF/1 V2.X • Silicon Graphics IRIX 5.X • Intel 80x86 NeXT Mach 3.2 • Motorola Delta MC88000 SVR3 & SVR4 • Decstation/Decsystem Ultrix 4.3A • Intel 80x86 BSDI BSD/386 1.1 • Intel 80x86 Linux This document contains four sections describing (1) functionality enhancements, (2) performance enhance- ments, (3) bugs fixed, and (4) compatibility issues.
    [Show full text]
  • S Allegro Common Lisp Foreign Function Interface
    Please do not remove this page Extensions to the Franz, Inc.'s Allegro Common Lisp foreign function interface Keane, John https://scholarship.libraries.rutgers.edu/discovery/delivery/01RUT_INST:ResearchRepository/12643408560004646?l#13643533500004646 Keane, J. (1996). Extensions to the Franz, Inc.’s Allegro Common Lisp foreign function interface. Rutgers University. https://doi.org/10.7282/t3-pqns-7h57 This work is protected by copyright. You are free to use this resource, with proper attribution, for research and educational purposes. Other uses, such as reproduction or publication, may require the permission of the copyright holder. Downloaded On 2021/09/29 22:58:32 -0400 Extensions to the Franz Incs Allegro Common Lisp Foreign Function Interface John Keane Department of Computer Science Rutgers University New Brunswick NJ keanecsrutgersedu January Abstract As provided by Franz Inc the foreign function interface of Allegro Com mon Lisp has a number of limitations This pap er describ es extensions to the interface that facilitate the inclusion of C and Fortran co de into Common Lisp systems In particular these extensions make it easy to utilize libraries of numerical subroutines such as those from Numerical Recip es in C from within ACL including those routines that take functions as arguments A mechanism for creating Lisplike dynamic runtime closures for C routines is also describ ed Acknowledgments The research presented in this do cument is supp orted in part by NASA grants NCC and NAG This research is also part of the Rutgers based
    [Show full text]
  • Drscheme: a Pedagogic Programming Environment for Scheme
    DrScheme A Pedagogic Programming Environment for Scheme Rob ert Bruce Findler Cormac Flanagan Matthew Flatt Shriram Krishnamurthi and Matthias Felleisen Department of Computer Science Rice University Houston Texas Abstract Teaching intro ductory computing courses with Scheme el evates the intellectual level of the course and thus makes the sub ject more app ealing to students with scientic interests Unfortunatelythe p o or quality of the available programming environments negates many of the p edagogic advantages Toovercome this problem wehavedevel op ed DrScheme a comprehensive programming environmentforScheme It fully integrates a graphicsenriched editor a multilingua l parser that can pro cess a hierarchyofsyntactically restrictivevariants of Scheme a functional readevalprint lo op and an algebraical ly sensible printer The environment catches the typical syntactic mistakes of b eginners and pinp oints the exact source lo cation of runtime exceptions DrScheme also provides an algebraic stepp er a syntax checker and a static debugger The rst reduces Scheme programs including programs with assignment and control eects to values and eects The to ol is useful for explainin g the semantics of linguistic facilities and for studying the b ehavior of small programs The syntax c hecker annotates programs with fontandcolorchanges based on the syntactic structure of the pro gram It also draws arrows on demand that p oint from b ound to binding o ccurrences of identiers The static debugger roughly sp eaking pro vides a typ e inference system
    [Show full text]