University of Bologna International Master Course in Bioinformatics Interdepartmental Center “Luigi Galvani” Department of Pharmacy and Biotechnology

Total Page:16

File Type:pdf, Size:1020Kb

University of Bologna International Master Course in Bioinformatics Interdepartmental Center “Luigi Galvani” Department of Pharmacy and Biotechnology University of Bologna International Master Course in Bioinformatics Interdepartmental Center “Luigi Galvani” Department of Pharmacy and Biotechnology ORGANISATION:AIRBBC (Associazione Italiana per la Ricerca in Biofisica e Biologia Computazionale) WITH THE SUPPORT OF: SIB (Italian Society of Biochemistry and Molecular Biology) ELIXIR-IIB 21st BOLOGNA WINTER SCHOOL in BIOINFORMATICS What can we learn from protein structure? February 17-21, 2020, BOLOGNA (Italy) LECTURERS: Montserrat Corominas (University of Barcelona, ES); Piero Fariselli (University of Turin, IT), Roderic Guigò (University Pompeu Fabra, Barcelona, ES); David Jones (Francis Crick Institute and University College of London, UK); Anders Krogh (University of Copenhagen, DK); Christine Orengo (University College of London, UK); Graziano Pesole (CNR Institute of Biomembrane and Bioenergetics and University of Bari, IT); Burkhard Rost (Technical University of Munich, DE); Silvio Tosatto (University of Padova, IT); Mauno Vihinen (University of Lund, SE). SCIENTIFIC COMMITTEE: Rita Casadio, David Jones. ORGANIZING COMMITTEE: P.L. Martelli, C. Savojardo, G. Babbi, D. Baldazzi, E. Capriotti, G. Madeo, M. Manfredi, G. Tartari, T.Tavella. ORGANIZING SECRETARY: AIRBBC c/o Dept. of Pharmacy and Biotechnology, University of Bologna Via San Giacomo 9/2, 40126, Bologna, ITALY. Tel: (+39) 051 2094005 http://www.biocomp.unibo.it/~school2020 21th Bologna Winter School: Programme What can we learn from protein structure? Bologna (Italy, February 17-21, 2020) Caffè della Corte, Corte Isolani 5/B, Bologna Monday, February 17 10:00-13:00 Christine Orengo 15:00- 17:30 Burkhard Rost Tuesday, February 18 10:00-13:00 David Jones 15:00- 17:30 Round Table Discussion on ELIXIR Participants: G. Pesole, S. Tosatto, G. Pavesi, G. Donvito, P.L. Martelli, F. Zambelli, G. Tartari Wednesday, February 19 10:00-13:00 Graziano Pesole 15:00- 17:30 Silvio Tosatto Thursday, February 20 10:00-13:00 Anders Krogh 15:00- 17:30 Mauno Vihinen Friday, February 21 10:00-11:30 Piero Fariselli 12:00- 13:30 Montserrat Corominas 15:30- 17:30 Roderic Guigò Lectures will be given at Caffè della Corte, Corte Isolani 5/B, Bologna .
Recommended publications
  • Methodology for Predicting Semantic Annotations of Protein Sequences by Feature Extraction Derived of Statistical Contact Potentials and Continuous Wavelet Transform
    Universidad Nacional de Colombia Sede Manizales Master’s Thesis Methodology for predicting semantic annotations of protein sequences by feature extraction derived of statistical contact potentials and continuous wavelet transform Author: Supervisor: Gustavo Alonso Arango Dr. Cesar German Argoty Castellanos Dominguez A thesis submitted in fulfillment of the requirements for the degree of Master’s on Engineering - Industrial Automation in the Department of Electronic, Electric Engineering and Computation Signal Processing and Recognition Group June 2014 Universidad Nacional de Colombia Sede Manizales Tesis de Maestr´ıa Metodolog´ıapara predecir la anotaci´on sem´antica de prote´ınaspor medio de extracci´on de caracter´ısticas derivadas de potenciales de contacto y transformada wavelet continua Autor: Tutor: Gustavo Alonso Arango Dr. Cesar German Argoty Castellanos Dominguez Tesis presentada en cumplimiento a los requerimientos necesarios para obtener el grado de Maestr´ıaen Ingenier´ıaen Automatizaci´onIndustrial en el Departamento de Ingenier´ıaEl´ectrica,Electr´onicay Computaci´on Grupo de Procesamiento Digital de Senales Enero 2014 UNIVERSIDAD NACIONAL DE COLOMBIA Abstract Faculty of Engineering and Architecture Department of Electronic, Electric Engineering and Computation Master’s on Engineering - Industrial Automation Methodology for predicting semantic annotations of protein sequences by feature extraction derived of statistical contact potentials and continuous wavelet transform by Gustavo Alonso Arango Argoty In this thesis, a method to predict semantic annotations of the proteins from its primary structure is proposed. The main contribution of this thesis lies in the implementation of a novel protein feature representation, which makes use of the pairwise statistical contact potentials describing the protein interactions and geometry at the atomic level.
    [Show full text]
  • Curriculum Vitae – Prof. Anders Krogh Personal Information
    Curriculum Vitae – Prof. Anders Krogh Personal Information Date of Birth: May 2nd, 1959 Private Address: Borgmester Jensens Alle 22, st th, 2100 København Ø, Denmark Contact information: Dept. of Biology, Univ. of Copenhagen, Ole Maaloes Vej 5, 2200 Copenhagen, Denmark. +45 3532 1329, [email protected] Web: https://scholar.google.com/citations?user=-vGMjmwAAAAJ Education Sept 1991 Ph.D. (Physics), Niels Bohr Institute, Univ. of Copenhagen, Denmark June 1987 Cand. Scient. [M. Sc.] (Physics and mathematics), NBI, Univ. of Copenhagen Professional / Work Experience (since 2000) 2018 – Professor of Bionformatics, Dept of Computer Science (50%) and Dept of Biology (50%), Univ. of Copenhagen 2002 – 2018 Professor of Bionformatics, Dept of Biology, Univ. of Copenhagen 2009 – 2018 Head of Section for Computational and RNA Biology, Dept. of Biology, Univ. of Copenhagen 2000–2002 Associate Prof., Technical Univ. of Denmark (DTU), Copenhagen Prices and Awards 2017 – Fellow of the International Society for Computational Biology https://www.iscb.org/iscb- fellows-program 2008 – Fellow, Royal Danish Academy of Sciences and Letters Public Activities & Appointments (since 2009) 2014 – Board member, Elixir, European Infrastructure for Life Science. 2014 – Steering committee member, Danish Elixir Node. 2012 – 2016 Board member, Bioinformatics Infrastructure for Life Sciences (BILS), Swedish Research Council 2011 – 2016 Director, Centre for Computational and Applied Transcriptomics (COAT) 2009 – Associate editor, BMC Bioinformatics Publications § Google Scholar: https://scholar.google.com/citations?user=-vGMjmwAAAAJ § ORCID: 0000-0002-5147-6282. ResearcherID: M-1541-2014 § Co-author of 130 peer-reviewed papers and 2 monographs § 63,000 citations and h-index of 74 (Google Scholar, June 2019) § H-index of 54 in Web of science (June 2019) § Publications in high-impact journals: Nature (5), Science (1), Cell (1), Nature Genetics (2), Nature Biotechnology (2), Nature Communications (4), Cell (1, to appear), Genome Res.
    [Show full text]
  • Predicting Transmembrane Topology and Signal Peptides with Hidden Markov Models
    i i “thesis” — 2006/3/6 — 10:55 — page i — #1 i i From the Center for Genomics and Bioinformatics, Karolinska Institutet, Stockholm, Sweden Predicting transmembrane topology and signal peptides with hidden Markov models Lukas Käll Stockholm, 2006 i i i i i i “thesis” — 2006/3/6 — 10:55 — page ii — #2 i i ©Lukas Käll, 2006 Except previously published papers which were reproduced with permission from the publisher. Paper I: ©2002 Federation of European Biochemical Societies Paper II: ©2004 Elsevier Ltd. Paper III: ©2005 Federation of European Biochemical Societies Paper IV: ©2005 Lukas Käll, Anders Krogh and Erik Sonnhammer Paper V: ©2006 ¿e Protein Society Published and printed by Larserics Digital Print, Sundbyberg ISBN 91-7140-719-7 i i i i i i “thesis” — 2006/3/6 — 10:55 — page iii — #3 i i Abstract Transmembrane proteins make up a large and important class of proteins. About 20% of all genes encode transmembrane proteins. ¿ey control both substances and information going in and out of a cell. Yet basic knowledge about membrane insertion and folding is sparse, and our ability to identify, over-express, purify, and crystallize transmembrane proteins lags far behind the eld of water-soluble proteins. It is dicult to determine the three dimensional structures of transmembrane proteins. ¿ere- fore, researchers normally attempt to determine their topology, i.e. which parts of the protein are buried in the membrane, and on what side of the membrane are the other parts located. Proteins aimed for export have an N-terminal sequence known as a signal peptide that is in- serted into the membrane and cleaved o.
    [Show full text]
  • Biological Sequence Analysis Probabilistic Models of Proteins and Nucleic Acids
    This page intentionally left blank Biological sequence analysis Probabilistic models of proteins and nucleic acids The face of biology has been changed by the emergence of modern molecular genetics. Among the most exciting advances are large-scale DNA sequencing efforts such as the Human Genome Project which are producing an immense amount of data. The need to understand the data is becoming ever more pressing. Demands for sophisticated analyses of biological sequences are driving forward the newly-created and explosively expanding research area of computational molecular biology, or bioinformatics. Many of the most powerful sequence analysis methods are now based on principles of probabilistic modelling. Examples of such methods include the use of probabilistically derived score matrices to determine the significance of sequence alignments, the use of hidden Markov models as the basis for profile searches to identify distant members of sequence families, and the inference of phylogenetic trees using maximum likelihood approaches. This book provides the first unified, up-to-date, and tutorial-level overview of sequence analysis methods, with particular emphasis on probabilistic modelling. Pairwise alignment, hidden Markov models, multiple alignment, profile searches, RNA secondary structure analysis, and phylogenetic inference are treated at length. Written by an interdisciplinary team of authors, the book is accessible to molecular biologists, computer scientists and mathematicians with no formal knowledge of each others’ fields. It presents the state-of-the-art in this important, new and rapidly developing discipline. Richard Durbin is Head of the Informatics Division at the Sanger Centre in Cambridge, England. Sean Eddy is Assistant Professor at Washington University’s School of Medicine and also one of the Principle Investigators at the Washington University Genome Sequencing Center.
    [Show full text]
  • Bioinformatic Methods in Applied Genomic Research
    Alma mater studiorum - Università di Bologna Dottorato in Biotecnologie Cellulari e Molecolari: XXIII ciclo Settore scientifico disciplinare di afferenza: BIO11 BIOINFORMATIC METHODS IN APPLIED GENOMIC RESEARCH Presentato da Raffaele Fronza Coordinatore Dottorato: Supervisore: Prof. Santi Mario Spampinato Prof. Rita Casadio Esame finale anno 2011 ii Abstract Here I will focus on three main topics that best address and include the projects I have been working in during my three year PhD period that I have spent in different research laboratories addressing both computationally and practically important problems all related to modern molecular genomics. The first topic is the use of livestock species (pigs) as a model of obesity, a complex hu- man dysfunction. My efforts here concern the detection and annotation of Single Nucleotide Polymorphisms. I developed a pipeline for mining human and porcine sequences. Starting from a set of human genes related with obesity the platform returns a list of annotated porcine SNPs extracted from a new set of potential obesity-genes. 565 of these SNPs were analyzed on an Illumina chip to test the involvement in obesity on a population composed by more than 500 pigs. Results will be discussed. All the computational analysis and experiments were done in collaboration with the Biocomputing group and Dr.Luca Fontanesi, respectively, under the direction of prof. Rita Casadio at the Bologna University, Italy. The second topic concerns developing a methodology, based on Factor Analysis, to simul- taneously mine information from different levels of biological organization. With specific test cases we develop models of the complexity of the mRNA-miRNA molecular interaction in brain tumors measured indirectly by microarray and quantitative PCR.
    [Show full text]
  • Tporthmm : Predicting the Substrate Class Of
    TPORTHMM : PREDICTING THE SUBSTRATE CLASS OF TRANSMEMBRANE TRANSPORT PROTEINS USING PROFILE HIDDEN MARKOV MODELS Shiva Shamloo A thesis in The Department of Computer Science Presented in Partial Fulfillment of the Requirements For the Degree of Master of Computer Science Concordia University Montréal, Québec, Canada December 2020 © Shiva Shamloo, 2020 Concordia University School of Graduate Studies This is to certify that the thesis prepared By: Shiva Shamloo Entitled: TportHMM : Predicting the substrate class of transmembrane transport proteins using profile Hidden Markov Models and submitted in partial fulfillment of the requirements for the degree of Master of Computer Science complies with the regulations of this University and meets the accepted standards with respect to originality and quality. Signed by the final examining commitee: Examiner Dr. Sabine Bergler Examiner Dr. Andrew Delong Supervisor Dr. Gregory Butler Approved Dr. Lata Narayanan, Chair Department of Computer Science and Software Engineering 20 Dean Dr. Mourad Debbabi Faculty of Engineering and Computer Science Abstract TportHMM : Predicting the substrate class of transmembrane transport proteins using profile Hidden Markov Models Shiva Shamloo Transporters make up a large proportion of proteins in a cell, and play important roles in metabolism, regulation, and signal transduction by mediating movement of compounds across membranes but they are among the least characterized proteins due to their hydropho- bic surfaces and lack of conformational stability. There is a need for tools that predict the substrates which are transported at the level of substrate class and the level of specific substrate. This work develops a predictor, TportHMM, using profile Hidden Markov Model (HMM) and Multiple Sequence Alignment (MSA).
    [Show full text]
  • The 4Th Bologna Winter School: Hot Topics in Structural Genomics†
    Comparative and Functional Genomics Comp Funct Genom 2003; 4: 394–396. Published online in Wiley InterScience (www.interscience.wiley.com). DOI: 10.1002/cfg.314 Conference Report The 4th Bologna Winter School: hot topics in structural genomics† Rita Casadio* Department of Biology/CIRB, University of Bologna, Via Irnerio 42, 40126 Bologna, Italy *Correspondence to: Abstract Rita Casadio, Department of Biology/CIRB, University of The 4th Bologna Winter School on Biotechnologies was held on 9–15 February Bologna, Via Irnerio 42, 40126 2003 at the University of Bologna, Italy, with the specific aim of discussing recent Bologna, Italy. developments in bioinformatics. The school provided an opportunity for students E-mail: [email protected] and scientists to debate current problems in computational biology and possible solutions. The course, co-supported (as last year) by the European Science Foundation program on Functional Genomics, focused mainly on hot topics in structural genomics, including recent CASP and CAPRI results, recent and promising genome- Received: 3 June 2003 wide predictions, protein–protein and protein–DNA interaction predictions and Revised: 5 June 2003 genome functional annotation. The topics were organized into four main sections Accepted: 5 June 2003 (http://www.biocomp.unibo.it). Published in 2003 by John Wiley & Sons, Ltd. Predictive methods in structural Predictive methods in functional genomics genomics • Contemporary challenges in structure prediction • Prediction of protein function (Arthur Lesk, and the CASP5 experiment (John Moult, Uni- University of Cambridge, Cambridge, UK). versity of Maryland, Rockville, MD, USA). • Microarray data analysis and mining (Raf- • Contemporary challenges in structure prediction faele Calogero, University of Torino, Torino, (Anna Tramontano, University ‘La Sapienza’, Italy).
    [Show full text]
  • A Jumping Profile HMM for Remote Protein Homology Detection
    A Jumping Profile HMM for Remote Protein Homology Detection Anne-Kathrin Schultz and Mario Stanke Institut fur¨ Mikrobiologie und Genetik, Abteilung Bioinformatik, Universit¨at G¨ottingen, Germany contact: faschult2, [email protected] Abstract Our Generalization: Jumping Profile HMM We address the problem of finding new members of a given protein family in a database of protein sequences. We are given a MSA of k rows and a candidate sequence. At each position the candidate sequence is either Given a multiple sequence alignment (MSA) of the sequences in the protein family, we would like to score each aligned to the whole column of the MSA or to a certain reference sequence: We say that we are in the column candidate sequence in the database with respect to how likely it is that it belongs to the family. Successful mode or in a row mode of the HMM. methods for this task are profile Hidden Markov Models (HMM), like HMMER [Eddy, 1998] and SAM [Hughey • Column mode: (red part of Figure 1) and Krogh, 1996], and a so-called jumping alignment (JALI) [Spang et al., 2002]. As in a profile HMM each consensus column of the MSA is modeled by three states: match (M), insert (I) and delete (D).Match states model the distribution of residues in this column, they emit the amino acids We developed a Hidden Markov Model which can be regarded as a generalization of these two methods: At each with a probability which depends on all residues in this column. position the candidate sequence is either aligned to the whole column of the MSA or to a certain reference sequence.
    [Show full text]
  • Dear Delegates,History of Productive Scientific Discussions of New Challenging Ideas and Participants Contributing from a Wide Range of Interdisciplinary fields
    3rd IS CB S t u d ent Co u ncil S ymp os ium Welcome To The 3rd ISCB Student Council Symposium! Welcome to the Student Council Symposium 3 (SCS3) in Vienna. The ISCB Student Council's mis- sion is to develop the next generation of computa- tional biologists. We would like to thank and ac- knowledge our sponsors and the ISCB organisers for their crucial support. The SCS3 provides an ex- citing environment for active scientific discussions and the opportunity to learn vital soft skills for a successful scientific career. In addition, the SCS3 is the biggest international event targeted to students in the field of Computational Biology. We would like to thank our hosts and participants for making this event educative and fun at the same time. Student Council meetings have had a rich Dear Delegates,history of productive scientific discussions of new challenging ideas and participants contributing from a wide range of interdisciplinary fields. Such meet- We are very happy to welcomeings have you proved all touseful the in ISCBproviding Student students Council and postdocs Symposium innovative inputsin Vienna. and an Afterincreased the network suc- cessful symposiums at ECCBof potential 2005 collaborators. in Madrid and at ISMB 2006 in Fortaleza we are determined to con- tinue our efforts to provide an event for students and young researchers in the Computational Biology community. Like in previousWe ar yearse extremely our excitedintention to have is toyou crhereatee and an the opportunity vibrant city of Vforienna students welcomes to you meet to our their SCS3 event. peers from all over the world for exchange of ideas and networking.
    [Show full text]
  • I S C B N E W S L E T T
    ISCB NEWSLETTER FOCUS ISSUE {contents} President’s Letter 2 Member Involvement Encouraged Register for ISMB 2002 3 Registration and Tutorial Update Host ISMB 2004 or 2005 3 David Baker 4 2002 Overton Prize Recipient Overton Endowment 4 ISMB 2002 Committees 4 ISMB 2002 Opportunities 5 Sponsor and Exhibitor Benefits Best Paper Award by SGI 5 ISMB 2002 SIGs 6 New Program for 2002 ISMB Goes Down Under 7 Planning Underway for 2003 Hot Jobs! Top Companies! 8 ISMB 2002 Job Fair ISCB Board Nominations 8 Bioinformatics Pioneers 9 ISMB 2002 Keynote Speakers Invited Editorial 10 Anna Tramontano: Bioinformatics in Europe Software Recommendations11 ISCB Software Statement volume 5. issue 2. summer 2002 Community Development 12 ISCB’s Regional Affiliates Program ISCB Staff Introduction 12 Fellowship Recipients 13 Awardees at RECOMB 2002 Events and Opportunities 14 Bioinformatics events world wide INTERNATIONAL SOCIETY FOR COMPUTATIONAL BIOLOGY A NOTE FROM ISCB PRESIDENT This newsletter is packed with information on development and dissemination of bioinfor- the ISMB2002 conference. With over 200 matics. Issues arise from recommendations paper submissions and over 500 poster submis- made by the Society’s committees, Board of sions, the conference promises to be a scientific Directors, and membership at large. Important feast. On behalf of the ISCB’s Directors, staff, issues are defined as motions and are discussed EXECUTIVE COMMITTEE and membership, I would like to thank the by the Board of Directors on a bi-monthly Philip E. Bourne, Ph.D., President organizing committee, local organizing com- teleconference. Motions that pass are enacted Michael Gribskov, Ph.D., mittee, and program committee for their hard by the Executive Committee which also serves Vice President work preparing for the conference.
    [Show full text]
  • Optimization and Machine Learning Applications to Protein Sequence and Structure
    Optimization and Machine Learning Applications to Protein Sequence and Structure A DISSERTATION SUBMITTED TO THE FACULTY OF THE GRADUATE SCHOOL OF THE UNIVERSITY OF MINNESOTA BY Kevin W. DeRonne IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREE OF Doctor of Philosophy George Karypis January, 2013 c Kevin W. DeRonne 2013 ALL RIGHTS RESERVED Acknowledgements This thesis represents the culmination of over ten years of work. Not once over those ten years did I actually expect to be writing these words, and it is only through the stalwart, foolish, patient love and support of a great many people that I am. There are far too many names I need to list, so I can only name a few, but to the others who do not appear here: you are by no means forgotten. Professors Cavan Reilly, Ravi Janardan and Vipin Kumar: thank you for taking the time to serve on my preliminary and final examination committees. It is an honor to have people of such quality reviewing my work. Professor George Karypis: I have no idea why you put up with me for so long, but here we are. Despite my repeated attempts to force you to give up on me, you never did. The only way I can be succinct about what you have done for me is this: I have become the computer scientist I am because of you. Patrick Coleman Saunders: in death as in life, you made me a better person. Chas Kennedy, David Mulvihill, Dan O'Brien, Adam Meyer, Andrew Owen, Huzefa Rangwala, Jeff Rostis, David Seelig, Neil Shah and Nikil Wale: I hope you know that you are all like brothers to me.
    [Show full text]
  • Emidio Capriotti Phd CURRICULUM VITÆ
    Emidio Capriotti PhD CURRICULUM VITÆ Name: Emidio Capriotti Nationality: Italian Date of birth: February, 1973 Place of birth: Roma, Italy Languages: Italian, English, Spanish Positions Oct 2019 Associate Professor: Department of Pharmacy and Biotechnology (FaBiT). University of Bologna, Bologna, Italy 2016-2019 Senior Assistant Professor (RTD type B): Department of Pharmacy and Biotechnology (FaBiT) and Department of Biological, Geological, and Environmental Sciences (BiGeA). University of Bologna, Bologna, Italy. 2015-2016 Junior Group Leader: Institute of Mathematical Modeling of Biological Systems, University of Düsseldorf, Düsseldorf, Germany 2012-2015 Assistant Professor: Division of Informatics, Department of Pathology, University of Alabama at Birmingham (UAB), Birmingham (AL), USA. 2011-2012 Marie-Curie IOF: Contracted Researcher at the Department of Mathematics and Computer Science, University of Balearic Islands (UIB), Palma de Mallorca, Spain. 2009-2011 Marie-Curie IOF: Postdoctoral Researcher at the Helix Group, Department of Bioengineering, Stanford University, Stanford (CA), USA. 2006-2009 Postdoctoral Researcher in the Structural Genomics Group at Department of Bioinformatics and Genetics, Prince Felipe Research Center (CIPF) Valencia, Spain. 2004-2006 Contract researcher at Department of Biology, University of Bologna, Bologna, Italy. 2001-2003 Ph.D student in Physical Sciences at University of Bologna, Bologna, Italy. Education Sep 2004 Master in Bioinformatics (first level) University of Bologna, Bologna (Italy). Jun 2004 Ph.D. in Physical Sciences University of Bologna, Bologna (Italy). Jul 1999 Laurea (B.S.) Degree in Physical Sciences, score 106/110 University of Bologna, Bologna (Italy). Visiting Jun 2012 – Jul 2012 Prof. Frederic Rousseau and Prof. Joost Schymkowitz, VIB Switch Laboratory, KU Leuven, Leuven (Belgium) May 2009 Prof.
    [Show full text]