Azoxystrobin in the Environment

Total Page:16

File Type:pdf, Size:1020Kb

Azoxystrobin in the Environment ENVIROfacts Syngenta Crop Protection AZOXYSTROBIN The Active Ingredient in Quadris and Abound One of the Active Ingredients in Quilt® Chemical Structure: Chemical Nomenclature: Methyl (E)-2-{2[6-(2-cyanophenoxy)pyrimidin-4-yloxy]phenyl}-3- N N methoxyacrylate (IUPAC) O O CAS No.: 131860-33-8 Use: Broad Spectrum fungicide CN CH O OCH 3 3 O Molecular Formula: C22H17N3O5 Physical Properties: State: Pale brown crystalline powder Molecular Weight: 403.4 Melting Point: 116°C Sp. Gravity: 1.34 g/cm3 Physicochemical Chemical Stability: Properties: Aq. Photolysis (t1/2): ca. 14 days in pure sterile water 6.7 mg/L and 3 days in natural river water Aq. Solubility: 2.5 -10 Log Kow 1.1x10 Pa at 20°C Aq. Hydrolysis (t1/2): Stable at environmental pH and Vapor Pres.: (8.2x 10-13 mm Hg) temperature 7.3 10-9 Pa m3 mol-1 Henry’s Law Constant: Neither acidic nor basic Volatility: Not volatile from soil or plant Dissociation constant (pKa) properties surfaces Environmental Fate Profile: Ecotoxicological Profile: Birds: practically nontoxic Lab metabolism half-life : 57 -136 days oral LD50 >2000 mg /kg dietary LC50 >5200 ppm as Lab soil photolysis half-life : 11 days Bees and other non-target practically nontoxic Field Soil Half-life: average 14 days arthropods: contact LD50 >200 µg /bee harmless to non-target Koc : 300 -1690 arthropods Mobility Classification - low mobility to immobile Earthworms LC50 284 mg/kg soil Sediment/water dissipation unavailable Fish: highly to moderately toxic rate (DT50) : acute LC50 = 470 - 2160 µg/L Aquatic Invertebrates: very highly to moderately toxic acute EC50 = 55 - >4000 µg/L Aquatic Plants/Algae: EC50 = 57 – 10000 µg/L Application Rates: Margin of Safety (Environmental Risk): Applied at 5.0 to 24.6 fl oz (product) per acre (0.08 to 0.4 lb. Azoxystrobin is of low toxicity and consequently low risk to birds, active ingredient per acre) depending on crop and/or target mammals, bees and other non-target terrestrial organisms. disease. Applied as a foliar spray or as soil spray at planting. Although highly toxic to aquatic organisms, actual field use of Also applied as Protégé seed treatment at 0.1 to 3.75 fl oz azoxystrobin results in a low risk of effects due to azoxystrobin’s (product) per 100 lb. seed (0.65 to 24.3 g. active ingredient low application rates and dissipation rate in the environment. per 100 kg. seed) depending on crop and/or target disease. ENVIRONMENTAL OVERVIEW The safety of a chemical in the environment and any potential risk to non-target plants and animals is a function of its toxicity (hazard) and also exposure. Low or no exposure of non-target organisms limits the potential for toxicological effects in the environment. The level and duration of exposure is determined by the application rates and the fate and transport of the chemical in the environment. In the terrestrial environment azoxystrobin is rapidly dissipated. Soil photolysis (breakdown by sunlight) and microbial degradation are both important degradation mechanisms for azoxystrobin. The resulting breakdown products (degradates, metabolites) of azoxystrobin are themselves readily degraded and thus are only present at low levels and do not accumulate in soil. They are ultimately mineralized to carbon dioxide. Azoxystrobin and its breakdown products do not leach to groundwater due to a combination of their degradation rates and relatively low mobility in soil. The biological activity of each of the major degradates of azoxystrobin has been evaluated. These tests show that there are no toxicological or ecotoxicological concerns with these compounds. Based on These findings and the limited exposure the risk assessment needs to focus on the parent substance, azoxystrobin. Toxicity studies show that azoxystrobin is of low toxicity to terrestrial organisms, including birds, mammals, bees and other insects, and earthworms. Based on a combination of low exposure and toxicity it can be concluded that azoxystrobin will not present an unacceptable risk to the terrestrial environment. In the aquatic environment, exposure will be limited by the physical and chemical properties of azoxystrobin, which will result in low exposure via run off. Once in water bodies, azoxystrobin will be dissipated by adsorption to sediment and subsequent microbial degradation. These factors along with low application rates mean that exposure of non-target species in aquatic environments will be low. Laboratory studies show that azoxystrobin is toxic to aquatic organisms. However, risk assessments show that risk to aquatic organisms and the aquatic environment is low. COMMON QUESTIONS AND ANSWERS Q. From an environmental perspective why was azoxystrobin categorized as a reduced risk pesticide by the US Environmental Protection Agency (EPA)? A. Syngenta proposed azoxystrobin as a reduced risk pesticide due to its very favorable environmental and toxicological profile combined with low use rates. Q. Can azoxystrobin move off-target after application? A. Yes. As with any agricultural pesticide, off-target movement is possible following use of azoxystrobin. Results from field studies and simulation modeling for azoxystrobin indicate that leaching will be insignificant and run-off will be low. As with all pesticides, spray drift can potentially occur with azoxystrobin and measures should be employed to minimize drift (see product label). Risk assessments have shown that potential concentrations of azoxystrobin in surface waters which could result from run-off and drift will not present an unacceptable risk to aquatic organisms. Q. Where is azoxystrobin located after application? Does it bind to plant foliage or soil? A. After foliar application some of the azoxystrobin is taken up by plant leaves and it shows some movement within the plant. Any azoxystrobin which reaches the soil either directly during application or by wash-off is bound by soil organic matter and movement in soil is limited. Q. What happens to azoxystrobin following rainfall? Does it wash off the plant foliage? When runoff from the field occurs following heavy rainfall, does azoxystrobin move with the soil or water in the runoff? A. Some azoxystrobin will remain within the leaf and on the leaf surface, however some will also be washed off. In a run-off event azoxystrobin will move with both the soil and water in the run-off. The proportion adsorbed will depend on the relative amounts of soil and water in the run-off, although based on its soil adsorption coefficient most will be in the water phase. Q. Is azoxystrobin degraded in the environment after application? What is the method of degradation ? A. Yes. In soil azoxystrobin is degraded by soil surface photolysis (sunlight induced breakdown) and by microbes. Both processes result ultimately in the complete mineralization of azoxystrobin to carbon dioxide. Based on an extensive set of field studies it can be concluded that persistence of azoxystrobin in soil is not directly correlated with soil properties such as pH or organic matter. However studies indicate that degradation rates in soil increase with soil microbial activity. Soil surface degradation rates of azoxystrobin also increase with both sunlight intensity and day length. In plants, azoxystrobin is degraded on the leaf surface by photolysis and is also taken up by the plant and broken down. The degradation products of azoxystrobin in and on plants are of no toxicological concern and have no significant fungicidal activity. Q. How is azoxystrobin degraded in water if it enters water bodies? A. In water, azoxystrobin dissipates rapidly due mainly to adsorption to sediment. In clear shallow water bodies, photolysis could also be an important route of dissipation. Once azoxystrobin is adsorbed to sediment it is microbially degraded to an acid metabolite (Compound 2), which is of no concern with respect to either man or to the environment and which is not fungicidally active. Q. What happens to azoxystrobin in saltwater? Could it affect saltwater organisms? A. The fate of azoxystrobin will follow the same pathways in salt or freshwater environments. Studies with saltwater organisms show they respond to azoxystrobin in the same way as freshwater organisms and have similar sensitivities. Q. Can azoxystrobin accumulate in the sediment of water bodies and have an adverse effect on aquatic life? A. In aquatic environments the major initial route of dissipation is by adsorption to bottom sediments where it is ultimately degraded. The potential for accumulation in sediments is low. Long-term toxicity studies with sediment-dwelling organisms have shown a huge margin of safety between potential environmental concentrations and concentrations that cause a toxic effect. Q. Are azoxystrobin breakdown products harmful to the environment ? A. No. The metabolites and photoproducts of azoxystrobin have been evaluated for their potential to present a risk to the environment. The results of these studies show that the degradates are all much less toxic (approximately 1000 X) to aquatic organisms than azoxystrobin. Q. Is azoxystrobin mobile in the soil and can its use result in groundwater contamination? A. Following an international program of field soil dissipation trials (designed to test for leaching potential) there have been no cases where azoxystrobin has been found to be mobile in soil. These studies are often carried out under “worst case” conditions with maximum use rates and high levels of irrigation. In addition, results of worst-case laboratory leaching studies show that azoxystrobin does not leach. Given this, there is no risk of azoxystrobin resulting in groundwater contamination. Q. Will azoxystrobin accumulate in the environment or in non-target organisms? A. No. Azoxystrobin is degraded in plants, soil and water and therefore will not accumulate in the environment. Based on its moderate lipophilicity azoxystrobin will not accumulate in non-target organisms. This is supported by data on metabolism and excretion in mammals, which shows rapid elimination of azoxystrobin via excreta and very low residues in tissues.
Recommended publications
  • US 2014/0116112 A1 HUMPHREY Et Al
    US 201401 16112A1 (19) United States (12) Patent Application Publication (10) Pub. No.: US 2014/0116112 A1 HUMPHREY et al. (43) Pub. Date: May 1, 2014 (54) METHODS FOR DETERMINING THE Publication Classification PRESENCE OR ABSENCE OF CONTAMINANTS IN A SAMPLE (51) Int. Cl. GOIN30/72 (2006.01) (71) Applicant: K & D LABORATORIES, INC., Lake (52) U.S. Cl. Oswego, OR (US) CPC .................................. G0IN30/7206 (2013.01) USPC ......................................................... T3/23.37 (72) Inventors: David Kent HUMPHREY, Reno, NV (US); Nicholas Joseph GEISE, Portland, OR (US) (57) ABSTRACT (73) Assignee: K & D LABORATORIES, INC., Lake Oswego, OR (US) Methods are provided for rapidly determining the presence or absence of large numbers of contaminants in a test sample, (21) Appl. No.: 13/830,388 Such as a raw material intended for use in the preparation of a nutraceutical. The disclosed methods employ gas chromatog (22) Filed: Mar 14, 2013 raphy-mass spectrometry techniques together with the spe cific use of software in combination with a database to ana Related U.S. Application Data lyze data collected after ionization of the sample and (60) Provisional application No. 61/718,607, filed on Oct. determine the presence or absence of the contaminants in the 25, 2012. sample. US 2014/01161 12 A1 May 1, 2014 METHODS FOR DETERMINING THE 0007. In one embodiment, methods for detecting the pres PRESENCE OR ABSENCE OF ence or absence of a plurality of contaminants in a sample are CONTAMINANTS IN A SAMPLE provided, such methods comprising: (a) extracting the sample with a water-miscible solvent in the presence of a high con REFERENCE TO RELATED APPLICATIONS centration of salts to provide a sample extract; (b) shaking and centrifuging the sample extract to provide a Supernatant; (c) 0001.
    [Show full text]
  • Multi-Omics Phenotyping of the Gut-Liver Axis Reveals Metabolic Perturbations from a Low-Dose Pesticide Mixture in Rats
    ARTICLE https://doi.org/10.1038/s42003-021-01990-w OPEN Multi-omics phenotyping of the gut-liver axis reveals metabolic perturbations from a low-dose pesticide mixture in rats Robin Mesnage 1, Maxime Teixeira 2, Daniele Mandrioli 3, Laura Falcioni 3, Mariam Ibragim1, Quinten Raymond Ducarmon4, Romy Daniëlle Zwittink 4, Caroline Amiel2, Jean-Michel Panoff2, ✉ Emma Bourne5, Emanuel Savage5, Charles A. Mein5, Fiorella Belpoggi3 & Michael N. Antoniou 1 Health effects of pesticides are not always accurately detected using the current battery of regulatory toxicity tests. We compared standard histopathology and serum biochemistry 1234567890():,; measures and multi-omics analyses in a subchronic toxicity test of a mixture of six pesticides frequently detected in foodstuffs (azoxystrobin, boscalid, chlorpyrifos, glyphosate, imida- cloprid and thiabendazole) in Sprague-Dawley rats. Analysis of water and feed consumption, body weight, histopathology and serum biochemistry showed little effect. Contrastingly, serum and caecum metabolomics revealed that nicotinamide and tryptophan metabolism were affected, which suggested activation of an oxidative stress response. This was not reflected by gut microbial community composition changes evaluated by shotgun metage- nomics. Transcriptomics of the liver showed that 257 genes had their expression changed. Gene functions affected included the regulation of response to steroid hormones and the activation of stress response pathways. Genome-wide DNA methylation analysis of the same liver samples showed that 4,255 CpG sites were differentially methylated. Overall, we demonstrated that in-depth molecular profiling in laboratory animals exposed to low con- centrations of pesticides allows the detection of metabolic perturbations that would remain undetected by standard regulatory biochemical measures and which could thus improve the predictability of health risks from exposure to chemical pollutants.
    [Show full text]
  • Pest Management Strategic Plan for Western U.S. Sugarbeet Production
    Pest Management Strategic Plan for Western U.S. Sugarbeet Production Summary of a workshop held on December 15–16, 2004 Boise, ID Issued 08/05/05 Lead Authors: Ronda Hirnyck, Lisa Downey Editor: Sally O’Neal Coates Contact Person: Ronda Hirnyck, Idaho Pesticide Program Coordinator (208) 364-4046 [email protected] This project was sponsored by the Western Integrated Pest Management Center, which is funded by the United States Department of Agriculture, Cooperative State Research, Education and Extension Service. Table of Contents Work Group................................................................................................3 Summary of Critical Needs .......................................................................5 Introduction ................................................................................................7 Production Overview ..................................................................................9 Foundation for the Pest Management Strategic Plan Crop Rotation ...................................................................................13 Pre-plant ...........................................................................................14 Planting.............................................................................................24 Pre-emergence ..................................................................................39 Emergence to Row Closure...............................................................44 Row Closure to Harvest....................................................................71
    [Show full text]
  • U.S. EPA, Pesticide Product Label, QUADRIS XTRA FUNGICIDE, 05/06/2008
    UNITED STATES ENVIRONMENTAL PROTECTION AGENCY WASHINGTON, D.C. 20460 OFFICE OF PREVENTION, PESTICIDES AND TOXIC SUBSTANCES Ms. Adora Clark MAY 6 2008 Syngenta Crop Protection, Inc. ~ P.O. Box 18300 Greensboro, NC 27419 Dear Ms Clark: Subject: Quadris Xtra Fungicide EPA Reg. No. 100-1225 Your Revised Label of February 8, 2008 The amendment referred to above, submitted in connection with registration under FIFRA sec. 3(c)(7)(A), is conditionally accepted provided that the following revision is made to the label: Update the Warranty Statement tocohform to that for Tilt, EPA Reg. No. 100-617, accepted May 25,2007. Submit one copy of the final printed label before you release the product for shipment. If these conditions are not complied with, the registration will be subject to cancellation in accordance with FIFRA sec. 6(e). Your release for shipment of the product constitutes acceptance of these conditions. A stamped copy of the label is enclosed for your records. Sincerely yours, C o-J5'~~~1t'- Mary L Waller Product Manager 21 Fungicide Branch Registration Division (750 Enclosures 7505P:CGrable:cg:5/1/08 ~, ' "'," ,t U-r'.,' Page 18 'CONTAINER/BASE LABEL I GROUP _ FUNGICIDES I Quadris Xtra ™ Fungicide Broad spectrum fungicide for control of plant diseases Active Ingredients: "Azoxy~trobin(CAS No. 131-860-33:'8} ....................... , .............................. 18.2% 'Cypr6c6naiole (cAs No. 94361-'06;;,5).. ............. , .. : .................................... 7.3% Other Ingredients: 74.5% Total: 100.0% Quadris Xtra is a 280SC formulation that contains 0.67 lb. a.i. cyproconazole and 1.67 lb. a.i. azoxystrobin per gallon. ~.!.:~(:~~r.T~D .
    [Show full text]
  • US EPA, Pesticide Product Label, Azoxystrobin 2SC,08/06/2020
    U.S. ENVIRONMENTAL PROTECTION AGENCY EPA Reg. Number: Date of Issuance: Office of Pesticide Programs Registration Division (7505P) 94730-6 8/6/20 1200 Pennsylvania Ave., N.W. Washington, D.C. 20460 NOTICE OF PESTICIDE: Term of Issuance: X Registration Reregistration Unconditional (under FIFRA, as amended) Name of Pesticide Product: Azoxystrobin 2SC Name and Address of Registrant (include ZIP Code): Generic Crop Science, LLC c/o Biologic Regulatory Consulting, Inc. 10529 Heritage Bay Blvd. Naples, FL 34120 Note: Changes in labeling differing in substance from that accepted in connection with this registration must be submitted to and accepted by the Registration Division prior to use of the label in commerce. In any correspondence on this product always refer to the above EPA registration number. On the basis of information furnished by the registrant, the above named pesticide is hereby registered under the Federal Insecticide, Fungicide and Rodenticide Act. Registration is in no way to be construed as an endorsement or recommendation of this product by the Agency. In order to protect health and the environment, the Administrator, on his motion, may at any time suspend or cancel the registration of a pesticide in accordance with the Act. The acceptance of any name in connection with the registration of a product under this Act is not to be construed as giving the registrant a right to exclusive use of the name or to its use if it has been covered by others. This product is unconditionally registered in accordance with FIFRA section 3(c)(5) provided that you: 1. Submit and/or cite all data required for registration/reregistration/registration review of your product when the Agency requires all registrants of similar products to submit such data.
    [Show full text]
  • Strobilurins: Evolution of a New Class of Active Substances
    Strobilurins––new fungicides for crop protection Kresoxim-methyl REVIEWS Strobilurins: Evolution of a New Class of Active Substances Hubert Sauter,* Wolfgang Steglich, and Timm Anke Dedicated to Professor Hans-Jürgen Quadbeck-Seeger on the occasion of his 60th birthday Nature provides active substances, as mansins, the identification of the b- ture ± activity relationships. The varia- the result of special biosynthetic path- methoxyacrylate group as their com- tion of natural product lead structures ways, with the most diverse biological mon structural element, and the eluci- and the selection of suitable candidates activities. Many of these substances dation of their mode of actionÐsaw for development led to an across-the- perform functions that are important the focus of research activities shift board evolution of the strobilurins as a to the survival of the organism in which away from the universities, ushering in new class of active substance. Several they are formed. For example, certain an era of intense competition between commercial products resulting from fungi produce antifungal strobilurins rival industrial fungicide research this effort are now already on the and oudemansins, agents to which the teams. Their goal was, and remains, market, and more are expected to producers themselves are not sensitive, the development of fungicides with follow: a most intriguing success story. but which ward off other fungal species practical applications in agricultural that grow on the same substrates. The crop protection. This review illustrates Keywords: active substance research period that followed the early break- methodological approaches in the op- ´ fungicides ´ natural products ´ throughs in the 1970sÐthe discovery timization of lead structures and the strobilurins ´ structure ± activity re- of the natural strobilurins and oude- importance of understanding struc- lationships 1.
    [Show full text]
  • Interactive Effect of Nitrogen and Azoxystrobin on Yield, Quality, Nitrogen and Water Use Efficiency of Wild Rocket in Southern
    agronomy Article Interactive Effect of Nitrogen and Azoxystrobin on Yield, Quality, Nitrogen and Water Use Efficiency of Wild Rocket in Southern Italy Vincenzo Candido 1,*, Francesca Boari 2, Vito Cantore 2 , Donato Castronuovo 1 , Donato Di Venere 2, Michele Perniola 3, Lucrezia Sergio 2, Roberto Viggiani 1 and Maria Immacolata Schiattone 1,* 1 School of Agriculture, Forest, Food and Environmental Sciences, University of Basilicata, Viale dell’Ateneo Lucano, 10, 85100 Potenza, Italy; [email protected] (D.C.); [email protected] (R.V.) 2 Institute of Sciences of Food Production, National Research Council (CNR-ISPA), Via Amendola, 122/O, 70125 Bari, Italy; [email protected] (F.B.); [email protected] (V.C.); [email protected] (D.D.V.); [email protected] (L.S.) 3 Department of European and Mediterranean Cultures, University of Basilicata, Via Lanera, 10, 75100 Matera, Italy; [email protected] * Correspondence: [email protected] (V.C.); [email protected] (M.I.S.) Received: 14 May 2020; Accepted: 12 June 2020; Published: 14 June 2020 Abstract: Wild rocket (Diplotaxis tenuifolia L. DC) is an emerging vegetable which market requires high-quality standards that can be obtained through appropriate cultivation techniques such as the right level of nitrogen and the application of biostimulant substances. These include strobilurins, marketed mainly as fungicides that can have complementary positive effects on the yield, quality and resources’ use efficiency of many crops. For this reason, a trial in an unheated greenhouse, in Southern Italy, to evaluate the possibility of using Azoxystrobin to improve the production of wild 1 rocket subjected to different nitrogen inputs, was carried out.
    [Show full text]
  • A Critical Review of Synthetic Chemicals in Surface Waters of the US, the EU and China
    Environment International 131 (2019) 104994 Contents lists available at ScienceDirect Environment International journal homepage: www.elsevier.com/locate/envint Review article A critical review of synthetic chemicals in surface waters of the US, the EU T and China ⁎ Wendi Fanga, Ying Penga, Derek Muirb,c, Jun Lind, Xiaowei Zhanga, a State Key Laboratory of Pollution Control & Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, PR China b Environment and Climate Change Canada, Canada Centre for Inland Waters, 867 Lakeshore Road, Burlington, ON L7S 1A1, Canada c School of Environment, Jinan University, Guangzhou, PR China d Solid Waste and Chemicals Management Center, Ministry of Ecology and Environment, PR China ARTICLE INFO ABSTRACT Handling editor: Adrian Covaci There is a wide concern that emerging organic pollutants (EOPs) in surface water could adversely affect human Keywords: health and wildlife. However, the geographic distribution, exposure pattern and ecological risk of emerging Chemical pollution organic pollutants are poorly understood at a global scale. This paper provides a comprehensive survey on the Risk assessment exposure level of EOPs in China, the US and the EU based on the published literature. The hazard level of three Pesticide categories of EOPs, namely pharmaceuticals and personal care products (PPCPs), pesticides and industrial Industry chemicals was further evaluated by adopting a novel Aquatic HazPi index that jointly accounts for the persis- Pharmaceutical and personal care products tence, bioaccumulation, toxicity and bioactivity. Furthermore, a correlation analysis of land use with the surface Land use water exposure status regarding the synthetic chemicals was conducted. According to the published data re- ported between 2010 and 2016, the concentration of pesticides in the US was higher than in the EU and China.
    [Show full text]
  • Natural Compound-Derived Cytochrome Bc1 Complex Inhibitors As Antifungal Agents
    molecules Review Natural Compound-Derived Cytochrome bc1 Complex Inhibitors as Antifungal Agents Loana Musso * , Andrea Fabbrini and Sabrina Dallavalle Department of Food, Environmental and Nutritional Sciences (DeFENS), Division of Chemical and Biomolecular Sciences, Università degli Studi di Milano, Via Celoria 2, 20133 Milan, Italy; [email protected] (A.F.); [email protected] (S.D.) * Correspondence: [email protected] Received: 4 August 2020; Accepted: 6 October 2020; Published: 7 October 2020 Abstract: The high incidence of fungal pathogens has become a global issue for crop protection. A promising strategy to control fungal plant infections is based on the use of nature-inspired compounds. The cytochrome bc1 complex is an essential component of the cellular respiratory chain and is one of the most important fungicidal targets. Natural products have played a crucial role in the discovery of cytochrome bc1 inhibitors, as proven by the development of strobilurins, one of the most important classes of crop-protection agents, over the past two decades. In this review, we summarize advances in the exploration of natural product scaffolds for the design and development of new bc1 complex inhibitors. Particular emphasis is given to molecular modeling-based approaches and structure–activity relationship (SAR) studies performed to improve the stability and increase the potency of natural precursors. The collected results highlight the versatility of natural compounds and provide an insight into the potential development of nature-inspired derivatives as antifungal agents. Keywords: natural compounds; cytochrome bc1 complex; antifungals; (E)-β-methoxyacrylate; strobilurins 1. Introduction Plant diseases caused by fungal pathogens are a major threat to the agricultural industry worldwide.
    [Show full text]
  • Recognition and Management of Pesticide Poisonings: Fungicides
    CHAPTER 16 HIGHLIGHTS Numerous fungicides in use with varying levels of toxicity Fungicides Most are unlikely to cause systemic poisonings, exceptions being Fungicides are extensively used in industry, agriculture and the home and garden for: • Organomercury 1. protection of seed grain during storage, shipment and germination; compounds • Triazoles 2. protection of mature crops, berries, seedlings, flowers and grasses in the field, in storage and during shipment; • Some copper compounds 3. suppression of mildews that attack painted surfaces; • Isolated EBDC 4. control of slime in paper pulps; and exceptions 5. protection of carpet and fabrics in the home. Approximately 500 million pounds of fungicides are applied worldwide annu- ally (see Chapter 1, Introduction). Fungicides vary enormously in their potential for causing adverse effects in humans. Historically, some of the most tragic epidemics of pesticide poisoning occurred by mistaken consumption of seed grain treated with organic mercury or hexachlorobenzene. However, most fungicides currently in use and registered for use in the United States are unlikely to cause frequent or severe acute systemic poison- ings for several reasons: (1) many have low inherent toxicity in mammals and are inefficiently absorbed; (2) many are formulated as suspensions of wettable powders or granules, from which rapid, efficient absorption is unlikely; and (3) methods of application are such that relatively few individuals are intensively exposed. Apart from systemic poisonings, fungicides as a class also cause irritant injuries to skin and mucous membranes, as well as some dermal sensitization. The following discussion considers the recognized adverse effects of widely used fungicides. In the case of those agents that have caused systemic poisoning, some recommendations for management of poisonings and injuries are provided.
    [Show full text]
  • US EPA, Pesticide Product Label, MAXIM QUATTRO,01/13/2020
    UNITED STATES ENVIRONMENTAL PROTECTION AGENCY A \ WASHINGTON, DC 20460 OFFICE OF CHEMICAL SAFETY AND POLLUTION PREVENTION January 13, 2020 Ricky Kyaw Regulatory Product Manager Syngenta Crop Protection, LLC P.O. Box 18300 Greensboro, NC 27419 Subject; Registration Review Label Mitigation for Azoxystrobin, Fludioxonil and Mefenoxam Product Name; Maxim Quattro EPA Registration Number; 100-1352 Application Dates; 2/1/2019 Decision Numbers; 555106; 555107; 555108 Dear Mr. Kyaw; The Agency, in accordance with the Federal Insecticide, Fungicide and Rodenticide Act (FIFRA), as amended, has completed reviewing all of the information submitted with your application to support the Registration Review of the above referenced product in connection with Azoxystrobin, Fludioxonil and Mefenoxam Interim Decisions, and has concluded that your submission is acceptable. The label referred to above, submitted in connection with registration under FIFRA, as amended, is acceptable. Should you wish to add/retain a reference to the company’s website on your label, then please be aware that the website becomes labeling under the Federal Insecticide Fungicide and Rodenticide Act and is subject to review by the Agency. If the website is false or misleading, the product would be misbranded and unlawful to sell or distribute under FIFRA section 12(a)(1)(E). 40 CFR 156.10(a)(5) list examples of statements EPA may consider false or misleading. In addition, regardless of whether a website is referenced on your product’s label, claims made on the website may not substantially differ from those claims approved through the registration process. Therefore, should the Agency find or if it is brought to our attention that a website contains false or misleading statements or claims substantially differing from the EPA approved registration, the website will be referred to the EPA’s Office of Enforcement and Compliance.
    [Show full text]
  • STROBE® PRO BROAD SPECTRUM FUNGICIDE for Control of Turf Diseases
    GROUP 3 11 FUNGICIDE STROBE® PRO BROAD SPECTRUM FUNGICIDE For control of Turf Diseases. ACTIVE INGREDIENTS: % BY WT. Azoxystrobin* ...............................6.0% Propiconazole** ........................... 10.0% OTHER INGREDIEN TS:.................84.0% TOTAL: .................................... 100.0% KEEP OUT OF REACH OF CHILDREN A liquid soluble concentrate that contains 0.87 lbs. propiconazole and 0.52 lbs. azoxystrobin per gallon. CAUTION *IUPAC: methyl (E)-2-{2-[6-(2-cyanophenoxy) EPA Reg. No: 53883-418 pyrimidin-4-yloxy]phenyl}-3-methoxyacrylate EPA Est No. 53883-TX-002 **CAS Number 60207-90-1 CONTENTS: 1 GALLON Manufactured for: EPA 111417 KEEP OUT OF REACH OF CHILDREN CAUTION FIRST AID IF SWALLOWED: • Call a poison control center or doctor immediately for treatment advice. • Have person sip a glass of water if able to swallow. • Do not induce vomiting unless told to by the poison control center or doctor. • Do not give anything by mouth to an unconscious person. IF INHALED: • Move person to fresh air. • If person is not breathing, call 911 or an ambulance; then give artificial respiration, preferably by mouth-to-mouth if possible. • Call a poison control center or doctor for further treatment advice. IF IN EYES: • Hold eye open and rinse slowly and gently with water for 15-20 minutes. • Remove contact lenses, if present, after the first 5 minutes; then continue rinsing. • Call a poison control center or doctor for treatment advice.: IF ON SKIN: • Take off contaminated clothing. • Rinse skin immediately with plenty of water for 15-20 minutes. • Call a poison control center or doctor for treatment advice. Have the product container or label with you when calling a poison control center or doctor, or going for treatment.
    [Show full text]