Performance of WRF (ARW) Over River Basins in Odisha, India During Flood Season 2014 (IJIRST/ Volume 2 / Issue 06/ 015)

Total Page:16

File Type:pdf, Size:1020Kb

Performance of WRF (ARW) Over River Basins in Odisha, India During Flood Season 2014 (IJIRST/ Volume 2 / Issue 06/ 015) IJIRST –International Journal for Innovative Research in Science & Technology| Volume 2 | Issue 06 | November 2015 ISSN (online): 2349-6010 Performance of WRF (ARW) over River Basins in Odisha, India During Flood Season 2014 Sumant Kr. Diwakar Dr. (Mrs.) Surinder Kaur India Meteorological Department, New Delhi, India India Meteorological Department, New Delhi, India Dr. Ashok Kumar Das Anuradha Agarwala Faculty of Mathematical Sciences, Department of Statistics, India Meteorological Department, New Delhi, India Delhi University Abstract Operational Weather Research & Forecasting – Advanced Research WRF in short WRF (ARW) 9 km x 9 km Model (IMD) based rainfall forecast of India Meteorological Department (IMD) is utilized to compute rainfall forecast over River basins in Odisha during Flood season 2014. The performance of the WRF Model at the sub-basin level is studied in detail. It is observed that the IMD’s WRF (ARW) day1, day2, day3 correct forecast range lies in between 31-47 %, 37-43%, and 28-47% respectively during the flood season 2014. Keywords: GIS; WRF (ARW); IMD; Flood 2014; Odisha _______________________________________________________________________________________________________ I. INTRODUCTION Forecast during the monsoon season river sub-basin wise in India is difficult task for meteorologist to give rainfall forecast where the country have large spatial and temporal variations. India Meteorological Department (IMD) through its Flood Meteorological Offices (FMO) is issuing Quantitative Precipitation Forecast (QPF) sub-basin wise for all Flood prone river basins in India (IMD, 1994). There are 10 FMOs all over India spread in the flood prone river basins and FMO Bhubaneswar, Odisha is one of them. The Categories in which QPF are issued are as follows Rainfall (in mm) 0 1-10 11-25 26-50 51-100 >100 Odisha is an Indian state on the subcontinent’s east coast, by the Bay of Bengal. It is located between the parallels of 17.49’ N and 22.34’ N Latitudes and meridians of 81.27’ E and 87.29’ E Longitudes. It is surrounded by the Indian states of West Bengal to the north-east and in the east, Jharkhand to the north, Chhattisgarh to the west and north-west and Andhra Pradesh to the south. Bhubaneswar is the capital of Odisha. Odisha is the 9th largest state by area in India and the 11th largest by population. Odisha has a coastline about 480 km long. The narrow, level coastal strip including the Mahanadi river delta supports the bulk of the population. On the basis of homogeneity, continuity and physiographical characteristics, Odisha has been divided into five major morphological regions. The Odisha Coastal Plain in the east, the Middle Mountainous and Highlands Region, the Central Plateaus, the western rolling uplands and the major flood plains. A. River System The river system of Odisha comprises the Mahanadi, Brahmani, Baitarani, Subarnarekha, Vamasadhara, Burhabalanga, Rushikulya, Nagavali, Indravati, Kolab, Bahuda, Jambhira and other tributaries and distributaries. Table – 1 Major Rivers in Odisha with Catchment Area (Sq. Km) Catchment Area (Sq. Km.) Sl. No. Name of the Major River Basin % to Geographical area of State Total Area Within Odisha 1. Mahanadi 141134 65628 42.15 2. Brahmani 39116 22516 14.46 3. Baitarani 14218 13482 8.66 4. Kolab 20427 10300 6.61 5. Rushikulya 8963 8963 5.76 6. Vamsadhara 11377 8960 5.75 7. Indravati 41700 7400 4.75 8. Burhabalanga & Jambhira 6691 6354 4.08 9. Nagavali 9275 4500 2.89 10. Subarnarekha 19277 2983 1.92 11. Bahuda 1118 890 0.57 All rights reserved by www.ijirst.org 83 Performance of WRF (ARW) over River Basins in Odisha, India During Flood Season 2014 (IJIRST/ Volume 2 / Issue 06/ 015) Fig. 1: Location map of study Area FMOs mainly using the synoptic analogue model to do the same which was developed by each FMO for the area of their jurisdiction. But nowadays most of the countries tilted towards Numerical Weather Prediction (NWP) models as NWP methods have achieved better skills and are playing important role in rainfall forecasting. Rainfall prediction skill of NWP model is still not adequate to address satisfactorily detailed aspects of Indian Summer Monsoon. This is because of large spatial and temporal variability of rainfall and some inherent limitations of NWP models. In-spite of these limitations rainfall forecast of NWP models are estimated for its utilization in various fields such as in flood forecasting, water management, planning etc. Operationally the WRF (ARW) 9 x 9 Km2 rainfall forecast is made available to Hydromet division by NWP division at New Delhi and rainfall forecast estimation sub-basin wise for River basins is done by the Hydromet division at New Delhi using the available data. Then this estimation forecast is uploaded in IMD website (www.imd.gov.in) operationally during flood season 2014 as an additional tool for issuing QPF for their sub-basins. This input in turn will be utilized in the flood forecasting purpose. The main aim of this paper is to study the performance of WRF rainfall forecast during heavy rainfall events in the flood season 2014 over river basins under Flood Meteorological Office, Bhubaneswar of IMD. The Figure 1 showing the location of river sub basin map of the study Area. Fig. 2: Rain-gauge Network All rights reserved by www.ijirst.org 84 Performance of WRF (ARW) over River Basins in Odisha, India During Flood Season 2014 (IJIRST/ Volume 2 / Issue 06/ 015) II. Methodology Sub basin wise rainfall forecast estimation for basins lying over the state of Odisha from operational WRF (9kmX9km) gridded rainfall forecast is computed during the flood season. The meso-scale forecast system WRF (ARW) with 3DVAR data assimilation is being operated daily twice, at 9 km horizontal resolutions with 38 Eta levels in the vertical and the integration and with the outer model domain covers the area between lat. 25°S to 45°N long 40°E to 120°E for the forecast up to 3 days using initial and boundary conditions from the IMD GFS-574/L64 (horizontal resolution over the tropics~22km) (http://202.54.31.51/bias/aboutus.php). Following are the Physics options set to operational run of WRF viz. mp_physics- WSM3(3), ra_lw_physics-rrtm scheme(1), ra_sw_physics- Dudhia scheme(1), bl_pbl_physics-YSU(1), cu_physics-GD scheme(3). WRF (9kmx9km) gridded rainfall forecast data which is in netcdf format is averaged for each sub basins using NCAR Command Language (NCL). Observed areal rainfall is computed by taking the average of station rainfall values lying in each sub-basin. The correlation between the sub basin wise observed rainfall and the WRF model rainfall forecast rainfall (mm) table is prepared for flood season 2014 and shown in Table 4. Daily rainfall bar graph over the basin areas is also prepared during the Heavy Rainfall events over FMO Bhubaneswar to identify the dates in which the heavy rainfall occurred. The performance of categorical QPF (0, 1-10 mm, 11-25 mm, 26-50 mm, 51-100 mm, > 100 mm) issued for sub basins is verified from 6X6 categorically for different skill scores viz. Percentage of Correct (PC), Heidke Skill Score (HSS), Critical Success Index (CSI) which is shown in Table 3 month-wise separately during Flood dates. It is to be noted that due to technical issues the WRF Model did not run on 13 Aug, 14 Aug, 15 Aug and 4 Sep 2014, so outputs are not available. III. RESULTS AND DISCUSSION The Rain-gauge network for real time reception of rainfall data in the basins over the Odisha during the flood season 2014 is shown in figure 2. The total number of stations for real time rainfall data reception is 195. The summer monsoon rainfall over Odisha occurs mostly due to monsoon depression, Low Pressure Systems (LPS) developing over the Bay of Bengal and moving along the monsoon trough. The dates of floods during the year 2014 are shown in the table below: Table – 2 Flood dates of 2014 in Odisha Sl. No. Year Flood Dates 1. July 19-22 & July 27-30 2. 2014 Aug 01-17 3. Sep 01-09 A. July 2014 (Flood Period Are 19.07.2014 to 22.07.2014 & 27.07.2014 to 30.07.2014) 1) Synoptic Situation during the Flood Dates The Synoptic situation on 20.07.2014, a low pressure area (LOPAR) was formed over North Bay of Bengal and adjoining areas of Gangetic West Bengal and Odisha with associated cyclonic circulation extends up to Mid tropospheric level. It was rapidly concentrated into a Depression on 21st July 2014 over North Eastern parts of Odisha and adjoining areas of Gangetic West Bengal about 50 km east of Baripada. On 22.07.2014, it was moved over North Chhattisgarh and neighborhood about 50 km Southeast of Pendra. During this period, the axis of monsoon trough on mean sea level was passed through Ganganagar, Aligarh, Fatehpur, Daltonganj, Midnapur and thence Southeast wards to East Central Bay of Bengal across North-west Bay of Bengal. All rights reserved by www.ijirst.org 85 Performance of WRF (ARW) over River Basins in Odisha, India During Flood Season 2014 (IJIRST/ Volume 2 / Issue 06/ 015) Fig. 3: Daily Average Rainfall (mm) from 11 to 22 & 27 to 31 July 2014 On dated 27th July 2014, a low pressure area (LOPAR) has formed over North West Bay of Bengal and neighborhood with associated upper air cyclonic circulation extending up to Mid-Tropospheric level and continued up to dated 28th July 2014. On 29th July 2014, it was concentrated into a Well-Marked Low pressure area over the same region with associated upper air cyclonic circulation extending up to Mid-Tropospheric level and continued up to 30th July 2014 over the same region.
Recommended publications
  • Deltas in the Anthropocene Edited by Robert J
    Deltas in the Anthropocene Edited by Robert J. Nicholls · W. Neil Adger Craig W. Hutton · Susan E. Hanson Deltas in the Anthropocene Robert J. Nicholls · W. Neil Adger · Craig W. Hutton · Susan E. Hanson Editors Deltas in the Anthropocene Editors Robert J. Nicholls W. Neil Adger School of Engineering Geography, College of Life University of Southampton and Environmental Sciences Southampton, UK University of Exeter Exeter, UK Craig W. Hutton GeoData Institute, Geography Susan E. Hanson and Environmental Science School of Engineering University of Southampton University of Southampton Southampton, UK Southampton, UK ISBN 978-3-030-23516-1 ISBN 978-3-030-23517-8 (eBook) https://doi.org/10.1007/978-3-030-23517-8 © Te Editor(s) (if applicable) and Te Author(s), under exclusive license to Springer Nature Switzerland AG, part of Springer Nature 2020. Tis book is an open access publication. Open Access Tis book is licensed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license and indicate if changes were made. Te images or other third party material in this book are included in the book’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the book’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder.
    [Show full text]
  • “Major World Deltas: a Perspective from Space
    “MAJOR WORLD DELTAS: A PERSPECTIVE FROM SPACE” James M. Coleman Oscar K. Huh Coastal Studies Institute Louisiana State University Baton Rouge, LA TABLE OF CONTENTS Page INTRODUCTION……………………………………………………………………4 Major River Systems and their Subsystem Components……………………..4 Drainage Basin………………………………………………………..7 Alluvial Valley………………………………………………………15 Receiving Basin……………………………………………………..15 Delta Plain…………………………………………………………...22 Deltaic Process-Form Variability: A Brief Summary……………………….29 The Drainage Basin and The Discharge Regime…………………....29 Nearshore Marine Energy Climate And Discharge Effectiveness…..29 River-Mouth Process-Form Variability……………………………..36 DELTA DESCRIPTIONS…………………………………………………………..37 Amu Darya River System………………………………………………...…45 Baram River System………………………………………………………...49 Burdekin River System……………………………………………………...53 Chao Phraya River System……………………………………….…………57 Colville River System………………………………………………….……62 Danube River System…………………………………………………….…66 Dneiper River System………………………………………………….……74 Ebro River System……………………………………………………..……77 Fly River System………………………………………………………...…..79 Ganges-Brahmaputra River System…………………………………………83 Girjalva River System…………………………………………………….…91 Krishna-Godavari River System…………………………………………… 94 Huang He River System………………………………………………..……99 Indus River System…………………………………………………………105 Irrawaddy River System……………………………………………………113 Klang River System……………………………………………………...…117 Lena River System……………………………………………………….…121 MacKenzie River System………………………………………………..…126 Magdelena River System……………………………………………..….…130
    [Show full text]
  • Organic Matter Depositional Microenvironment in Deltaic Channel Deposits of Mahanadi River, Andhra Pradesh
    AL SC R IEN 180 TU C A E N F D O N U A N D D A E I T Journal of Applied and Natural Science 1(2): 180-190 (2009) L I O P N P JANS A ANSF 2008 Organic matter depositional microenvironment in deltaic channel deposits of Mahanadi river, Andhra Pradesh Anjum Farooqui*, T. Karuna Karudu1, D. Rajasekhara Reddy1 and Ravi Mishra2 Birbal Sahni Institute of Palaeobotany, 53, University Road, Lucknow, INDIA 1Delta Studies Institute, Andhra University, Sivajipalem, Visakhapatnam-17, INDIA 2ONGC, 9, Kaulagarh Road, Dehra dun, INDIA *Corresponding author. E-mail: [email protected] Abstract: Quantitative and qualitative variations in microscopic plant organic matter assemblages and its preservation state in deltaic channel deposits of Mahanadi River was correlated with the depositional environment in the ecosystem in order to prepare a modern analogue for use in palaeoenvironment studies. For this, palynological and palynofacies study was carried out in 57 surface sediment samples from Birupa river System, Kathjodi-Debi River system and Kuakhai River System constituting Upper, Middle and Lower Deltaic part of Mahanadi river. The apex of the delta shows dominance of Spirogyra algae indicating high nutrient, low energy shallow ecosystem during most of the year and recharged only during monsoons. The depositional environment is anoxic to dysoxic in the central and south-eastern part of the Middle Deltaic Plain (MDP) and Lower Deltaic Plain (LDP) indicated by high percentage of nearby palynomorphs, Particulate Organic Matter (POM) and algal or fungal spores. The northern part of the delta show high POM preservation only in the estuarine area in LDP but high Amorphous Organic Matter (MOA) in MDP.
    [Show full text]
  • Chapter 2 Physical Features
    Middle Kolab Multipurpose Project Detailed Project Report CHAPTER 2 PHYSICAL FEATURES 2.1 GENERAL There are few places on earth that are special and Odisha is one of them. It is a fascinating land filled with exquisite temples, monuments and possessing beaches, wild life, sanctuaries and natural landscape of enchanting beauty. The project area falls in Koraput and Malkangiri district of Odisha having its geographical area as 5294.5 Sq. Km. The district is bounded by Rayagada and Srikaklam district on its East side, Bastar district on the west, Malkangiri district on South-west side, Nabarangpur district on north and Vishakhapatnam on south. Malkangiri and Koraput districts are situated at 18°35’ Latitude and 82°72’ Longitude at an average elevation of 170 and 870 m respectively from mean sea level. The district’s demographic profile makes it clear that it is a predominantly tribal and backward district with 56% tribal and 78% of the rural families below poverty line (BPL). The region is characterised by high temperature and humidity in most parts of the year and medium to high annual rainfall. There is a considerable extent of natural vegetation in this region. The hydrographical features also reflect these effects. The chapter describes the general topographical and physical features of the Kolab basin and the project command area. 2.2 PHYSIOGRAPHY Odisha State lies within latitude 17° 48 to 23° 34 and longitude 81° 24 to 87°29 and is bounded on the north by Jharkhand, on the west by Chhattisgarh, on the south by Andhra Pradesh and on the north-east by West Bengal.
    [Show full text]
  • Dpr – Chapora River (25.00Km) Nw-25
    Comments: Subject: Project: Client: [email protected] 86 85 469 124 +91 fax - 00 85 469 124 +91 tel. Gurgaon 122 002 (Haryana) – INDIA 37, Institutional Area, Sector 44 Intec House Ltd. Pvt. ENGINEERING TRACTEBEL CIN: U74899DL2000PTC104134 CIN: TRACTEBEL ENGINEERING pvt. ltd. - Registered office: A-3 (2nd Floor), Neeti Bagh - New Delhi - 110049 - INDIA tractebel-engie.com REV. 01 YY/MM/DD 19/05/13 DETAILED PROJECT REPORT – CHAPORA RIVER (25 KM) NW-25 KM) (25 RIVER CHAPORA – REPORT PROJECT DETAILED WATERWAYS CONSULTANCY SERVICES FORPREPARATION OF SECONDSTAGEOF DPR CLUSTER – 7 OF NATIONAL INLAND WATERWAYS AUTHORITYINDIA OF Revision No. Imputation: P.010257 TS: Our ref.: 01 STAT. Active P.010257-W-10305-01 WRITTEN SARIKA KUMARI 2019 05 13 Date Bidhan Chandra JHA VERIFIED Prepared / Revision By ARUN KUMAR APPROVED Final Submission DPR N SIVARAMAN N – CHAPORA RIVER CHAPORA (25.00KM) NW Description VALIDATED RESTRICTED B.C.JHA - 25 This document is the property of Tractebel Engineering pvt. ltd. Any duplication or transmission to third parties is forbidden without prior written approval Member, Technical & Sr Consultant); Vice Admiral (Retd.) S. K. Jha (Sr. Advisor); Mr. S. V. K. V. S. Mr. Advisor); from time to (Sr. time to make thisJha report success.K. S. (Retd.) Admiral Vice Reddy (Chief Engineer) and Mr Rajeev SinghalConsultant); (AHS)Sr who& provided their valuable guidanceTechnical Member, The consultants are grateful to Mr. S. K. Gangwar, Member (Technical), Mr. R. P. Khare (Ex. access to information and advice rendered by IWAI. The consultant would like toput on record their deep appreciation of cooperation and ready study.
    [Show full text]
  • MINERAL and Energy Resources in the Country
    Unit IIIIIIUnit India is endowed with a rich variety of mineral resources due to its varied geological structure. Chapter 7 Bulk of the valuable minerals are products of pre-palaezoic age (Refer: Chapter 2 of Class XI, Textbook: “Fundamentals of Physical Geography” and are mainly associated with metamorphic and igneous rocks of the peninsular India. The vast alluvial plain tract of north India is devoid of minerals of economic use. The mineral resources provide the country with the necessary base for industrial development. In this chapter, we shall discuss the availability of various types of mineral and MINERAL AND energy resources in the country. ENERGY A mineral is a natural substance of organic or inorganic origin with definite chemical and RESOURCES physical properties. TTT ypes ofofypes Mineral RRal esouresouresourcescesces On the basis of chemical and physical properties, minerals may be grouped under two main categories of metallics and non-metallics which may further be classified as follows : Fig. 7.1 : Classification of Minerals 2021-22 As, it is clear from the Fig. 7.1 metallic The North-Eastern Plateau Region minerals are the sources of metals. Iron ore, This belt covers Chhotanagpur (Jharkhand), copper, gold produce metal and are included Odisha Plateau, West Bengal and parts of in this category. Metallic minerals are further Chhattisgarh. Have you ever thought about divided into ferrous and non-ferrous metallic the reason of major iron and steel industry minerals. Ferrous, as you know, refers to iron. being located in this region? It has variety of All those minerals which have iron content are minerals viz.
    [Show full text]
  • The Mega-Deltas of Asia: a Conceptual Model and Its Application to Future Delta Vulnerability
    Asia‐Pacific Network for Global Change Research TThhee MMeeggaa--DDeellttaass ooff AAssiiaa:: AA CCoonncceeppttuuaall MMooddeell aanndd iittss AApppplliiccaattiioonn ttoo FFuuttuurree DDeellttaa VVuullnneerraabbiilliittyy Final report for APN project 2004-06-CMY PI: Prof. Zhongyuan Chen, Department of Geography, East China Normal University, Shanghai 200062, China. Tel: 86-21-62232706; Fax: 86-21-62232416; E-mail: [email protected] Co-leader: Dr. Yoshiki Saito, Geological Survey of Japan (GSJ), AIST. Central 7, Higashi 1-1-1, Tsukuba, Ibaraki, 305-8567, Japan Phone: +81-29-861-3895, or 861-3772 (office); Fax: +81-29-861-3747 E-mail: [email protected] Dr. Steve Goodbred, Jr. Marine Sciences Research Center, State University of New York, Stony Brook, NY 11794-5000, USA; (current address: Earth & Environmental Sciences, Vanderbilt University, VU Station B 351805, Nashville, TN 37235-1805, Tel: 631-632-8676, Fax: 631-632-8820 E-mail: [email protected]) Dr. Tran Duc Thanh, Institute of Marine Environment and Resources, VAST. 246 Danang Street, Hai Phong City, Viet Nam Tel: 84-31-761523, Fax: 84-31-761521 E-mail: [email protected] Prof. Md Badrul Islam Department of Geology and Mining, University of Rajshahi, Rajshahi 6205, Bangladesh. Tel: +880 721 750 041-411, Fax: +880 721 750064; E-mail: [email protected] 1 The Mega-Deltas of Asia: A Conceptual Model and its Application to Future Delta Vulnerability 2004-06-CMY-Chen Final Report submitted to APN ©Asia-Pacific Network for Global Change Research 2 Overview of project work and outcomes Non-technical summary This is 2-years APN-project entitled ‘The Mega-deltas of Asia: A Conceptual Model and its Application for Future Delta Vulnerability’.
    [Show full text]
  • Infrastructure Study Report for 300 Mt Steel by 2025
    DRAFT INFRASTRUCTURE STUDY REPORT FOR 300 MT STEEL BY 2025 MECON LIMITED RANCHI- 834002 JULY, 2014 (R0) No. 11.14.2014.PP 2151 JUNE, 2015 (R1) DRAFT JOINT PLANT COMMITTEE Ministry of Steel, GOI INFRASTRUCTURE STUDY REPORT FOR 300 MT STEEL BY 2025 MECON LIMITED Ranchi – 834002 No. : 11.14.2014.PP 2151 JULY , 2014 (R0) JUNE, 2015 (R1) INFRASTRUCTURE STUDY REPORT FOR 300 MT STEEL BY 2025 GOVT. OF INDIA, MINISTRY OF STEEL PREFACE It is largely being felt now by Country’s policy makers that manufacturing has to be the backbone of future growth strategy of India over the next decade. Accordingly, the new manufacturing policy aims at increasing manufacturing growth rate to 11-12% by 2016-17 and raising its share in GDP from current 16% to 25% by 2025. The policy envisages creation of National Investment & Manufacturing Zones (NIMZs) equipped with world class infrastructure facilities to promote manufacturing activities in the country. To achieve the manufacturing growth of GDP’s share from 16% to 25% by 2025, there will be substantial increase in steel demand. Some of the NMIZs are being planned in mineral rich states offering excellent potential location for setting up new steel plants. Draft National Steel Policy 2012 targets crude steel capacity of 300 Mt in the country by the middle of the next decade (2025-26). A High Level Committee on Manufacturing (HLCM) in its meeting held on 9th July 2013 which was chaired by the then Hon’ble Prime Minister endorsed the growth strategy targeting National Mission of 300 Mt crude steel output by 2025-26.
    [Show full text]
  • A Mathematical Model for the Prediction of Water Level Along Kharsua River Using MIKE11
    International Journal of Modern Trends in Engineering and Research www.ijmter.com e-ISSN No.:2349-9745, Date: 2-4 July, 2015 A mathematical model for the prediction of water level along Kharsua River using MIKE11 Mayuresh Padalka r1, D.V.S. Murthy 2, Dr. Shreenivas Londhe 3 1PG Student, Civil Engineering Department, Vishwakarma Institute of Information Technology, Pune, [email protected] 2Regional Manager, South Region, W ater & Power Consultancy Services (WAPCOS), Chennai, [email protected] 3Professor, C ivil Engineering Department, Vishw akarma Institute of Information Technology, Pune, [email protected] Abstract - A hydrodynamic 1D model is used to predict flow conditions in support of a navigation study. The hydrodynamic model uses the cross-section data of Kharsua , Kani and Hansua rivers pertaining to development of National Waterway No. 5 (NW 5) along Brahmani river and Mahanadi river delta in Orissa. The gauge discharge data for Brahmani river at Jenapur gauge site of CWC is available for the period of 3 3 years. This data is used to provide appropriate boundary conditions at upstream of the model. The downstream boundary conditions will be tidal water levels at Dhamra Port . The topography of Brahmani river delta network in the form of cross-sections is developed using Danish Hydrau lic Institute’s (DHI) MIKE 11 software to predict the water levels along the river reach under consideration. These predicted flow conditions will be useful for design/planning of waterway for inland navigation and for design of protection works along the reach . The scope of this paper is restricted to calibration and validation of the model.
    [Show full text]
  • History of Cuttack City
    Odisha Review ISSN 0970-8669 History of Cuttack City Dr. Sudarsan Pradhan The word Cuttack is an anglicized form of the are the two other townships in the city. Mahanadi Sanskrit word KATAKA that assumes two Vihar is the first satellite city project in Odisha. different meanings namely “military camp” and Cuttack an unplanned city is characterized by a secondly, the capital fort of the Government maze of streets, lanes and by-lanes which has protected by the army. Cuttack is one of the given it the nick name of a city with Baban Bazar, oldest cities of India and was the capital of Odisha Tepan Galee and i.e.52 markets and 53 streets. for almost nine centuries. It is situated at the The city experiences a tropical wet and dry separation of the Mahanadi and its main branch climate. Due to the closeness to the coast, the the Kathajodi. The city located in latitude, north city is prone to cyclones from the Bay of Bengal. 20o29’ and longitude East, 85o50’ and spread The word “KATAKA” etymologically means across an area of nearly 74 square miles. The army cantonment and also capital city. The history Cuttack city stretches from Phulnakhara across of Cuttack amply justifies its name. It started as a the Kathajodi in the south to Choudwar in the military cantonment because of its impregnable north across the Birupa River , while in the east it situation and later on developed to be the capital begins at Kandarpur and runs west as far as Naraj of the state of Odisha.
    [Show full text]
  • MINERAL and Energy Resources in the Country
    Unit IIIIIIUnit India is endowed with a rich variety of mineral Unit IIIIIIUnit resources due to its varied geological structure. Chapter 7 Bulk of the valuable minerals are products of pre-palaezoic age (Refer: Chapter 2 of Class XI, Textbook: “Fundamentals of Physical Geography” and are mainly associated with metamorphic and igneous rocks of the peninsular India. The vast alluvial plain tract of north India is devoid of minerals of economic use. The mineral resources provide the country with the necessary base for industrial development. In this chapter, we shall discuss the availability of various types of mineral and MINERAL AND energy resources in the country. ENERGY A mineral is a natural substance of organic or inorganic origin with definite chemical and RESOURCES physical properties. TTTypes ofofypes Mineral RRal esouresouresourcescesces On the basis of chemical and physical properties, minerals may be grouped under two main categories of metallics and non-metallics which may further be classified as follows : Fig. 7.1 : Classification of Minerals 2015-16 As, it is clear from the Fig. 7.1 metallic crystalline rocks. Over 97 per cent of coal minerals are the sources of metals. Iron ore, reserves occur in the valleys of Damodar, Sone, copper, gold produce metal and are included Mahanadi and Godavari. Petroleum reserves in this category. Metallic minerals are further are located in the sedimentary basins of Assam, divided into ferrous and non-ferrous metallic Gujarat and Mumbai High i.e. off-shore region minerals. Ferrous, as you know, refers to iron. in the Arabian Sea. New reserves have been All those minerals which have iron content are located in the Krishna-Godavari and Kaveri ferrous such as iron ore itself and those which basins.
    [Show full text]
  • Flood Forecasting and Inundation Mapping in the Mahanadi River Basin: a Collaborative Effort Between India and the United States S.K
    Flood Forecasting and Inundation Mapping in the Mahanadi River Basin: A Collaborative Effort between India and the United States S.K. Sengupta1, J.D. Bales2, R. Jubach3, A.C. Scott4, and M.D. Kane5 1S.K. Sengupta: Central Water Commission, Plot No. A/13&14, Mahanadi Bhawan Bhoi Nagar, Bhubaneswar, Orissa, India, 751022; email: [email protected]; phone: 0674-2545536; fax: 0674- 2545537. 2J.D. Bales: U.S. Geological Survey, 3916 Sunset Ridge Road, Raleigh, NC, USA 27607; email: [email protected]; phone: 919-571-4048; fax: 919-571-4041 (corresponding author). 3R. Jubach: Hydrologic Research Center, 12780 High Bluff Drive, Suite 250, San Diego, CA USA 92130-2069; email: [email protected]; phone: 858-794-2726; fax: 858-792-2519. 4A.C. Scott: University of Arizona, Tucson, AZ, USA, 85719; email: [email protected]; phone: 520-626-4393. 5M.D. Kane, Riverside Technology, 2290 East Prospect Road, Suite 1, Fort Collins, CO, USA 80525-9768; email [email protected]; phone: 970-484-7573. ABSTRACT Through a collaborative effort of several governmental agencies in India and the United States, a flood-forecasting and flood-inundation mapping system is being implemented for the flood-prone Mahanadi River basin on the east coast of India. The National Weather Service River Forecast System (NWSRFS) is being implemented and calibrated using hydrologic records for the Mahanadi basin. Central Water Commission (CWC) engineers in India are receiving training on the implementation, initialization, operation and calibration of the NWSRFS. Data-collection and telemetry are being enhanced through the efforts of Indian agencies. Flood-inundation maps are being developed through the collection of detailed topographic data and application of two-dimensional steady-flow models.
    [Show full text]