Twenty-Eighth Annual Report of The

Total Page:16

File Type:pdf, Size:1020Kb

Twenty-Eighth Annual Report of The National Science Foundation Twenty-Eighth Annual Report for Fiscal Year 1978 For sale by the Superintendent of Documents, U.S. Government Printing Office Washington, D.C. 20402 - Price $3.25 Stock Number 038-000-00407-7 Letter of Transmittal Washington, D.C. DEAR MR. PRESIDENT: I have the honor to transmit herewith the Annual Report for Fiscal Year 1978 of the National Science Foundation for submission to the Congress as required by the National Science Foundation Act of 1950. Respectfully, Richard C. Atkinson Director, National Science foundation The Honorable The President of ihe United Slates Contents Page Director's Statement vii Mathematical and Physical Sciences, and Engineering 1 Physics 2 Chemistry 6 Mathematical and Computer Sciences 10 Engineering 16 Materials Research 21 Astronomical, Atmospheric, Earth, and Ocean Sciences 29 Astronomy 31 Atmospheric Sciences 39 Earth Sciences 45 Ocean Sciences 51 Polar Programs 56 Biological, Behavioral, and Social Sciences 61 Physiology, Cellular, and Molecular Biology 62 Behavioral and Neural Sciences 67 Environmental Biology 69 Social Sciences 73 Science Education '77 Science Education Resources Improvement 77 Science Education Development and Research 81 Scientific Personnel Improvement 86 Science and Society 91 Applied Science and Research Applications 97 Problem Analysis 98 Integrated Basic Research 98 Applied Research 99 Problem-Focused Research Applications 101 Intergovernmental Science and Public Technology 105 Scientific, Technological, and International Affairs 109 Policy Research and Analysis 110 Science Resources Studies 112 NSF Planning and Evaluation 115 Information Science and Technology 116 International Programs , 118 Appendices A. National Science Board, NSF Staff, Advisory Committees and Panels 121 B. Patents and Inventions Resulting from Activities Supported by the National Science Foundation 138 C. Financial Report for Fiscal Year 1978 140 D. National Research Center Contractors 143 DIRECTOR'S STATEMENT vii Science: New Pathways and New Promise t is with continued confidence in the state 1978 an instrument combining a wide bore of science in the Nation that I present this magnet with a Fourier transform spectrometer I Annual Report of the National Science was ready for detailed studies of large, Foundation. complex biomolecules. The year saw half of The report documents progress in the many the 27 scheduled radio antennas at the Very areas of science and engineering supported by Large Array (VLA) in New Mexico already in the National Science Foundation through its operation; their resolving power matches that system of grants and contracts. In 1978 the of the largest optical telescope in existence. progress was noteworthy. New programs Even familiar instruments were put to new linked efforts at universities, major research uses. That versatile scientific tool, the laser, centers, and private industry. Basic research, glues together chemical compounds, parts research in applied science and science applica­ isotopes, and is being used in attempts to tions, and science education continued to move induce nuclear fusion. Last year, in a light- forward. scattering experiment using a laser, chemists The importance of basic research to the were able to measure the growth of cholester­ Nation is clear. Our understanding of funda­ ol microcrystals, a phenomenon of obvious mental scientific principles—and the skill with relevance to such medical problems as gall­ which we apply them—affect both our produc­ stones. Another laser confirmed an important tivity and our economic status in the family of theory of Albert Einstein. A third annealed nations. Not only technical innovations, but semiconductors in a new process of great also many social benefits, derive directly or potential for electronics manufacturing. indirectly from our grasp of what the uni- verse> our planet, and life are all about. The various branches of science liberally The record has been good. Through freely borrowed instruments and techniques from exercised creativity, fiscal strength, and superb each other. The findings they produced management systems, the United States has advanced theories in seemingly unrelated long led the world in agricultural, industrial, scientific fields. Studies last year at the cellular and military innovation. To remain strong in a level, for example, opened up new vistas in changing world environment, we know we both plant pathology and the neurosciences. must continue to make full use of our The view of all sciences as increasingly one scientific research and development potential. science does not suggest an actual regrouping We have the resources to do so. In many of the different disciplines. But it has greatly scientific pursuits, instruments of great power enlarged our capacity for important discovery. and precision now perform hitherto impossible With new instrumentation, improved compu­ research tasks. During the past year advanced ters, and better communication systems, X-ray detectors speeded up the mapping of the scientific research in 1978 broadened our crystal structure of enzymes, and by the end of understanding of natural phenomena. The viii DIRECTOR'S STATEMENT scientific quest for the origins of Ufe, matter, watery places where some sort of food chain has and the universe itself went unabated. Search­ not yet been confirmed is under the Ross Ice ing the galaxies for stars in different stages of Shelf, krill, a shrimplike crustacean, continues to their life cycles, astronomers determined the receive attention as a food resource in Antarctica. youngest found so far to be a mere 2,000- We know that new knowledge will affect year-old child. And they pinpointed the most how we live in the future. And although we likely location of a supermassive black hole, in cannot predict the future with real certainty, the constellation Cygnus. we nevertheless are becoming better able to While astronomers probed the skies, geolo­ chart possible directions as an aid in our gists and oceanographers drilled under the planning. Moreover, by examining the process ocean, through the Ross Shelf in Antarctica, of innovation and the impacts of scientific and and into the Earth's volcanic surface to find technological development, we are gaining in out how our planet evolved. Atmospheric understanding the consequences on our physi­ scientists, concerned with the envelope of cal and social environments. NSF-supported gases that surrounds the Earth in the tropos­ studies in this far-reaching area will serve as a phere, took important steps toward under­ basis for U.S. policy positions at the United standing its chemistry. They also came closer Nations Conference on Science and Technology to being able to predict the gigantic electrical in August 1979. At the same time, in smaller but discharges of the aurora borealis in the polar no less important studies related to domestic atmosphere. policy, the Foundation is supporting inquiries into how to improve services of the U.S. This was clearly pure science—yielding us Government at the Federal, State, and local knowledge we would store for unknown levels. future use. In other instances—such as re­ The Nation requires highly qualified scien­ search on the properties of materials like tists to perform this valuable and needed superconductors, polymers, and glass—basic research. The Foundation, which is also research attracted attention because its poten­ responsible for ensuring a continuing cadre of tial for industrial use was evident. scientists and engineers for the future, is There was also food. People involved in the concerned that the possibility of a tightening , production or nutritional content of food academic job market may be dissuading some watched with interest research in biology and good students from preparing for science the various marine sciences. Cell biologists are careers. In 1978, NSF expanded its science attempting to learn how membranes regulate education programs at a level critical to the ions that flow across them, since this youngsters making decisions about their process appears to establish patterns of growth future study courses—junior high school—and and might even be used to control disease. Last continued efforts to encourage more women, year, a research team discovered that the flow of minorities, and the handicapped to enter a current of calcium across cell membranes helps science careers and to perform scientific control biological development. On a different research. It also continued its effort to increase level, studies of coastal upwelling—the rise of public understanding of what modern scien­ nutrient-rich cold waters from the ocean's tists do, why they are doing it, and what they bottom to the surface—could help predict the are learning. distribution of plants and animals along the The pages that follow in this report recount continental shelf. And while one of the few in detail more new and continuing undertak- DIRECTOR'S STATEMENT ix ings in research and education. The individual Above all, they demonstrate the need for strong programs reflect both the spirit of our times Government support so that science may and the legislation that shapes the National function efficiently in the interest of the Nation Science Foundation as a Government agency. both now and for the times to come. Richard C. Atkinson Director 2 MATHEMATICAL AND PHYSICAL SCIENCES, AND ENGINEERING as well as in several aspects of engi­ ect. The proposals are submitted on capabilities of the investigators to neering.
Recommended publications
  • Highlights Se- Mathematics and Engineering— the Lead Signers of the Letter Exhibit
    June 2003 NEWS Volume 12, No.6 A Publication of The American Physical Society http://www.aps.org/apsnews Nobel Laureates, Industry Leaders Petition April Meeting Prizes & Awards President to Boost Science and Technology Prizes and Awards were presented to seven- Sixteen Nobel Laureates in that “unless remedied, will affect call for “a Presidential initiative for teen recipients at the Physics and sixteen industry lead- our scientific and technological FY 2005, following on from your April meeting in Philadel- ers have written to President leadership, thereby affecting our budget of FY 2004, and focusing phia. George W. Bush to urge increas- economy and national security.” on the long-term research portfo- After the ceremony, ing funding for physical sciences, The letter, which is dated April lios of DOE, NASA, and the recipients and their environmental sciences, math- 14th, also indicates that “the Department of Commerce, in ad- guests gathered at the ematics, computer science and growth in expert personnel dition to NSF and NIH,” that, Franklin Institute for a engineering. abroad, combined with the di- “would turn around a decade-long special reception. The letter, reinforcing a recent minishing numbers of Americans decline that endangers the future Photo Credit: Stacy Edmonds of Edmonds Photography Council of Advisors on Science and entering the physical sciences, of our nation.” The top photo shows four of the five women recipients in front of a space-suit Technology report, highlights se- mathematics and engineering— The lead signers of the letter exhibit. They are (l to r): Geralyn “Sam” Zeller (Tanaka Award); Chung-Pei rious funding problems in the an unhealthy trend—is leading were Burton Richter, director Michele Ma (Maria-Goeppert Mayer Award); Yvonne Choquet-Bruhat physical sciences and related fields corporations to locate more of emeritus of SLAC, and Craig (Heineman Prize); and Helen Edwards (Wilson Prize).
    [Show full text]
  • July 2007 (Volume 16, Number 7) Entire Issue
    July 2007 Volume 16, No. 7 www.aps.org/publications/apsnews APS NEWS Election Preview A PUBLICATION OF THE AMERICAN PHYSICAL SOCIETY • WWW.apS.ORG/PUBLICATIONS/apSNEWS Pages 6-7 Executive Board Resolution Thanks US physics team trains for competition in Iran By Katherine McAlpine Legislators for Support of Science Twenty-four high school stu- The APS Executive Board bill authorizes nearly $60 billion dents comprising the US Phys- has passed a resolution thanking for various programs for FY 2008 ics Olympiad team vied for five House and Senate policy makers through FY 2011. The bill would places on the traveling team at for recently-passed legislation double the NSF budget over five the University of Maryland from that strengthens the science, math years and double the DOE Office May 22nd to June 1st. Those and engineering activities of our of Science budget over 10 years. chosen to travel will compete nation. The House of Representatives this month against teams from “Sustaining and improving the passed five separate authorization all over the world at Isfahan standard of living of American bills, which were then combined University of Technology in Is- citizens, achieving energy security into one bill, H.R. 2272, the 21st fahan, Iran. and environmental sustainability, Century Competitiveness Act of Over 3,100 US Physics Team providing the jobs of tomorrow 2007. The bill would put the NSF hopefuls took the preliminary and defending our nation against budget and the NIST Scientific examination in January, and 200 aggressors all require federal in- and Technical Research and Ser- were given a second exam in vestments in science education vices budget on track to double in March to determine the top 24 and research… The Board con- 10 years.
    [Show full text]
  • The Ring on the Parking Lot
    The ring on the parking lot Thirty years ago, a handful of tenacious physicists put up a $5 million storage ring on a parking lot at SLAC. Shawna Williams reflects on its glorious past and its promising future. Progress in the construction of SPEAR on the parking lot in 1971 is shown in these views from 8 October (left) and 12 December. In 1972, only 20 months after its construction had finally been could be built out of SLAC's normal operating budget. agreed, the SPEAR electron-positron collider went into service on a Richter's team had hoped to build the collider in two years; they parking lot at SLAC, and by spring 1973 had started to deliver its finished four months ahead of schedule. "It certainly was the most first physics data. From its humble beginnings, the machine went on fun I'd ever had building a machine," says John Rees, one of the to revolutionize particle physics, with two of the physicists who used accelerator physicists involved. Moreover, the funding delay had it receiving Novel prizes. It also pioneered the use of synchrotron actually worked to SLAC's advantage in some ways, since they now radiation in a variety of fields in scientific research. In March this had other colliding-beam storage rings to look to. "By that time, year, technicians began upgrading SPEAR, and now only the hous­ we'd learned enough from other people to be able to build the best ing and control room remain of the original machine. Burt Richter, machine," explains Perl.
    [Show full text]
  • Gerson Goldhaber 1924–2010
    NATIONAL ACADEMY OF SCIENCES GERSON GOLDHABER 1 9 2 4 – 2 0 1 0 A Biographical Memoir by G EOR G E H. TRILLING Any opinions expressed in this memoir are those of the author and do not necessarily reflect the views of the National Academy of Sciences. Biographical Memoir COPYRIGHT 2010 NATIONAL ACADEMY OF SCIENCES WASHINGTON, D.C. GERSON GOLDHABER February 20, 1924–July 19, 2010 BY GEOR G E H . TRILLING ERSON GOLDHABER, WHOSE “NOSE FOR DISCOVERY” led to Gremarkable research achievements that included leader- ship roles in the first observations of antiproton annihilation, and the discoveries of charm hadrons and the acceleration of the universe’s expansion, died at his Berkeley home on July 19, 2010, after a long bout with pneumonia. He was 86. His father, originally Chaim Shaia Goldhaber but later known as Charles Goldhaber, was born in 1884 in what is now Ukraine. He left school at age 14, and was entirely self- educated after that. He traveled (mostly on foot) through Europe and in 1900 ended up on a ship bound for East Africa. Getting off in Egypt, he developed an interest in archeology, and eventually became a tour guide at the Egyptian Museum in Cairo. He returned from Egypt to his parents’ home in Ukraine every Passover, and, in 1909, married there. His wife, Ethel Goldhaber, bore three children (Leo, Maurice, and Fredrika, always known as Friedl) in 1910, 1911, and 1912, respectively. After the end of World War I, the family moved to Chemnitz, Germany, where they operated a silk factory business, and where Gerson was born on February 20, 1924.
    [Show full text]
  • Algorithmic System Design Under Consideration of Dynamic Processes
    Algorithmic System Design under Consideration of Dynamic Processes Vom Fachbereich Maschinenbau an der Technischen Universit¨atDarmstadt zur Erlangung des akademischen Grades eines Doktors der Ingenieurwissenschaften (Dr.-Ing.) genehmigte Dissertation vorgelegt von Dipl.-Phys. Lena Charlotte Altherr aus Karlsruhe Berichterstatter: Prof. Dr.-Ing. Peter F. Pelz Mitberichterstatter: Prof. Dr. rer. nat. Ulf Lorenz Tag der Einreichung: 19.04.2016 Tag der m¨undlichen Pr¨ufung: 24.05.2016 Darmstadt 2016 D 17 Vorwort des Herausgebers Kontext Die Produkt- und Systementwicklung hat die Aufgabe technische Systeme so zu gestalten, dass eine gewünschte Systemfunktion erfüllt wird. Mögliche System- funktionen sind z.B. Schwingungen zu dämpfen, Wasser in einem Siedlungsgebiet zu verteilen oder die Kühlung eines Rechenzentrums. Wir Ingenieure reduzieren dabei die Komplexität eines Systems, indem wir dieses gedanklich in überschaubare Baugruppen oder Komponenten zerlegen und diese für sich in Robustheit und Effizienz verbessern. In der Kriegsführung wurde dieses Prinzip bereits 500 v. Chr. als „Teile und herrsche Prinzip“ durch Meister Sun in seinem Buch „Die Kunst der Kriegsführung“ beschrieben. Das Denken in Schnitten ist wesentlich für das Verständnis von Systemen: „Das wichtigste Werkzeug des Ingenieurs ist die Schere“. Das Zusammenwirken der Komponenten führt anschließend zu der gewünschten Systemfunktion. Während die Funktion eines technischen Systems i.d.R. nicht verhan- delbar ist, ist jedoch verhandelbar mit welchem Aufwand diese erfüllt wird und mit welcher Verfügbarkeit sie gewährleistet wird. Aufwand und Verfügbarkeit sind dabei gegensätzlich. Der Aufwand bemisst z.B. die Emission von Kohlendioxid, den Energieverbrauch, den Materialverbrauch, … die „total cost of ownership“. Die Verfügbarkeit bemisst die Ausfallzeiten, Lebensdauer oder Laufleistung. Die Gesell- schaft stellt sich zunehmend die Frage, wie eine Funktion bei minimalem Aufwand und maximaler Verfügbarkeit realisiert werden kann.
    [Show full text]
  • The Mathematical Sciences at Clemson
    BIOMATHEMATICS IS The Geometry of Biological Time m Arthur Winfree, Purdue University The Geometry of Biological Time explains periodic processes in living systems >< and their nonliving analogues in the abstract terms of systems theory. Emphasis is on phase singularities, waves, and mutual synchronization in -n tissues composed of many clocklike units. Also provided are detailed de- )5-._U scriptions of the most commonly used experimental systems, such as electrical oscillations and waves, circadian clocks, the cell division cycle, and the crystal-like regularities observed in the regeneration of severed limbs. z No theoretical background is assumed: required notions are introduced through an extensive collection of illustrations and easily understood o examples. 1979/approx. 576 pp./290 lllus./Cioth $32.00 _ (Biomathematics. Volume 8) ISBN 0-387-09373-7 z Mathematical Population Genetics G) Warren J. Ewens, University of Pennsylvania, Philadelphia Presents the mathematical theory of population genetics with emphasis on those aspects relevant to evolutionary studies. The opening chapter pro- vides an excellent general historical and biological background. Subsequent chapters treat deterministic and stochastic models, discrete and continuous time processes, theory concerning classical and molecular aspects, and one, two, and many loci in a concise and comprehensive manner, with ample references to additional literature. An essential working guide for population geneticists interested in the mathematical foundations of their field and mathematicians involved in genetic evolutionary processes. 1979/ approx. 330 pp./ 4111us/17 Tables/ Cloth $32.00 (Biomathematics. Volume 9) ISBN 0-387-09577-2 Diffusion and Ecological Problems: M~thematical Models Akira Okubo, State University of New York, Stony Brook The first comprehensive book on mathematical models of diffusion in an ecological context.
    [Show full text]
  • 54 OP08 Abstracts
    54 OP08 Abstracts CP1 Dept. of Mathematics Improving Ultimate Convergence of An Aug- [email protected] mented Lagrangian Method Optimization methods that employ the classical Powell- CP1 Hestenes-Rockafellar Augmented Lagrangian are useful A Second-Derivative SQP Method for Noncon- tools for solving Nonlinear Programming problems. Their vex Optimization Problems with Inequality Con- reputation decreased in the last ten years due to the com- straints parative success of Interior-Point Newtonian algorithms, which are asymptotically faster. In the present research We consider a second-derivative 1 sequential quadratic a combination of both approaches is evaluated. The idea programming trust-region method for large-scale nonlin- is to produce a competitive method, being more robust ear non-convex optimization problems with inequality con- and efficient than its ”pure” counterparts for critical prob- straints. Trial steps are composed of two components; a lems. Moreover, an additional hybrid algorithm is defined, Cauchy globalization step and an SQP correction step. A in which the Interior Point method is replaced by the New- single linear artificial constraint is incorporated that en- tonian resolution of a KKT system identified by the Aug- sures non-accent in the SQP correction step, thus ”guiding” mented Lagrangian algorithm. the algorithm through areas of indefiniteness. A salient feature of our approach is feasibility of all subproblems. Ernesto G. Birgin IME-USP Daniel Robinson Department of Computer Science Oxford University [email protected]
    [Show full text]
  • Lab Partners: NSF and DOE
    Volume 19 FRIDAY, APRIL 5, 1996 Number 7 Lab Partners: NSF and DOE by Leila Belkora, Office of Public Affairs experiments have had co-spokesmen from NSF- funded university groups. n a spring day in Chicago, if you long for NSF also funds fixed-target experiments and Othe crack of the bat and the scent of mustard special projects at Fermilab. The agency supports on hotdogs, head to Wrigley Field. In the seventh groups at KTeV and NuTeV, where experi- inning stretch you’ll sing a chorus of “Take Me menters hope to shed light on CP violation and Out to the Ball Game,” along with announcer neutrino-nucleon scattering, respectively. Two Harry Caray; baseball at Wrigley just wouldn’t be experiments related to charm quarks, E831 and the same without it. After the game, should you E835, are supported in part by NSF. This year, travel about 40 miles west to Fermilab, approximately 70 graduate students are receiv- you’d find another essential pair- ing their training in NSF-funded ing: Fermilab depends on research groups both at collider funding from the Depart- and fixed-target experi- ment of Energy, but ments. On a smaller scale, high-energy physics NSF grants to Fermilab here would be incom- augment research in plete without the cosmology and facili- support of the tate international National Science collaborations in Foundation, as well. particle physics with I nside NSF’s largest India and Korea. f contribution at In dollars, Fermilab is to the col- NSF’s contribution lider program. At to the national high- Wonyong Lee DZero, seven NSF-sup- energy physics program Profile ported groups built the is about 10 percent that 2 central drift chamber, the of DOE.
    [Show full text]
  • The Struggle for Quantum Theory 47 5.1Aliensignals
    Fundamental Forces of Nature The Story of Gauge Fields This page intentionally left blank Fundamental Forces of Nature The Story of Gauge Fields Kerson Huang Massachusetts Institute of Technology, USA World Scientific N E W J E R S E Y • L O N D O N • S I N G A P O R E • B E I J I N G • S H A N G H A I • H O N G K O N G • TA I P E I • C H E N N A I Published by World Scientific Publishing Co. Pte. Ltd. 5 Toh Tuck Link, Singapore 596224 USA office: 27 Warren Street, Suite 401-402, Hackensack, NJ 07601 UK office: 57 Shelton Street, Covent Garden, London WC2H 9HE British Library Cataloguing-in-Publication Data A catalogue record for this book is available from the British Library. FUNDAMENTAL FORCES OF NATURE The Story of Gauge Fields Copyright © 2007 by World Scientific Publishing Co. Pte. Ltd. All rights reserved. This book, or parts thereof, may not be reproduced in any form or by any means, electronic or mechanical, including photocopying, recording or any information storage and retrieval system now known or to be invented, without written permission from the Publisher. For photocopying of material in this volume, please pay a copying fee through the Copyright Clearance Center, Inc., 222 Rosewood Drive, Danvers, MA 01923, USA. In this case permission to photocopy is not required from the publisher. ISBN-13 978-981-270-644-7 ISBN-10 981-270-644-5 ISBN-13 978-981-270-645-4 (pbk) ISBN-10 981-270-645-3 (pbk) Printed in Singapore.
    [Show full text]
  • 2011/2012 Black History Trivia Bowl Study Questions # CATEGORY
    2011/2012 Black History Trivia Bowl Study Questions # CATEGORY QUESTION ANSWER Along the Gulf Coast of Louisiana, what type of music is played 1 Arts with the accordion? Zydeco 2 Arts Who wrote "Their Eyes Were Watching God" ? Zora Neale Hurston Which one of composer/pianist Anthony Davis' operas premiered in Philadelphia in 1985 and was performed by the X: The Life and Times of 3 Arts New York City Opera in 1986? Malcolm X Since 1987, who has held the position of director of jazz at 4 Arts Lincoln Center for the Performing Arts in New York City? Wynton Marsalis Of what profession were Langston Hughes, Zora Neale Hurston, and Countee Cullen, major contributors to the Harlem 5 Arts Renaissance? Writers Who wrote Clotel , or The President’s Daughter , the first 6 Arts published novel by a Black American in 1833? William Wells Brown Who published The Escape , the first play written by a Black 7 Arts American? William Wells Brown 8 Arts What is the given name of blues great W.C. Handy? William Christopher Handy What aspiring fiction writer, journalist, and Hopkinsville native, served as editor of three African American weeklies: the Indianapolis Recorder , the Freeman , and the Indianapolis William Alexander 9 Arts Ledger ? Chambers 10 Arts Nat Love wrote what kind of stories? Westerns Cartoonist Morrie Turner created what world famous syndicated 11 Arts comic strip? Wee Pals Who was born in Florence, Alabama in 1873 and is called 12 Arts “Father of the Blues”? WC Handy Georgia Douglas Johnson was a poet during the Harlem Renaissance era.
    [Show full text]
  • Table of Contents
    Table of contents Table of contents..............................................................................................................................1 A Word from the Director................................................................................................................3 Presenting the CRM.........................................................................................................................5 Personnel..........................................................................................................................................6 Scientific Personnel..........................................................................................................................7 Members......................................................................................................................................... 7 Postdoctoral Fellows........................................................................................................................ 8 Visitors ..........................................................................................................................................10 Management................................................................................................................................... 12 Bureau...........................................................................................................................................12 Advisory Committee.......................................................................................................................12
    [Show full text]
  • Contributions to Atomic, Molecular, and Optical Physics, Astrophysics
    October 28, 2009 13:56 WSPC - Proceedings Trim Size: 9in x 6in chapter˙r3 3 THE TRANSITION FROM MATHEMATICIAN TO ASTROPHYSICIST M. R. FLANNERY School of Physics, Georgia Institute of Technology, Atlanta, GA 30332-0430, USA E-mail: r.fl[email protected] www.physics.gatech.edu/people/faculty/rflannery.html Various landmarks in the evolution of Alexander Dalgarno from a gifted math- ematician to becoming the acknowledged Father of Molecular Astrophysics are noted. His researches in basic atomic and molecular physics, aeronomy (the study of the upper atmosphere) and astrophysics are highlighted. Keywords: atomic and molecular physics, aeronomy, astrophysics, Dalgarno- Lewis method, associative detachment, rotational excitation. 1. Some Distinct Landmarks As this “Dalgarno Celebratory Symposium” in honor of Alex Dalgarno’s 80th birthday continues, I would like to welcome you all to this morning’s session “Calculation of Atomic and Molecular Properties ”. This title is par- ticularly well suited to Alex’s philosophy because, in a recent reminiscence1 of his career, he mentions that, “ ... It is often said, by theorists, that physics is embodied in its equations, but I think it is to be found in the solutions to the equations”. And so, emboldened/accelerated by this realization, Alex embarked on making landmark advances in all of the following subjects: (1) Atomic and Molecular Structure (perturbation variational and expan- sion methods) (2) Interactions (polarization, dispersion, model, pseudo and long-range potentials) and (3) Collisions (near-resonant electronic transfer, excitation and charge transfer radiative transitions, rotational and vibrational excitation in molecules, spin-exchange). PROCEEDINGS OF THE DALGARNO CELEBRATORY SYMPOSIUM Contributions to Atomic, Molecular, and Optical Physics, Astrophysics, and Atmospheric Physics © Imperial College Press http://www.worldscibooks.com/physics/p675.html October 28, 2009 13:56 WSPC - Proceedings Trim Size: 9in x 6in chapter˙r3 4 to be covered today by this title.
    [Show full text]