Detectors for X-Ray Astronomy 48 Proportional Counters

Total Page:16

File Type:pdf, Size:1020Kb

Detectors for X-Ray Astronomy 48 Proportional Counters Detectors for X-ray astronomy 48 Proportional Counters Workhorses of X-ray astronomy for >10 years 1962-1970: Rockets and Balloons 1962 Sco X-1 and diffuse X-ray sky background discovered by Giacconi sounding rocket Limited by atmosphere (balloons) and duration (rockets) • 1970 → Satellite era Uhuru: First dedicated X-ray Satellite e.g. Ariel V, EXOSAT e.g. Ginga e.g. XTE e.g. ROSAT 49 Adapted from Hill, Urbino 08 Proportional counters Simplest proportional counter is made of a gas chamber with an anode to collect charges "Proportional counter avalanches" by Dougsim - Own work. Licensed under CC BY-SA 3.0 via Wikimedia Commons Gas Detectors (Ar, Xe) Incident X-ray interacts with a gas atom and a photoelectron is ejected Photoelectron travels through the gas making an ionisation trail Trail drifts in low electric field to high E-field In high E-field multiplication occurs (Townsend avalanche) Charge detected on an anode 50 Adapted from Hill, Urbino 08 One can add 2nd chamber to discriminate between X-ray photons and cosmic rays 51 Gain of 105 or more Duration about 1 ns → short pulse! 52 Quenching molecules The positive atom moves slowly to the cathode wall of the chamber. They are neutralized by gaining an electron This causes an energy release which can further ionize the gas, creating a charge pulse! To eliminate (or quench) this signal, one uses a 10-15% proportion of organic gas (e.g., methane), which has low electron affinity Thus, the positive ions will take electrons from the quenching gas molecules, and only the ionized molecules will reach the cathode The recombination of the ionized molecules does liberate some energy, but insufficient to ionize the gas, but it breaks the molecules Such proportional counters have, thus, a limited time life, unless they are constantly replenished by quenching molecules (gas flow counters) 53 Escape peak If the incident X-ray photon has higher energy, E0, than the K-shell fluorescence energy of gas, Ef, an escape peak can appear at E’=E0-Ef Fluorescence X-ray photon can escape the counter, leaving a smaller energy to be measured Ar-filled PC NB: Ef(Ne)=0.85 keV No No escape peak as escape the fluorescence peak, E (Ar)=3 keV energy is almost E <E f 0 f completely absorbed in the counter 54 Typical Characteristics 0.4 Townsend Avalanche Energy Resolution is limited by: The statistical generation of the charge by the photoelectron By the multiplication process Quantum Efficiency: Low E defined by window type and thickness High E defined by gas type and pressure 55 Adapted from Hill, Urbino 08 Typical Characteristics Position sensitivity Non-imaging case: Sensitivity Area Limited by source confusion to 1/1000 Crab Imaging case: track length, diffusion, detector depth, readout elements Timing Resolution Limited by the anode-cathode spacing and the ion mobility: ~ µsec Timing variations: Sensitivity Area High Gain: 103-105 56 Adapted from Hill, Urbino 08 Background origin Charged particles Cosmic rays, sub-relativistic electrons, particles from interactions with detector/telescope Photons Forward Compton scattering of gamma rays in the gas can deposit 0.1-10 keV X-rays and gamma-rays created by cosmic rays Fluorescent X-rays created in structure Background is generally flat 57 Background rejection techniques Energy Selection Reject events with E outside of band pass Rise-time discrimination Rise time of an X-ray event can be characterised. The rise-time of a charged particle interactions have a different characteristic. • Anti-coincidence Use a sub-divided gas cell with a shield of plastic scintillator Co-incident pulses indicate extended source of ionisation 58 Adapted from Hill, Urbino 08 Capella ROSAT PSPC ( ~ 1-2) 59 Micro-channel plates 60 Gain is very high 106-108 CGCD=crossed grid charge detector Chandra HRC Micro-channel plate 61 Fine position determination 62 Low63 QE and no energy response X-ray CCDs 1977 – ASCA XMM Swift XRT CCD Chandra Swift Suzaku 64 Adapted from Hill, Urbino 08 CCDs Charge Coupled Devices invented in the 1970s Sensitive to light from optical to X-rays In practice, best use in optical and X-rays CCDs make use of silicon chips The CCD consists of (1) a p-type doped silicon substrate, (2) the charge storage (depletion) layer, which is covered by (3) a SiO2 insulating layer; upon this is (4) an array of closely spaced electrodes, which can be set to pre-defined voltage value 65 Si array Si array n-type Also Sb,P Si array p-type Also Al,Ga 66 Reminder of solid state physics Electrons in a lattice do not have discrete energies. They form energy bands: Valence band Conduction band For semi-conductors, the Fermi level is just in the middle of the conduction and valence bands. At finite temperature, some electrons of p h n the valence band can jump into the conduction o o t t o o n h band (current noise) p EG(Si)=1.1 eV (IR), EG(Ge)=0.72 eV E (C)=5.5 eV (insulator) G Hole Electron 67 (From http://hyperphysics.phy-astr.gsu.edu/hbase/hframe.html) The pn junction 68 Reverse-biased pn junction Forward-biased pn junction 69 4.1 eV 2.5 eV 1.8 eV 1.2 eV Transverse cut of CCD with buried channel Blecha (cours instrumentation) 70 The electrode has positive potential to attract the generated photoelectrons in a potential well The above MOS capacitor is 1 pixel 71 Front-illuminated CCDs Back-illuminated CCDs s s n n o o t t o o h h p p g g n n i i m m o o c c n n I I Anti-reflective coating n p 15m n 625m p They have a low Quantum The QE can approach 100%. These Efficiency due to the reflection thinned CCDs become transparent to and absorption of light in the near infra-red light and the red response surface electrodes. Very poor blue is poor. Response can be boosted by response. The electrode structure the application of an anti-reflective prevents the use of an anti- coating on the thinned rear-side. These reflective coating that would coatings do not work so well for front- otherwise boost performance. illuminated CCDs due to the surface bumps created by the surface electrodes 72 Courtesy of S. Tulloch Quantum Efficiency Comparison The graph below compares the quantum of efficiency of a thick frontside illuminated CCD and a thin backside illuminated CCD. 73 Courtesy of S. Tulloch Back-illuminated CCDs BI CCD FI CCD Thinner dead layers higher low-E QE Thinner active region lower high-E QE Increased noise, charge transfer inefficiency higher FWHM From C. Grant, X-ray Astronomy School 2007 Structure of a CCD The diagram shows a small section (a few pixels) of the image area of a CCD. This pattern is repeated. Channel stops to define the columns of the image Plan View Transparent horizontal electrodes to define the pixels One pixel vertically. Also used to transfer the charge during readout Electrode Insulating oxide n-type silicon Cross section p-type silicon Every third electrode is connected together. Bus wires running down the edge of the chip make the connection. The channel stops are formed from high concentrations of Boron in the silicon. 75 Courtesy of S. Tulloch CCD Analogy VERTICAL RAIN (PHOTONS) CONVEYOR BELTS (CCD COLUMNS) BUCKETS (PIXELS) MEASURING CYLINDER HORIZONTAL (OUTPUT CONVEYOR BELT AMPLIFIER) (SERIAL REGISTER) 76 Courtesy of S. Tulloch Exposure finished, buckets now contain samples of rain. 77 Courtesy of S. Tulloch Conveyor belt starts turning and transfers buckets. Rain collected on the vertical conveyor is tipped into buckets on the horizontal conveyor. 78 Courtesy of S. Tulloch Vertical conveyor stops. Horizontal conveyor starts up and tips each bucket in turn into the measuring cylinder . 79 Courtesy of S. Tulloch After each bucket has been measured, the measuring cylinder is emptied , ready for the next bucket load. ` 80 Courtesy of S. Tulloch 81 Courtesy of S. Tulloch 82 Courtesy of S. Tulloch 83 Courtesy of S. Tulloch 84 Courtesy of S. Tulloch 85 Courtesy of S. Tulloch 86 Courtesy of S. Tulloch A new set of empty buckets is set up on the horizontal conveyor and the process is repeated. 87 Courtesy of S. Tulloch 88 Courtesy of S. Tulloch 89 Courtesy of S. Tulloch 90 Courtesy of S. Tulloch 91 Courtesy of S. Tulloch 92 Courtesy of S. Tulloch 93 Courtesy of S. Tulloch 94 Courtesy of S. Tulloch 95 Courtesy of S. Tulloch 96 Courtesy of S. Tulloch 97 Courtesy of S. Tulloch 98 Courtesy of S. Tulloch 99 Courtesy of S. Tulloch 100 Courtesy of S. Tulloch 101 Courtesy of S. Tulloch 102 Courtesy of S. Tulloch 103 Courtesy of S. Tulloch 104 Courtesy of S. Tulloch Eventually all the buckets have been measured, the CCD has been read out. 105 Courtesy of S. Tulloch 106 corresponds to one pixel the most positive potential in the device where they create ‘charge packets’. Each packet Photons entering the CCD create electron-hole pairs.electronsThe are then attracted towards Charge Collectionin aCCD Charge packet incoming photons pixel boundary n-type silicon p-type silicon SiO2 Insulating layer Electrode Structure pixel boundary Courtesyof S. Tulloch Charge Transfer in a CCD 1. In the following few slides, the implementation of the ‘conveyor belts’ as actual electronic structures is explained. The charge is moved along these conveyor belts by modulating the voltages on the electrodes positioned on the surface of the CCD. In the following illustrations, electrodes colour coded red are held at a positive potential, those coloured black are held at a negative potential.
Recommended publications
  • Arxiv:2009.03244V1 [Astro-Ph.HE] 7 Sep 2020
    Advances in Understanding High-Mass X-ray Binaries with INTEGRAL and Future Directions Peter Kretschmara, Felix Furst¨ b, Lara Sidolic, Enrico Bozzod, Julia Alfonso-Garzon´ e, Arash Bodagheef, Sylvain Chatyg,h, Masha Chernyakovai,j, Carlo Ferrignod, Antonios Manousakisk,l, Ignacio Negueruelam, Konstantin Postnovn,o, Adamantia Paizisc, Pablo Reigp,q, Jose´ Joaqu´ın Rodes-Rocar,s, Sergey Tsygankovt,u, Antony J. Birdv, Matthias Bissinger ne´ Kuhnel¨ w, Pere Blayx, Isabel Caballeroy, Malcolm J. Coev, Albert Domingoe, Victor Doroshenkoz,u, Lorenzo Duccid,z, Maurizio Falangaaa, Sergei A. Grebenevu, Victoria Grinbergz, Paul Hemphillab, Ingo Kreykenbohmac,w, Sonja Kreykenbohm nee´ Fritzad,ac, Jian Liae, Alexander A. Lutovinovu, Silvia Mart´ınez-Nu´nez˜ af, J. Miguel Mas-Hessee, Nicola Masettiag,ah, Vanessa A. McBrideai,aj,ak, Andrii Neronovh,d, Katja Pottschmidtal,am,Jer´ omeˆ Rodriguezg, Patrizia Romanoan, Richard E. Rothschildao, Andrea Santangeloz, Vito Sgueraag,Rudiger¨ Staubertz, John A. Tomsickap, Jose´ Miguel Torrejon´ r,s, Diego F. Torresaq,ar, Roland Walterd,Jorn¨ Wilmsac,w, Colleen A. Wilson-Hodgeas, Shu Zhangat Abstract High mass X-ray binaries are among the brightest X-ray sources in the Milky Way, as well as in nearby Galaxies. Thanks to their highly variable emissions and complex phenomenology, they have attracted the interest of the high energy astrophysical community since the dawn of X-ray Astronomy. In more recent years, they have challenged our comprehension of physical processes in many more energy bands, ranging from the infrared to very high energies. In this review, we provide a broad but concise summary of the physical processes dominating the emission from high mass X-ray binaries across virtually the whole electromagnetic spectrum.
    [Show full text]
  • The Polarized Spectral Energy Distribution of NGC 4151
    MNRAS 496, 215–222 (2020) doi:10.1093/mnras/staa1533 Advance Access publication 2020 June 3 The polarized spectral energy distribution of NGC 4151 F. Marin ,1‹ J. Le Cam,2 E. Lopez-Rodriguez,3 M. Kolehmainen,1 B. L. Babler4 and M. R. Meade4 1Universite´ de Strasbourg, CNRS, Observatoire Astronomique de Strasbourg, UMR 7550, F-67000 Strasbourg, France 2Institut d’optique Graduate School, 91120 Palaiseau, France 3SOFIA Science Center, NASA Ames Research Center, Moffett Field, CA 94035, USA 4Department of Astronomy, University of Wisconsin-Madison, Madison, WI 53706, USA Downloaded from https://academic.oup.com/mnras/article/496/1/215/5850780 by guest on 30 September 2021 Accepted 2020 May 25. Received 2020 May 15; in original form 2020 March 17 ABSTRACT NGC 4151 is among the most well-studied Seyfert galaxies that does not suffer from strong obscuration along the observer’s line of sight. This allows to probe the central active galactic nucleus (AGN) engine with photometry, spectroscopy, reverberation mapping, or interferometry. Yet, the broad-band polarization from NGC 4151 has been poorly examined in the past despite the fact that polarimetry gives us a much cleaner view of the AGN physics than photometry or spectroscopy alone. In this paper, we compile the 0.15–89.0 μm total and polarized fluxes of NGC 4151 from archival and new data in order to examine the physical processes at work in the heart of this AGN. We demonstrate that, from the optical to the near-infrared (IR) band, the polarized spectrum of NGC 4151 shows a much bluer power-law spectral index than that of the total flux, corroborating the presence of an optically thick, locally heated accretion flow, at least in its near-IR emitting radii.
    [Show full text]
  • Cygnus X-3 and the Case for Simultaneous Multifrequency
    by France Anne-Dominic Cordova lthough the visible radiation of Cygnus A X-3 is absorbed in a dusty spiral arm of our gal- axy, its radiation in other spectral regions is observed to be extraordinary. In a recent effort to better understand the causes of that radiation, a group of astrophysicists, including the author, carried 39 Cygnus X-3 out an unprecedented experiment. For two days in October 1985 they directed toward the source a variety of instru- ments, located in the United States, Europe, and space, hoping to observe, for the first time simultaneously, its emissions 9 18 Gamma Rays at frequencies ranging from 10 to 10 Radiation hertz. The battery of detectors included a very-long-baseline interferometer consist- ing of six radio telescopes scattered across the United States and Europe; the Na- tional Radio Astronomy Observatory’s Very Large Array in New Mexico; Caltech’s millimeter-wavelength inter- ferometer at the Owens Valley Radio Ob- servatory in California; NASA’s 3-meter infrared telescope on Mauna Kea in Ha- waii; and the x-ray monitor aboard the European Space Agency’s EXOSAT, a sat- ellite in a highly elliptical, nearly polar orbit, whose apogee is halfway between the earth and the moon. In addition, gamma- Wavelength (m) ray detectors on Mount Hopkins in Ari- zona, on the rim of Haleakala Crater in Fig. 1. The energy flux at the earth due to electromagnetic radiation from Cygnus X-3 as a Hawaii, and near Leeds, England, covered function of the frequency and, equivalently, energy and wavelength of the radiation.
    [Show full text]
  • AGENDA Northbrae Community Church January 13, 2010 7:00 P.M
    Please Note: BERKELEY PUBLIC LIBRARY Special Location BOARD OF LIBRARY TRUSTEES REGULAR Meeting AGENDA Northbrae Community Church January 13, 2010 7:00 p.m. 941 The Alameda (cross street Los Angeles) The Board of Library Trustees may act on any item on this agenda. I. CALL TO ORDER II. WORKSHOP SESSION ON MEASURE FF NORTH BRANCH LIBRARY UPDATE A. Presentation by Architectural Resource Group / Tom Eliot Fisch Architects on the Schematic Design Phase; and Staff Report on the Process, Community Input and Next Steps. B. Public Comments on this item only (Proposed 15-minute time limit, with speakers allowed 3 minutes each) C. Board Discussion III. PRELIMINARY MATTERS A. Public Comments (Proposed 30-minute time limit, with speakers allowed 3 minutes each) B. Report from library employees and unions, discussion of staff issues Comments / responses to reports and issues addressed in packet. C. Report from Board of Library Trustees D. Approval of Agenda IV. PRESENTATION A. Report on Branch Renovation Program Presented by Steve Dewan, Kitchell CEM V. CONSENT CALENDAR The Board will consider removal and addition of items to the Consent Calendar prior to voting on the Consent Calendar. All items remaining on the Consent Calendar will be approved in one motion. A. Approve minutes of December 9, 2009 Regular Meeting Recommendation: Approve the minutes of the December 9, 2009 regular meeting of the Board of Library Trustees. B. Closure of the Tool Lending Library for Annual Tool Maintenance from February 28 Through March 13, 2010 Recommendation: Adopt the attached resolution authorizing the closure of the Tool Lending Library from February 28 through March 13, 2010 and reopening on March 16, 2010.
    [Show full text]
  • ROSAT All-Sky Survey
    ROSAT All-Sky Survey S. R. Kulkarni July 22, 2020{July 27, 2020 The Russian-German mission, Spektr-R¨ongtenGamma (SRG) is on the verge of revolution- izing X-ray astronomy. One of the instruments, eROSITA, will be undertaking an imaging survey of the X-ray sky. Each six-month the entire sky will be covered to a sensitivity which is ten times better than the previous such survey (ROSAT). After eight semesters SRG will undertake pointed observations. I provide a condensed history so that a young student can appreciate the importance of SRG/eROSITA. The first all sky survey was undertaken by the Uhuru (aka SAS-1; 1970) satellite. This was followed up by HEAO-1 (aka HEAO-A; 1977) surveys. These surveys detected 339 and 843 sources in the 2{10 keV band. For those interested in arcana, 1 Uhuru count/s is 1:7 × 10−11 erg cm−2 s−1 in the 2{6 keV band. The next major mission was HEAO-2 (aka Einstein; launched in 1978). This was a game changer since, unlike the past missions which used essentially collimators or shadow cam- eras, the centerpiece of Einstein was a true imaging telescope. Furthermore the mission carried an amazing complement of imagers and spectrometers in the focal plane. The mission coincided with my graduate school (1978-1983). R¨ontgensatellit (ROSAT) was a German mission to undertake an X-ray imaging survey of the entire sky { the first such survey. Launched in 1990 it lasted for eight years. It carried two Positional Sensitive Proportional Counter (PSPC; 0.1{2.4 keV), a High Resolution Imager (HRI) and the Wide Field Camera (WFC; 60{300 A).˚ The PSPC, with a field-of- view of 2 degrees, was the primary work horse for the X-ray sky survey and was > 100 more sensitive than the pioneering Uhuru and HEAO-A1 surveys.
    [Show full text]
  • NASA Selects Proposals to Study Neutron Stars, Black Holes and More 31 July 2015
    NASA selects proposals to study neutron stars, black holes and more 31 July 2015 have returned transformational science, and these selections promise to continue that tradition." The proposals were selected based on potential science value and feasibility of development plans. One of each mission type will be selected by 2017, after concept studies and detailed evaluations, to proceed with construction and launch, the earliest of which could be launched by 2020. Small Explorer mission costs are capped at $125 million each, excluding the launch vehicle, and Mission of Opportunity costs are capped at $65 million each. Each Astrophysics Small Explorer mission will receive $1 million to conduct an 11-month mission concept study. The selected proposals are: The Nuclear Spectroscopic Telescope Array (NuSTAR), SPHEREx: An All-Sky Near-Infrared Spectral launched in 2012, is an Explorer mission that allows astronomers to study the universe in high energy X-rays. Survey Credits: NASA/JPL-Caltech James Bock, principal investigator at the California Institute of Technology in Pasadena, California SA has selected five proposals submitted to its SPHEREx will perform an all-sky near infrared Explorers Program to conduct focused scientific spectral survey to probe the origin of our Universe; investigations and develop instruments that fill the explore the origin and evolution of galaxies, and scientific gaps between the agency's larger explore whether planets around other stars could missions. harbor life. The selected proposals, three Astrophysics Small Imaging X-ray Polarimetry Explorer (IXPE) Explorer missions and two Explorer Missions of Opportunity, will study polarized X-ray emissions Martin Weisskopf, principal investigator at NASA's from neutron star-black hole binary systems, the Marshall Space Flight Center in Huntsville, exponential expansion of space in the early Alabama universe, galaxies in the early universe, and star formation in our Milky Way galaxy.
    [Show full text]
  • NASA Selects Proposals to Study Neutron Stars, Black Holes and More
    NASA Selects Proposals to Study Neutron Stars, Black Holes and More NEWS PROVIDED BY NASA Jul 30, 2015, 05:15 ET WASHINGTON, July 30, 2015 /PRNewswire-USNewswire/ -- NASA has selected ve proposals submitted to its Explorers Program to conduct focused scientic investigations and develop instruments that ll the scientic gaps between the agency's larger missions. The selected proposals, three Astrophysics Small Explorer missions and two Explorer Missions of Opportunity, will study polarized X-ray emissions from neutron star-black hole binary systems, the exponential expansion of space in the early universe, galaxies in the early universe, and star formation in our Milky Way galaxy. "The Explorers Program brings out some of the most creative ideas for missions to help unravel the mysteries of the Universe," said John Grunsfeld, NASA's Associate Administrator for Science at NASA Headquarters, in Washington. "The program has resulted in great missions that have returned transformational science, and these selections promise to continue that tradition." The proposals were selected based on potential science value and feasibility of development plans. One of each mission type will be selected by 2017, after concept studies and detailed evaluations, to proceed with construction and launch, the earliest of which could be launched by 2020. Small Explorer mission costs are capped at $125 million each, excluding the launch vehicle, and Mission of Opportunity costs are capped at $65 million each. Each Astrophysics Small Explorer mission will receive $1 million to conduct an 11-month mission concept study. The selected proposals are: SPHEREx: An All-Sky Near-Infrared Spectral Survey James Bock, principal investigator at the California Institute of Technology in Pasadena, California SPHEREx will perform an all-sky near infrared spectral survey to probe the origin of our Universe; explore the origin and evolution of galaxies, and explore whether planets around other stars could harbor life.
    [Show full text]
  • RICCARDO GIACCONI Associated Universities, Inc., Suite 730, 1400 16Th St., NW, Washington, DC 20036, USA, and Johns Hopkins University, 3400 N
    THE DAWN OF X-RAY ASTRONOMY Nobel Lecture, December 8, 2002 by RICCARDO GIACCONI Associated Universities, Inc., Suite 730, 1400 16th St., NW, Washington, DC 20036, USA, and Johns Hopkins University, 3400 N. Charles Street, Baltimore, USA. 1.0 INTRODUCTION The development of rockets and satellites capable of carrying instruments outside the absorbing layers of the Earth’s atmosphere has made possible the observation of celestial objects in the x-ray range of wavelength. X-rays of energy greater than several hundreds of electron volts can pene- trate the interstellar gas over distances comparable to the size of our own galaxy, with greater or lesser absorption depending on the direction of the line of sight. At energies of a few kilovolts, x-rays can penetrate the entire col- umn of galactic gas and in fact can reach us from distances comparable to the radius of the universe. The possibility of studying celestial objects in x-rays has had a profound sig- nificance for all astronomy. Over the x-ray to gamma-ray range of energies, x- rays are, by number of photons, the most abundant flux of radiation that can reveal to us the existence of high energy events in the cosmos. By high ener- gy events I mean events in which the total energy expended is extremely high (supernova explosions, emissions by active galactic nuclei, etc.) or in which the energy acquired per nucleon or the temperature of the matter involved is extremely high (infall onto collapsed objects, high temperature plasmas, in- teraction of relativistic electrons with magnetic or photon fields).
    [Show full text]
  • Observatories in Space
    OBSERVATORIES IN SPACE Catherine Turon GEPI-UMR CNRS 8111, Observatoire de Paris, Section de Meudon, 92195 Meudon, France Keywords: Astronomy, astrophysics, space, observations, stars, galaxies, interstellar medium, cosmic background. Contents 1. Introduction 2. The impact of the Earth atmosphere on astronomical observations 3. High-energy space observatories 4. Optical-Ultraviolet space observatories 5. Infrared, sub-millimeter and millimeter-space observatories 6. Gravitational waves space observatories 7. Conclusion Summary Space observatories are having major impacts on our knowledge of the Universe, from the Solar neighborhood to the cosmological background, opening many new windows out of reach to ground-based observatories. Celestial objects emit all over the electromagnetic spectrum, and the Earth’s atmosphere blocks a large part of them. Moreover, space offers a very stable environment from where the whole sky can be observed with no (or very little) perturbations, providing new observing possibilities. This chapter presents a few striking examples of astrophysics space observatories and of major results spanning from the Solar neighborhood and our Galaxy to external galaxies, quasars and the cosmological background. 1. Introduction Observing the sky, charting the places, motions and luminosities of celestial objects, elaborating complex models to interpret their apparent positions and their variations, and figure out the position of the Earth – later the Solar System or the Galaxy – in the Universe is a long-standing activity of mankind. It has been made for centuries from the ground and in the optical wavelengths, first measuring the positions, motions and brightness of stars, then analyzing their color and spectra to understand their physical nature, then analyzing the light received from other objects: gas, nebulae, quasars, etc.
    [Show full text]
  • Experimental Lobster Eye Nano-Satellite X-Ray Telescope
    Czech Technical University in Prague Faculty of Electrical Engineering Department of Control Engineering EXPERIMENTAL LOBSTER EYE NANO-SATELLITE X-RAY TELESCOPE Doctoral Thesis Vladim´ır Tich´y Prague, November 2010 PhD. Programme: Electrical Engineering and Information Technology Branch of study: Control Engineering and Robotics Supervisor: Ing. Martin Hromˇc´ık, PhD. Supervisor-Specialist: Ing. Jan Jak˚ubek, PhD. Acknowledgments This thesis could not come into existence without strong support of several institutions and many people. We kindly thank all of them. First of all, I would like to thank my supervisor Ing. Martin Hromˇc´ık, PhD. for leading the work and for support. Also, I would like to thank the headmaster of Depertment of control engineering Faculty of electrical engineering of the Czech technical university, Prof. Ing. Michal Sebek,ˇ DrSc. for supply this work. I would like to thank my supervisor-specialist Ing. Jan Jak˚ubek, PhD. for help and consultations the Medipix and Timepix Detectors. Thanks him, the Institute of Experimental and Applied Physics of Czech Technical University in Prague [72] and its headmaster, Ing. Stanislav Posp´ıˇsil, DrSc. for providing the Medipix2 and Timepix detector and related equipment. Thanks to Rigaku Innovative Technologies Europe, s.r.o. [74] for provid- ing the lobster eye optics and related equipment for the laboratory tests and for manufacturing the telescope module prototypes. Thanks to the Division of Precision Mechanics and Optics of the Depart- ment of Instrumentation and Control Engineering of Faculty of Mechanical Engineering of Czech Technical University in Prague [75] for providing the laboratory and equipment for the optical tests.
    [Show full text]
  • X-Ray Astronomy
    X-Ray · Astron Introduction problem of which is to understand the source of the energy released in X-ray sources, supernovae, The discovery in the last two decades of the radio galaxies, quasars, etc., and the processes by large amounts of energy released in supernovae, which the high energy particles, responsible for of radio galaxies and quasars, of the microwave the radiation from these objects, are produced. background radiation and more recently of X-ray The resolution of these problems constitutes one sources and pulsars, has demonstrated that high of the most important and fascinating tasks in al1 energy processes playa major, possibly decisive, of physics. role in our universe. 'In these processes, the energy released per gram Since production of high energy photons is ex­ is much greater than for normal stellar matter. For pected wherever high energy particles exist, it was instance, gravitational forces, weak in our norma] anticipated that observations in the X-ray and experience, become all-important in the late phases gamma-ray range of the electromagnetic spectrum of stellar evolution. Matter is crushed to incon­ would become important as soon as the means to ceivably high densities and the stars can release carry them out became available. enormous amounts of energy, of the order of 10 During the last two decades, space observatories to 40% of their total mass energy as compared to have allowed us for the first time in man's history less than 1 % liberated by nuclear burning during to observe the sky unimpeded by the atmospheric their entire previous lives.
    [Show full text]
  • Astrophysical Spectroscopy
    Astrophysical Spectroscopy Eugene Churazov Outline Astrophysically abundant elements Two examples of “Hydrogen” spectroscopy X-ray Astronomy Galaxy clusters and hot plasma LCDM Universe (Today) WMAP PLANCK PLANCK Abundance of elements in the Earth (crust) https://en.wikipedia.org/wiki/Abundance_of_elements_in_Earth%27s_crust Abundance of elements in the Universe (today) https://en.wikipedia.org/wiki/Nucleosynthesis Origin of elements https://en.wikipedia.org/wiki/Nucleosynthesis#/media/File:Nucleosynthesis_periodic_table.svg Big Bang Nucleosynthesis Type Ia SN2014J Stellar evolution Type II SN1987A https://scioly.org/wiki/index.php/Astronomy/Stellar_Evolution GW170817 Typical abundances today (Sun photosphere) Element Abundance (by number) H 1.00e+0 1.00e+0 He 9.77e-2 9.77e-2 C 3.63e-4 3.98e-4 N 1.12e-4 1.00e-4 O 8.51e-4 8.51e-4 Ne 1.23e-4 1.29e-4 Na 2.14e-6 2.14e-6 Mg 3.80e-5 3.80e-5 Al 2.95e-6 2.95e-6 Si 3.55e-5 3.55e-5 S 1.62e-5 1.62e-5 https://en.wikipedia.org/wiki/Nuclear_binding_energy Cl 1.88e-7 1.88e-7 Ar 3.63e-6 4.47e-6 Ca 2.29e-6 2.29e-6 Cr 4.84e-7 4.84e-7 Fe 4.68e-5 3.24e-5 Ni 1.78e-6 1.78e-6 Co 8.60e-8 8.60e-8Our Universe is dominated by hydrogen +10% of He + small amount of other el. Hydrogen 21 cm line Hyperfine splitting of the ground state A ∼ 10−15 s−1 Lifetime ∼ 10 Myr kTs ≫ hν I = C × nH https://www.mpifr-bonn.mpg.de/pressreleases/2016/13 Other elements? 14N7 and 57Fe26; For instance, [H]-like N, or [Li]-like Fe? Hydrogen Ly� (1215 Å) Forest http://www.astro.ucla.edu/~wright/Lyman-alpha-forest.html Gunn-Peterson Trough
    [Show full text]