Toremifene, a Selective Estrogen Receptor Modulator, Significantly
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Prospective Study on Gynaecological Effects of Two Antioestrogens Tamoxifen and Toremifene in Postmenopausal Women
British Journal of Cancer (2001) 84(7), 897–902 © 2001 Cancer Research Campaign doi: 10.1054/ bjoc.2001.1703, available online at http://www.idealibrary.com on http://www.bjcancer.com Prospective study on gynaecological effects of two antioestrogens tamoxifen and toremifene in postmenopausal women MB Marttunen1, B Cacciatore1, P Hietanen2, S Pyrhönen2, A Tiitinen1, T Wahlström3 and O Ylikorkala1 1Departments of Obstetrics and Gynecology, Helsinki University Central Hospital, P.O. Box 140, FIN-00029 HYKS, Finland; 2Department of Oncology, Helsinki University Central Hospital, P.O. Box 180, FIN-00029 HYKS, Finland; 3Department of Pathology, Helsinki University Central Hospital, P.O. Box 140, FIN-00029 HYKS, Finland Summary To assess and compare the gynaecological consequences of the use of 2 antioestrogens we examined 167 postmenopausal breast cancer patients before and during the use of either tamoxifen (20 mg/day, n = 84) or toremifene (40 mg/day, n = 83) as an adjuvant treatment of stage II–III breast cancer. Detailed interview concerning menopausal symptoms, pelvic examination including transvaginal sonography (TVS) and collection of endometrial sample were performed at baseline and at 6, 12, 24 and 36 months of treatment. In a subgroup of 30 women (15 using tamoxifen and 15 toremifene) pulsatility index (PI) in an uterine artery was measured before and at 6 and 12 months of treatment. The mean (±SD) follow-up time was 2.3 ± 0.8 years. 35% of the patients complained of vasomotor symptoms before the start of the trial. This rate increased to 60.0% during the first year of the trial, being similar among patients using tamoxifen (57.1%) and toremifene (62.7%). -
Tamoxifen, Raloxifene Upheld for Prevention
38 WOMEN’S HEALTH MAY 1, 2010 • FAMILY PRACTICE NEWS Tamoxifen, Raloxifene Upheld for Prevention BY KERRI WACHTER 9,736 on tamoxifen and 9,754 on ralox- 1.24, which was significant (P = .01). Both events) did not appear to be as effective ifene. The differences in numbers are due drugs reduced the risk of invasive breast as tamoxifen (57 events) in preventing WASHINGTON — Tamoxifen and to a combination of loss during follow- cancer by roughly 50% in the original re- noninvasive breast cancer (P = .052). raloxifene offer women at high risk of up or follow-up data becoming available port (median follow-up 47 months). “Now with additional follow-up, those developing breast cancer two effective for women who were lost to follow-up “We have estimated, however, that differences have narrowed,” he said. At options to prevent the disease, based on in the original report. Women on ta- this difference in the raloxifene-treated 8 years, there was no statistical signifi- 8 years of follow-up data for more than moxifen received 20 mg/day and those group represents 76% of tamoxifen’s cance between the two groups with a 19,000 women in the STAR trial. on raloxifene received 60 mg/day. chemopreventative benefit, which trans- risk ratio of 1.22 (P = .12). The relative While tamoxifen proved significantly At an average follow-up of 8 years, the lates into at 38% reduction in invasive risk of 1.22 favors tamoxifen, but ralox- more effective in preventing invasive breast relative risk of invasive breast cancer on breast cancers,” Dr. -
Effect of Tibolone on Bone Mineral Density in Postmenopausal Women: Systematic Review and Meta-Analysis
Review Effect of Tibolone on Bone Mineral Density in Postmenopausal Women: Systematic Review and Meta‐Analysis Lizett Castrejón‐Delgado 1, Osvaldo D. Castelán‐Martínez 2, Patricia Clark 3, Juan Garduño‐Espinosa 4, Víctor Manuel Mendoza‐Núñez 1 and Martha A. Sánchez‐Rodríguez 1,* 1 Research Unit on Gerontology, Facultad de Estudios Superiores Zaragoza, Universidad Nacional Autónoma de México, Mexico City 09230, Mexico; [email protected] (L.C‐D.); [email protected] (V.M.M.‐N.) 2 Clinical Pharmacology Laboratory, Facultad de Estudios Superiores Zaragoza, Universidad Nacional Autónoma de México, Mexico City 09230, Mexico; [email protected] 3 Clinical Epidemiology Research Unit, Hospital Infantil de México Federico Gómez, Mexico City 06720, Mexico; [email protected] 4 Research Department, Hospital Infantil de México Federico Gómez, Mexico City 06720, Mexico; [email protected] * Correspondence: [email protected]; Tel.: +52‐55‐5623‐0700 (ext. 83210) Biology 2021, 10, 211. https://doi.org/10.3390/biology10030211 www.mdpi.com/journal/biology Biology 2021, 10, 211 2 of 4 Table S1. Search strategy. Database Search strategy Items found Date (ʺtiboloneʺ [Supplementary Concept]) AND (ʺBone MEDLINE Densityʺ[Mesh] OR ʺOsteoporosis, 135 July 17,2020 Postmenopausalʺ[Mesh]) Cochrane library tibolone AND (bone density OR osteoporosis) 126 July 17,2020 ScienceDirect: Tibolone, bone density 37 July 17,2020 Scopus Tibolone AND “bone density” 194 July 17, 2020 Epistemonikos tibolone AND (bone density OR osteoporosis) 38 July 17,2020 Lilacs Tibolona 49 July 17,2020 SciELO (tibolone) AND (bone) 4 July 17,2020 IMBIOMED Tibolona 7 July 17,2020 Medigrafic: Tibolona 6 July 17,2020 Table S2. Characteristics of the excluded studies (n = 24). -
Raloxifene Hydrochloride
NEW ZEALAND DATASHEET 1. EVISTA® EVISTA 60 mg tablet 2. QUALITATIVE AND QUANTITATIVE COMPOSITION The active ingredient in Evista tablets is raloxifene hydrochloride. Each film coated tablet contains 60-mg raloxifene hydrochloride, which is equivalent to 56-mg raloxifene free base. For the full list of excipients, see 6.1 List of excipients. 3. PHARMACEUTICAL FORM Film coated tablet. 4. CLINICAL PARTICULARS 4.1 Therapeutic indications EVISTA is indicated for the prevention and treatment of osteoporosis in post-menopausal women. EVISTA is indicated for the reduction in the risk of invasive breast cancer in postmenopausal women with osteoporosis. EVISTA is indicated for the reduction in the risk of invasive breast cancer in postmenopausal women at high risk of invasive breast cancer. High risk of breast cancer is defined as at least one breast biopsy showing lobular carcinoma in situ (LCIS) or atypical hyperplasia, one or more first-degree relatives with breast cancer, or a 5-year predicted risk of breast cancer >1.66% (based on the modified Gail model). Among the factors included in the modified Gail model are the following: current age, number of first-degree relatives with breast cancer, number of breast biopsies, age at menarche, nulliparity or age of first live birth. Currently, no single clinical finding or test result can quantify risk of breast cancer with certainty. 4.2 Dose and method of administration The recommended dosage is one 60-mg EVISTA tablet per day orally, which may be taken at any time of day without regard to meals. No dose adjustment is necessary for the elderly. -
Ribociclib (LEE011)
Clinical Development Ribociclib (LEE011) Oncology Clinical Protocol CLEE011G2301 (EarLEE-1) / NCT03078751 An open label, multi-center protocol for U.S. patients enrolled in a study of ribociclib with endocrine therapy as an adjuvant treatment in patients with hormone receptor-positive, HER2- negative, high risk early breast cancer Authors Document type Amended Protocol Version EUDRACT number 2014-001795-53 Version number 02 (Clean) Development phase II Document status Final Release date 17-Apr-2018 Property of Novartis Confidential May not be used, divulged, published or otherwise disclosed without the consent of Novartis Template version 22-Jul-2016 Novartis Confidential Page 2 Amended Protocol Version 02 (Clean) Protocol No. CLEE011G2301 Table of contents Table of contents ................................................................................................................. 2 List of tables ........................................................................................................................ 5 List of abbreviations ............................................................................................................ 6 Glossary of terms ................................................................................................................. 9 Protocol summary .............................................................................................................. 10 Amendment 2 (17-Apr-2018) ............................................................................................ 14 -
Toremifene (Fareston)
Clinical Policy: Toremifene (Fareston) Reference Number: PA.CP.PMN.126 Effective Date: 10.17.18 Last Review Date: 04.17.19 Revision Log Description Toremifene (Fareston®) is an estrogen agonist/antagonist. FDA Approved Indication(s) Fareston is indicated for the treatment of metastatic breast cancer in postmenopausal women with estrogen-receptor positive or unknown tumors. Policy/Criteria Provider must submit documentation (such as office chart notes, lab results or other clinical information) supporting that member has met all approval criteria. It is the policy of health plans affiliated with PA Health & Wellness® that Fareston is medically necessary when the following criteria are met: I. Initial Approval Criteria A. Breast Cancer (must meet all): 1. Diagnosis of recurrent or metastatic breast cancer; 2. Prescribed by or in consultation with an oncologist; 3. Failure of a 1-month trial of tamoxifen at up to maximally indicated doses, unless contraindicated or clinically significant adverse effects are experienced; 4. Failure of a 1-month trial of an aromatase inhibitor (e.g., anastrozole, exemestane, letrozole) at up to maximally indicated doses, unless contraindicated or clinically significant adverse effects are experienced (see Appendix B); 5. Request meets one of the following (a or b): a. Dose does not exceed 60 mg per day (1 tablet/day); b. Dose is supported by practice guidelines or peer-reviewed literature for the relevant off-label use (prescriber must submit supporting evidence). Approval duration: 12 months B. Soft Tissue Sarcoma - Desmoid Tumors (off-label) (must meet all): 1. Diagnosis of desmoid tumor or aggressive fibromatosis; 2. Prescribed by or in consultation with an oncologist; 3. -
Effects of Toremifene, a Selective Estrogen Receptor Modulator, On
ISSN 2472-1972 Effects of Toremifene, a Selective Estrogen Receptor Modulator, on Spontaneous and Stimulated GH Secretion, IGF-I, and IGF-Binding Proteins in Healthy Elderly Subjects Ferdinand Roelfsema,1 Rebecca J. Yang,2 Paul Y. Takahashi,3 Dana Erickson,4 Cyril Y. Bowers,5 and Johannes D. Veldhuis2 1Department of Internal Medicine, Section of Endocrinology and Metabolism, Leiden University Medical Center, 2333 ZA Leiden, Netherlands; 2Endocrine Research Unit, Mayo School of Graduate Medical Education, Center for Translational Science Activities, Mayo Clinic, Rochester, Minnesota 55905; 3Department of Primary Care Internal Medicine, Mayo Clinic, Rochester, Minnesota 55905; 4Department of Endocrinology, Mayo Clinic, Rochester, Minnesota 55905; and 5Department of Internal Medicine, Tulane University Health Sciences Center, New Orleans, Louisiana 70112 Context: Estrogens amplify spontaneous and stimulated growth hormone (GH) secretion, whereas they diminish GH-dependent insulin-like growth factor (IGF)-I in a dose-dependent manner. Selective es- trogen receptor modulators (SERMs), including tamoxifen and toremifene, are widely adjunctively used in breast and prostate cancer. Although some endocrine effects of tamoxifen are known, few data are available for toremifene. Objective: To explore sex-dependent effects of toremifene on spontaneous 10-hour overnight GH se- cretion, followed by GH-releasing hormone–ghrelin stimulation. Additionally, effects on IGF-I, its binding proteins, and sex hormone–binding globulin (SHBG) were quantified. Participants and Design: Twenty men and 20 women, within an allowableagerangeof50to80years, volunteered for this double-blind, placebo-controlled prospective crossover study. Ten-minute blood sampling was done for 10 hours overnight and then for 2 hours after combined GH-releasing hormone–ghrelin injection. Main Outcome Measures: Pulsatile GH and stimulated GH secretion, and fasting levels of IGF-I, IGF- binding protein (IGFBP)1, IGFBP3, and SHBG. -
INTERRELATIONSHIPS of the ESTROGEN-PRODUCING ENZYMES NETWORK in BREAST CANCER DISSERTATION Presented in Partial Fulfillment Of
INTERRELATIONSHIPS OF THE ESTROGEN-PRODUCING ENZYMES NETWORK IN BREAST CANCER DISSERTATION Presented in Partial Fulfillment of the Requirements for the Degree Doctor of Philosophy in the Graduate School of The Ohio State University By Wendy L. Rich, M.S. ∗∗∗∗∗ The Ohio State University 2009 Dissertation Committee: Approved by Pui-Kai Li, Ph.D., Adviser Robert W. Brueggemeier, Ph.D. Karl A. Werbovetz, Ph.D. Adviser Graduate Program in Pharmacy Charles L. Shapiro M.D. ABSTRACT In the United States, breast cancer is the most common non-skin malignancy and the second leading cause of cancer-related death in women. However, earlier detection and new, more effective treatments may be responsible for the decrease in overall death rates. Approximately 60% of breast tumors are estrogen receptor (ER) positive and thus their cellular growth is hormone-dependent. Elevated levels of estrogens, even in post- menopausal women, have been implicated in the development and progression of hormone-dependent breast cancer. Hormone therapies seek to inhibit local estrogen action and biosynthesis, which can be produced by pathways utilizing the enzymes aromatase or steroid sulfatase (STS). Cyclooxygenase-2 (COX-2), typically involved in inflammation processes, is a major regulator of aromatase expression in breast cancer cells. STS, COX-2, and aromatase are critical for estrogen biosynthesis and have been shown to be over-expressed in breast cancer. While there continues to be extensive study and successful design of potent aromatase inhibitors, much remains unclear about the regulation of STS and the clinical applications for its selective inhibition. Further studies exploring the relationships of STS with COX-2 and aromatase enzymes will aid in the understanding of its role in cancer cell growth and in the development of future hormone- dependent breast cancer therapies. -
Editorial.Final 10/20/06 1:39 PM Page 10
OBG_11.06_Editorial.final 10/20/06 1:39 PM Page 10 EDITORIAL Is Premarin actually a SERM? It acts like a SERM... onjugated equine estrogen Effects of tamoxifen and Premarin (Premarin) has historically been Initially, tamoxifen was characterized as an C characterized as an estrogen ago- “anti-estrogen,” but it is now recognized nist. But the report from the Women’s that tamoxifen has mixed properties. It is an Health Initiative that long-term Premarin estrogen antagonist in some tissues (breast) Robert L. Barbieri, MD Editor-in-Chief treatment is associated with a reduced risk and an estrogen agonist in other tissues of breast cancer raises the possibility that (bone). To recognize these mixed estrogen Premarin may have both estrogen agonist agonist–antagonist properties, tamoxifen is and antagonist properties. Premarin may now categorized as a SERM. Premarin and actually be better categorized as a selective tamoxifen share many similarities in their estrogen receptor modulator (SERM). effects on major clinical outcomes in post- ® Dowden Healthmenopausal Media women (Table, page 13), WHI: Premarin vs placebo including their effects on breast and In the Premarin vs placebo arm, approximately endometrial cancer, deep venous thrombo- 10,800Copyright postmenopausalFor personal women with ause prior onlysis, and osteoporotic fracture. One clinical- hysterectomy who were 50 to 79 years of age ly important divergence is that tamoxifen were randomized to Premarin 0.625 mg daily or increases and Premarin decreases vasomo- an identical-appearing placebo.1 After a mean tor symptoms. FAST TRACK follow-up of 7.1 years, the risk of invasive breast Commonly used medications that inter- In any case, cancer in the women treated with Premarin was act with the estrogen receptor can be 0.80 (95% confidence interval [CI], 0.62–1.04, arranged along a continuum from a “pure” “Use the lowest P=.09). -
Cumulative Cross Index to Iarc Monographs
PERSONAL HABITS AND INDOOR COMBUSTIONS volume 100 e A review of humAn cArcinogens This publication represents the views and expert opinions of an IARC Working Group on the Evaluation of Carcinogenic Risks to Humans, which met in Lyon, 29 September-6 October 2009 LYON, FRANCE - 2012 iArc monogrAphs on the evAluAtion of cArcinogenic risks to humAns CUMULATIVE CROSS INDEX TO IARC MONOGRAPHS The volume, page and year of publication are given. References to corrigenda are given in parentheses. A A-α-C .............................................................40, 245 (1986); Suppl. 7, 56 (1987) Acenaphthene ........................................................................92, 35 (2010) Acepyrene ............................................................................92, 35 (2010) Acetaldehyde ........................36, 101 (1985) (corr. 42, 263); Suppl. 7, 77 (1987); 71, 319 (1999) Acetaldehyde associated with the consumption of alcoholic beverages ..............100E, 377 (2012) Acetaldehyde formylmethylhydrazone (see Gyromitrin) Acetamide .................................... 7, 197 (1974); Suppl. 7, 56, 389 (1987); 71, 1211 (1999) Acetaminophen (see Paracetamol) Aciclovir ..............................................................................76, 47 (2000) Acid mists (see Sulfuric acid and other strong inorganic acids, occupational exposures to mists and vapours from) Acridine orange ...................................................16, 145 (1978); Suppl. 7, 56 (1987) Acriflavinium chloride ..............................................13, -
Blockade of the Stimulatory Effect of Estrogens, OH-Tamoxifen, OH
ICANCERRESEARCH57,3494-3497.August15.19971 Blockade of the Stimulatory Effect of Estrogens, OH-Tamoxifen, OH-Toremifene, Droloxifene, and Raloxifene on Alkaline Phosphatase Activity by the Antiestrogen EM-800 in Human Endometrial Adenocarcinoma Ishikawa Cells1 Jacques Simard,2 Rocio Sanchez, Donald Poirier, Sylvain Gauthier, Shankar M. Singh, Yves Merand, Alarn Belanger, Claude Labrie, and Fernand Labile Laboratory of Molecular Endocrinology, CHUL Research Center, Quebec, Quebec, GI V 4G2, Canada ABSTRACT Because data suggest that continuous long-term tamoxifen therapy is preferable to its usual short-term use (5), and studies are already in Although temporary benefits of tamoxifen therapy are observed in up progress on the long-term administration of tamoxifen to prevent to 40% of women with breast cancer, this compound, which is known to breast cancer (13), it becomes important to make available a pure possess mixed estrogenic and antiestrogenic activities, has been associated with increased risk of endometrial carcinoma. This study compares the antiestrogen that, due to its lack of estrogenic activity, should theo effects of the novel nonsteroidal pure antiestrogen EM-800 and related retically be more efficient than tamoxifen in treating breast cancer compounds with those of a series of antiestrogens on the estrogen-sensitive while simultaneously eliminating the risk of developing uterine car alkaline phosphatase (AP) activity in human endometrial adenocarcinoma cinoma during its long-term use. This study compares the effect of Ishikawa cells. Exposure to increasing concentrations of up to 1000 nM EM-800 or its active metabolite, EM-652, with those of OH-tamox EM-SOO or its active metabolite EM-652 alone failed to affect basal AP ifen, OH-toremifene, droloxifene, raloxifene, and !CI-182780 (14— activity. -
Pilot Study Evaluating the Pharmacokinetics, Pharmacodynamics, and Safety of the Combination of Exemestane and Tamoxifen
Vol. 10, 1943–1948, March 15, 2004 Clinical Cancer Research 1943 Pilot Study Evaluating the Pharmacokinetics, Pharmacodynamics, and Safety of the Combination of Exemestane and Tamoxifen Edgardo Rivera,1 Vicente Valero,1 pharmacokinetics or pharmacodynamics and that the com- Deborah Francis,1 Aviva G. Asnis,2 bination is well-tolerated and active. Further clinical inves- Larry J. Schaaf,2 Barbara Duncan,2 and tigation is warranted. Gabriel N. Hortobagyi1 1Department of Breast Medical Oncology, The University of Texas INTRODUCTION 2 M. D. Anderson Cancer Center, Houston, Texas, and Pharmacia Breast cancer growth frequently is promoted by estrogen, Corporation, Peapack, New Jersey and approximately one-third of tumors respond to estrogen deprivation therapy (1). In current clinical practice, two main ABSTRACT single-agent strategies are used to deprive breast cancer cells of Purpose: We conducted a pilot study assessing the ef- estrogen. A selective estrogen receptor modulator (SERM), such fects of the selective estrogen receptor modulator, tamox- as tamoxifen, is given to block binding of the hormone to the ifen, on the pharmacokinetics, pharmacodynamics, and cancer cells. Alternately, in postmenopausal women, an inhib- safety of the steroidal, irreversible aromatase inhibitor (AI), itor of the enzyme, aromatase, is administered to suppress their exemestane, when the two were coadministered in post- main source of estrogen synthesis, conversion of androgens by menopausal women with metastatic breast cancer. this enzyme. Experimental Design: Patients with documented or un- One aromatase inhibitor (AI) that has been studied exten- known hormone receptor sensitivity were eligible. Patients sively and shown activity as a single agent in postmenopausal received oral exemestane at 25-mg once daily.