Editorial.Final 10/20/06 1:39 PM Page 10

Total Page:16

File Type:pdf, Size:1020Kb

Editorial.Final 10/20/06 1:39 PM Page 10 OBG_11.06_Editorial.final 10/20/06 1:39 PM Page 10 EDITORIAL Is Premarin actually a SERM? It acts like a SERM... onjugated equine estrogen Effects of tamoxifen and Premarin (Premarin) has historically been Initially, tamoxifen was characterized as an C characterized as an estrogen ago- “anti-estrogen,” but it is now recognized nist. But the report from the Women’s that tamoxifen has mixed properties. It is an Health Initiative that long-term Premarin estrogen antagonist in some tissues (breast) Robert L. Barbieri, MD Editor-in-Chief treatment is associated with a reduced risk and an estrogen agonist in other tissues of breast cancer raises the possibility that (bone). To recognize these mixed estrogen Premarin may have both estrogen agonist agonist–antagonist properties, tamoxifen is and antagonist properties. Premarin may now categorized as a SERM. Premarin and actually be better categorized as a selective tamoxifen share many similarities in their estrogen receptor modulator (SERM). effects on major clinical outcomes in post- ® Dowden Healthmenopausal Media women (Table, page 13), WHI: Premarin vs placebo including their effects on breast and In the Premarin vs placebo arm, approximately endometrial cancer, deep venous thrombo- 10,800Copyright postmenopausalFor personal women with ause prior onlysis, and osteoporotic fracture. One clinical- hysterectomy who were 50 to 79 years of age ly important divergence is that tamoxifen were randomized to Premarin 0.625 mg daily or increases and Premarin decreases vasomo- an identical-appearing placebo.1 After a mean tor symptoms. FAST TRACK follow-up of 7.1 years, the risk of invasive breast Commonly used medications that inter- In any case, cancer in the women treated with Premarin was act with the estrogen receptor can be 0.80 (95% confidence interval [CI], 0.62–1.04, arranged along a continuum from a “pure” “Use the lowest P=.09). When the data were analyzed based on estrogen agonist, such as estradiol, to a effective dose adherence to the regimen, a statistically signifi- “pure” estrogen antagonist (antiestrogen), of hormone therapy cant reduction in invasive breast cancer risk was such as fulvestrant (Figure, below). Along for the shortest observed in the women who reliably took their this dimension, Premarin likely shares more Premarin, compared with placebo (hazard ratio properties with estrogen than other SERMs. period of time” 0.67; 95% CI 0.47–0.97, P=.03). In contrast, raloxifene probably shares more properties with a pure antiestrogen such as fulvestrant because, unlike tamox- * Premarin was the medication used in the trial. It is unclear whether the results would be similar with other formulations of ifen and Premarin, raloxifene does not conjugated estrogens or conjugated equine estrogens. increase the risk of endometrial cancer. The estrogen agonist–antagonist continuum PURE ESTROGEN Estradiol Premarin Tamoxifen Raloxifene Fulvestrant PURE AGONIST ANTIESTROGEN Biologically active compounds that functionally interact with the estradiol receptor can be conceptually classified along a dimension from “pure” estrogen agonists, such as estradiol, to “pure” estrogen antagonists, such as fulvestrant. Between these two extremes are mixed estrogen agonists–antagonists, which are sometimes classified as selective estrogen receptor modulators (SERMs). CONTINUED 10 OBG MANAGEMENT • November 2006 For mass reproduction, content licensing and permissions contact Dowden Health Media. OBG_11.06_Editorial.final 10/20/06 1:39 PM Page 13 EDITORIAL Effects of tamoxifen and Premarin on clinical endpoints in postmenopausal women ARE THE EFFECTS OF TAMOXIFEN AND CLINICAL ENDPOINT TAMOXIFEN PREMARIN PREMARIN IN THE SAME DIRECTION? Breast cancer Decreased risk Decreased risk Yes Endometrial cancer Increased risk Increased risk Yes Osteoporotic fracture Decreased risk Decreased risk Yes Deep venous thrombosis Increased risk Increased risk Yes Vasomotor symptoms Increase Decrease No The complex biology of the estrogen The 17-alpha estrogens in Premarin may be receptor system and the complex pharma- SERMs because they have good affinity for cology of Premarin may explain its SERM the estradiol receptor but low gene promot- activity.2 The functional biology of the er activity in multiple model systems. estrogen receptor system has not been fully elucidated. The selective tissue effects of var- Is Premarin a SERM? ious estrogenic compounds are thought to Most likely the answer is “yes,” but we need be mediated by at least 3 factors: to know much more about the functional • the relative activity of the 2 types of biology of the estrogen receptor system and estrogen receptors (alpha and beta) in the relative estrogen agonist–antagonist each tissue3 effects of Premarin and its components. • the differential changes in estrogen Categorizing Premarin as a “SERM” rather receptor conformation and functional than an “estrogen” necessitates that clini- activity induced by different estrogen cians change their concepts about how this ligands4 commonly used hormone treatment actually • the relative activity of a large number works. Until we know more about this com- of intracellular co-activators and co- plex issue, most clinicians will individualize repressors that bind to the estrogen hormone treatment and follow the guideline: receptor and modulate the activity of “Use the lowest effective dose of hormone the ligand-bound estrogen receptor therapy for the shortest period of time.” Premarin’s complex on gene transcription5 In addition, Premarin is a complex hor- compounds mone containing many compounds, includ- may each have ing estrone sulfate, equilin sulfate, delta different estrogen [email protected] 8,9-dehydroestrone sulfate, 17-alpha estra- agonist-antagonist diol sulfate and 17-alpha dihyroequilin sul- REFERENCES fate. Each may have different estrogen ago- 1. Stefanick ML, Anderson GL, Margolis KL, et al. Effects of properties conjugated equine estrogens on breast cancer and mam- nist–antagonist properties in various tis- mography screening in postmenopausal women with hys- in various tissues sues. For example, some studies report that terectomy. JAMA. 2006;295:1647–1657. delta 8,9-dehydroestrone sulfate, one com- 2. Dey M, Lyttle CR, Pickar JH. Recent insights into the varying activity of estrogens. Maturitas. 2000;34 (Supplement 2): ponent of Premarin, is a potent estrogen S25–S33. agonist in the brain, but is a weak estrogen 3. Kuiper GGJM, Enmark E, Pelto-Huikko M, Nilsson S, 6 Gustafsson JA. Cloning of a novel estrogen receptor agonist in the liver. In contrast, estrone sul- expressed in rat prostate and ovary. Proc Natl Acad Sci fate, a major component of Premarin, is an USA. 1996;93:5925–5930. estrogen agonist in both the brain and liver. 4. McDonnell DP, Clemm DL, Hermann T,Goldman ME, Pike JW. Analysis of estrogen receptor function in vitro reveals 3 distinct The 17-alpha estradiol and 17-alpha dihy- classes of antiestrogens. Mol Endocrinol. 1995;9: 659–669. droequilin compounds contained in 5. Onate SA, Tsai SY, Tsai MJ, O’Malley BW. Sequence and characterization of a coactivator for the steroid hormone Premarin are also of interest, because receptor superfamily. Science. 1995;270:1354–1357. although they can bind to the human estro- 6. Baracat E, Haidar F, Lopez FJ, et al. Estrogen activity and gen receptor, the 17-alpha configuration novel tissue selectivity of delta 8,9-dehyroestrone sulfate in postmenopausal women. J Clin Endocrinol Metab. markedly reduces their biological activity. 1999;84:2020–2027. www.obgmanagement.com November 2006 • OBG MANAGEMENT 13.
Recommended publications
  • Prospective Study on Gynaecological Effects of Two Antioestrogens Tamoxifen and Toremifene in Postmenopausal Women
    British Journal of Cancer (2001) 84(7), 897–902 © 2001 Cancer Research Campaign doi: 10.1054/ bjoc.2001.1703, available online at http://www.idealibrary.com on http://www.bjcancer.com Prospective study on gynaecological effects of two antioestrogens tamoxifen and toremifene in postmenopausal women MB Marttunen1, B Cacciatore1, P Hietanen2, S Pyrhönen2, A Tiitinen1, T Wahlström3 and O Ylikorkala1 1Departments of Obstetrics and Gynecology, Helsinki University Central Hospital, P.O. Box 140, FIN-00029 HYKS, Finland; 2Department of Oncology, Helsinki University Central Hospital, P.O. Box 180, FIN-00029 HYKS, Finland; 3Department of Pathology, Helsinki University Central Hospital, P.O. Box 140, FIN-00029 HYKS, Finland Summary To assess and compare the gynaecological consequences of the use of 2 antioestrogens we examined 167 postmenopausal breast cancer patients before and during the use of either tamoxifen (20 mg/day, n = 84) or toremifene (40 mg/day, n = 83) as an adjuvant treatment of stage II–III breast cancer. Detailed interview concerning menopausal symptoms, pelvic examination including transvaginal sonography (TVS) and collection of endometrial sample were performed at baseline and at 6, 12, 24 and 36 months of treatment. In a subgroup of 30 women (15 using tamoxifen and 15 toremifene) pulsatility index (PI) in an uterine artery was measured before and at 6 and 12 months of treatment. The mean (±SD) follow-up time was 2.3 ± 0.8 years. 35% of the patients complained of vasomotor symptoms before the start of the trial. This rate increased to 60.0% during the first year of the trial, being similar among patients using tamoxifen (57.1%) and toremifene (62.7%).
    [Show full text]
  • Tamoxifen, Raloxifene Upheld for Prevention
    38 WOMEN’S HEALTH MAY 1, 2010 • FAMILY PRACTICE NEWS Tamoxifen, Raloxifene Upheld for Prevention BY KERRI WACHTER 9,736 on tamoxifen and 9,754 on ralox- 1.24, which was significant (P = .01). Both events) did not appear to be as effective ifene. The differences in numbers are due drugs reduced the risk of invasive breast as tamoxifen (57 events) in preventing WASHINGTON — Tamoxifen and to a combination of loss during follow- cancer by roughly 50% in the original re- noninvasive breast cancer (P = .052). raloxifene offer women at high risk of up or follow-up data becoming available port (median follow-up 47 months). “Now with additional follow-up, those developing breast cancer two effective for women who were lost to follow-up “We have estimated, however, that differences have narrowed,” he said. At options to prevent the disease, based on in the original report. Women on ta- this difference in the raloxifene-treated 8 years, there was no statistical signifi- 8 years of follow-up data for more than moxifen received 20 mg/day and those group represents 76% of tamoxifen’s cance between the two groups with a 19,000 women in the STAR trial. on raloxifene received 60 mg/day. chemopreventative benefit, which trans- risk ratio of 1.22 (P = .12). The relative While tamoxifen proved significantly At an average follow-up of 8 years, the lates into at 38% reduction in invasive risk of 1.22 favors tamoxifen, but ralox- more effective in preventing invasive breast relative risk of invasive breast cancer on breast cancers,” Dr.
    [Show full text]
  • Effects of Biologically Active Metabolites of Tamoxifen on the Proliferation Kinetics of MCF-7 Human Breast Cancer Cells in Vitro
    [CANCER RESEARCH 43, 4618-4624, October 1983] Effects of Biologically Active Metabolites of Tamoxifen on the Proliferation Kinetics of MCF-7 Human Breast Cancer Cells in Vitro Roger R. Reddel, Leigh C. Murphy, and Robert L. Sutherland1 Ludwig Institute for Cancer Research (Sydney Branch), University of Sydney, Sydney, New South Wales 2006, Australia ABSTRACT tumor tissues of patients treated with tamoxifen is DMT, with 4OHT being present at much lower concentrations (1, 7,13, 25). The effects of two major metabolites of tamoxifen, /V-de- Prompted no doubt in part by the early misidentification of the methyltamoxifen (DMT) and 4-hydroxytamoxifen (4OHT), on major metabolite as 4OHT, there has been considerable interest MCF-7 Å“il proliferation and cell cycle kinetic parameters were in the antiestrogenic and antitumor activity of 4OHT (2, 3, 6,15, compared with those of the parent compound. All three com 16, 33). In contrast, there have been very few studies on the pounds produced dose-dependent decreases in the rate of cell biological activity of DMT (6, 33). proliferation which were accompanied by decreases in the per In the present study, we have attempted to answer the follow centage of S- and G2-M-phase cells. 4OHT was 100- to 167-fold ing questions. Do the metabolites DMT and 40HT differ from more potent than both tamoxifen and DMT in producing these tamoxifen in their actions on the proliferation and cell cycle effects, and this was correlated with their relative binding affini kinetics of human breast cancer cells? What are the relative ties (RBAs) for the cytoplasmic estrogen receptor (ER) (17/3- potencies of these 3 compounds in their actions on such cells in estradiol = 100, 4OHT = 41, tamoxifen = DMT = 2).
    [Show full text]
  • Failures and Controversies of the Antiestrogen Treatment of Breast Cancer
    In: Estrogen Prevention for Breast Cancer ISBN: 978-1-62417-378-3 Editor: Zsuzsanna Suba © 2013 Nova Science Publishers, Inc. No part of this digital document may be reproduced, stored in a retrieval system or transmitted commercially in any form or by any means. The publisher has taken reasonable care in the preparation of this digital document, but makes no expressed or implied warranty of any kind and assumes no responsibility for any errors or omissions. No liability is assumed for incidental or consequential damages in connection with or arising out of information contained herein. This digital document is sold with the clear understanding that the publisher is not engaged in rendering legal, medical or any other professional services. Chapter VII Failures and Controversies of the Antiestrogen Treatment of Breast Cancer Zsuzsanna Suba National Institute of Oncology, Department of Surgical and Molecular Pathology, Budapest, Hungary Abstract In postmenopausal women, estrogens have unquestionable preventive and curative effects against atherogenic cardiovascular lesions, osteoporosis and neurodegenerative diseases. Moreover, recent studies on correlations between hormone replacement therapy and cancer risk could justify preventive, anticancer capacities of estrogen both on smoking associated and hormone related cancers. Experimental developing of antiestrogen compounds aimed to inhibit the binding of presumably harmful, endogenous estrogen to its receptor system so as to achieve a regression of hormone-related cancers. However, antiestrogens proved to be ineffective in the majority of selected receptor positive breast cancer cases and produced severe side effects, such as vascular complications and cancer development at several sites. Failure of antiestrogen therapy was designated as ―endocrine resistance‖ of tumors.
    [Show full text]
  • Chemotherapy Regimen: Tamoxifen
    Tamoxifen Chemotherapy Teaching The Center for Breast Cancer Mass General Cancer Center Center for Breast Cancer Topics to Discuss: • How Tamoxifen works • How Tamoxifen is taken • Storage, Handling, and Disposal • Drug Interactions • Side Effects & How to Manage • Supportive Care Resources • Your Breast Cancer Team • When to Call • Important Phone Numbers 2 What is TAMOXIFEN? • TAMOXIFEN (Nolvadex®) is an oral hormonal therapy used for hormone-sensitive breast cancers. • It works by blocking estrogen from binding to hormone receptors. This: • decreases the chance of breast cancer returning (recurrence) • decreases tumor size • delays tumors from spreading (progression) • Your care team will talk with you about how long you will need to take this therapy. – It is common to be on therapy for 5-10 years. 3 How is it taken? • TAMOXIFEN is a tablet you take by mouth. • Take one tablet (20 mg) once daily with or without food at the same time each day. – Do not take with grapefruit juice. • Swallow tablet whole with water. Do not break, chew, or crush your tablet. • If you miss a dose, skip the dose. Do not take 2 doses at the same time to make up for the missed dose. 4 Storing and Handling • Keep TAMOXIFEN in its original bottle or in a separate pill box – do not mix other medicines into the same pill box. • Store at room temperature in a dry location away from direct light. • Keep out of reach from children and pets. • Wash your hands before and after handling. – If someone else will be handling your TAMOXIFEN, have them wear gloves so they do not come into direct contact with the medicine.
    [Show full text]
  • NDA/BLA Multi-Disciplinary Review and Evaluation
    NDA/BLA Multi-disciplinary Review and Evaluation NDA 214154 Nextstellis (drospirenone and estetrol tablets) NDA/BLA Multi-Disciplinary Review and Evaluation Application Type NDA Application Number(s) NDA 214154 (IND 110682) Priority or Standard Standard Submit Date(s) April 15, 2020 Received Date(s) April 15, 2020 PDUFA Goal Date April 15, 2021 Division/Office Division of Urology, Obstetrics, and Gynecology (DUOG) / Office of Rare Diseases, Pediatrics, Urologic and Reproductive Medicine (ORPURM) Review Completion Date April 15, 2021 Established/Proper Name drospirenone and estetrol tablets (Proposed) Trade Name Nextstellis Pharmacologic Class Combination hormonal contraceptive Applicant Mayne Pharma LLC Dosage form Tablet Applicant proposed Dosing x Take one tablet by mouth at the same time every day. Regimen x Take tablets in the order directed on the blister pack. Applicant Proposed For use by females of reproductive potential to prevent Indication(s)/Population(s) pregnancy Recommendation on Approval Regulatory Action Recommended For use by females of reproductive potential to prevent Indication(s)/Population(s) pregnancy (if applicable) Recommended Dosing x Take one pink tablet (drospirenone 3 mg, estetrol Regimen anhydrous 14.2 mg) by mouth at the same time every day for 24 days x Take one white inert tablet (placebo) by mouth at the same time every day for 4 days following the pink tablets x Take tablets in the order directed on the blister pack 1 Reference ID: 4778993 NDA/BLA Multi-disciplinary Review and Evaluation NDA 214154 Nextstellis (drospirenone and estetrol tablets) Table of Contents Table of Tables .................................................................................................................... 5 Table of Figures ................................................................................................................... 7 Reviewers of Multi-Disciplinary Review and Evaluation ...................................................
    [Show full text]
  • Us Anti-Doping Agency
    2019U.S. ANTI-DOPING AGENCY WALLET CARDEXAMPLES OF PROHIBITED AND PERMITTED SUBSTANCES AND METHODS Effective Jan. 1 – Dec. 31, 2019 CATEGORIES OF SUBSTANCES PROHIBITED AT ALL TIMES (IN AND OUT-OF-COMPETITION) • Non-Approved Substances: investigational drugs and pharmaceuticals with no approval by a governmental regulatory health authority for human therapeutic use. • Anabolic Agents: androstenediol, androstenedione, bolasterone, boldenone, clenbuterol, danazol, desoxymethyltestosterone (madol), dehydrochlormethyltestosterone (DHCMT), Prasterone (dehydroepiandrosterone, DHEA , Intrarosa) and its prohormones, drostanolone, epitestosterone, methasterone, methyl-1-testosterone, methyltestosterone (Covaryx, EEMT, Est Estrogens-methyltest DS, Methitest), nandrolone, oxandrolone, prostanozol, Selective Androgen Receptor Modulators (enobosarm, (ostarine, MK-2866), andarine, LGD-4033, RAD-140). stanozolol, testosterone and its metabolites or isomers (Androgel), THG, tibolone, trenbolone, zeranol, zilpaterol, and similar substances. • Beta-2 Agonists: All selective and non-selective beta-2 agonists, including all optical isomers, are prohibited. Most inhaled beta-2 agonists are prohibited, including arformoterol (Brovana), fenoterol, higenamine (norcoclaurine, Tinospora crispa), indacaterol (Arcapta), levalbuterol (Xopenex), metaproternol (Alupent), orciprenaline, olodaterol (Striverdi), pirbuterol (Maxair), terbutaline (Brethaire), vilanterol (Breo). The only exceptions are albuterol, formoterol, and salmeterol by a metered-dose inhaler when used
    [Show full text]
  • Effect of Tibolone on Bone Mineral Density in Postmenopausal Women: Systematic Review and Meta-Analysis
    Review Effect of Tibolone on Bone Mineral Density in Postmenopausal Women: Systematic Review and Meta‐Analysis Lizett Castrejón‐Delgado 1, Osvaldo D. Castelán‐Martínez 2, Patricia Clark 3, Juan Garduño‐Espinosa 4, Víctor Manuel Mendoza‐Núñez 1 and Martha A. Sánchez‐Rodríguez 1,* 1 Research Unit on Gerontology, Facultad de Estudios Superiores Zaragoza, Universidad Nacional Autónoma de México, Mexico City 09230, Mexico; [email protected] (L.C‐D.); [email protected] (V.M.M.‐N.) 2 Clinical Pharmacology Laboratory, Facultad de Estudios Superiores Zaragoza, Universidad Nacional Autónoma de México, Mexico City 09230, Mexico; [email protected] 3 Clinical Epidemiology Research Unit, Hospital Infantil de México Federico Gómez, Mexico City 06720, Mexico; [email protected] 4 Research Department, Hospital Infantil de México Federico Gómez, Mexico City 06720, Mexico; [email protected] * Correspondence: [email protected]; Tel.: +52‐55‐5623‐0700 (ext. 83210) Biology 2021, 10, 211. https://doi.org/10.3390/biology10030211 www.mdpi.com/journal/biology Biology 2021, 10, 211 2 of 4 Table S1. Search strategy. Database Search strategy Items found Date (ʺtiboloneʺ [Supplementary Concept]) AND (ʺBone MEDLINE Densityʺ[Mesh] OR ʺOsteoporosis, 135 July 17,2020 Postmenopausalʺ[Mesh]) Cochrane library tibolone AND (bone density OR osteoporosis) 126 July 17,2020 ScienceDirect: Tibolone, bone density 37 July 17,2020 Scopus Tibolone AND “bone density” 194 July 17, 2020 Epistemonikos tibolone AND (bone density OR osteoporosis) 38 July 17,2020 Lilacs Tibolona 49 July 17,2020 SciELO (tibolone) AND (bone) 4 July 17,2020 IMBIOMED Tibolona 7 July 17,2020 Medigrafic: Tibolona 6 July 17,2020 Table S2. Characteristics of the excluded studies (n = 24).
    [Show full text]
  • Raloxifene Hydrochloride
    NEW ZEALAND DATASHEET 1. EVISTA® EVISTA 60 mg tablet 2. QUALITATIVE AND QUANTITATIVE COMPOSITION The active ingredient in Evista tablets is raloxifene hydrochloride. Each film coated tablet contains 60-mg raloxifene hydrochloride, which is equivalent to 56-mg raloxifene free base. For the full list of excipients, see 6.1 List of excipients. 3. PHARMACEUTICAL FORM Film coated tablet. 4. CLINICAL PARTICULARS 4.1 Therapeutic indications EVISTA is indicated for the prevention and treatment of osteoporosis in post-menopausal women. EVISTA is indicated for the reduction in the risk of invasive breast cancer in postmenopausal women with osteoporosis. EVISTA is indicated for the reduction in the risk of invasive breast cancer in postmenopausal women at high risk of invasive breast cancer. High risk of breast cancer is defined as at least one breast biopsy showing lobular carcinoma in situ (LCIS) or atypical hyperplasia, one or more first-degree relatives with breast cancer, or a 5-year predicted risk of breast cancer >1.66% (based on the modified Gail model). Among the factors included in the modified Gail model are the following: current age, number of first-degree relatives with breast cancer, number of breast biopsies, age at menarche, nulliparity or age of first live birth. Currently, no single clinical finding or test result can quantify risk of breast cancer with certainty. 4.2 Dose and method of administration The recommended dosage is one 60-mg EVISTA tablet per day orally, which may be taken at any time of day without regard to meals. No dose adjustment is necessary for the elderly.
    [Show full text]
  • Effect of Tamoxifen Or Anastrozole on Steroid Sulfatase Activity and Serum Androgen Concentrations in Postmenopausal Women with Breast Cancer
    ANTICANCER RESEARCH 31: 1367-1372 (2011) Effect of Tamoxifen or Anastrozole on Steroid Sulfatase Activity and Serum Androgen Concentrations in Postmenopausal Women with Breast Cancer S.J. STANWAY1, C. PALMIERI2, F.Z. STANCZYK3, E.J. FOLKERD4, M. DOWSETT4, R. WARD2, R.C. COOMBES2, M.J. REED1† and A. PUROHIT1 1Oncology Drug Discovery Group, Section of Investigative Medicine, Imperial College London, Hammersmith Hospital, London W12 0NN, U.K.; 2Cancer Research UK Laboratories, Department of Oncology, Hammersmith Hospital, London W12 0NN, U.K.; 3Reproductive Endocrine Research Laboratory, University of Southern California, Keck School of Medicine, Women’s and Children’s Hospital, Los Angeles, CA, U.S.A.; 4Department of Biochemistry, Royal Marsden Hospital, London, SW3 6JJ, U.K. Abstract. Background: In postmenopausal women sulfate and dehydroepiandrosterone levels. Results: Neither estrogens can be formed by the aromatase pathway, which anastrozole nor tamoxifen had any significant effect on STS gives rise to estrone, and the steroid sulfatase (STS) route activity as measured in PBLs. Anastrozole did not affect which can result in the formation of estrogens and serum androstenediol concentrations. Conclusion: androstenediol, a steroid with potent estrogenic properties. Anastrozole and tamoxifen did not inhibit STS activity and Aromatase inhibitors, such as anastrozole, are now in serum androstenediol concentrations were not reduced by clinical use whereas STS inhibitors, such as STX64, are still aromatase inhibition. As androstenediol has estrogenic undergoing clinical evaluation. STX64 was recently shown properties, it is possible that the combination of an to block STS activity and reduce serum androstenediol aromatase inhibitor and STS inhibitor may give a therapeutic concentrations in postmenopausal women with breast cancer.
    [Show full text]
  • REVIEW Steroid Sulfatase Inhibitors for Estrogen
    99 REVIEW Steroid sulfatase inhibitors for estrogen- and androgen-dependent cancers Atul Purohit and Paul A Foster1 Oncology Drug Discovery Group, Section of Investigative Medicine, Imperial College London, Hammersmith Hospital, London W12 0NN, UK 1School of Clinical and Experimental Medicine, Centre for Endocrinology, Diabetes and Metabolism, University of Birmingham, Birmingham B15 2TT, UK (Correspondence should be addressed to P A Foster; Email: [email protected]) Abstract Estrogens and androgens are instrumental in the maturation of in vivo and where we currently stand in regards to clinical trials many hormone-dependent cancers. Consequently,the enzymes for these drugs. STS inhibitors are likely to play an important involved in their synthesis are cancer therapy targets. One such future role in the treatment of hormone-dependent cancers. enzyme, steroid sulfatase (STS), hydrolyses estrone sulfate, Novel in vivo models have been developed that allow pre-clinical and dehydroepiandrosterone sulfate to estrone and dehydroe- testing of inhibitors and the identification of lead clinical piandrosterone respectively. These are the precursors to the candidates. Phase I/II clinical trials in postmenopausal women formation of biologically active estradiol and androstenediol. with breast cancer have been completed and other trials in This review focuses on three aspects of STS inhibitors: patients with hormone-dependent prostate and endometrial 1) chemical development, 2) biological activity, and 3) clinical cancer are currently active. Potent STS inhibitors should trials. The aim is to discuss the importance of estrogens and become therapeutically valuable in hormone-dependent androgens in many cancers, the developmental history of STS cancers and other non-oncological conditions.
    [Show full text]
  • Active Estrogen Synthesis and Its Function in Prostate Cancer-Derived Stromal Cells
    ANTICANCER RESEARCH 35: 221-228 (2015) Active Estrogen Synthesis and its Function in Prostate Cancer-derived Stromal Cells KAZUAKI MACHIOKA1, ATSUSHI MIZOKAMI1, YURI YAMAGUCHI2, KOUJI IZUMI1, SHINICHI HAYASHI3 and MIKIO NAMIKI1 1Department of Integrative Cancer Therapy and Urology, Kanazawa University Graduate School of Medical Sciences, Ishikawa, Japan; 2Division of Breast Surgery, Saitama Cancer Center, Saitama, Japan; 3Department of Molecular and Functional Dynamics, Graduate School of Medicine, Tohoku University, Sendai, Japan Abstract. Background: It remains unclear whether estrogen Castration-naïve prostate cancer (PCa) develops into is produced in prostate cancer (PCa) and how it functions in castration-resistant prostate cancer (CRPC) during androgen PCa. Materials and Methods: To examine the production of deprivation therapy (ADT) by various mechanisms. estrogen in PCa cells, the concentration of estrogen in the Especially, the androgen receptor (AR) signaling axis plays a medium in which LNCaP cells and PCa-derived stromal cells key role in this specific development. PCa cells mainly adapt (PCaSC) were co-cultured, was measured by liquid themselves to the environment of lower androgen chromatography-mass spectrometry/mass spectrometry (LC- concentrations and change into androgen-hypersensitive cells MS/MS), while aromatase (CYP19) mRNA expression was or androgen-independent cells. Androgens of adrenal origin confirmed by real-time polymerase chain reaction (RT-PCR) and their metabolites synthesized in the microenvironment in methods. To verify whether estrogen is synthesized from an intracrine/paracrine fashion act on surviving PCa cells and testosterone in PCaSC functions, PCaSC were co-cultured secrete prostate specific antigen (PSA). Therefore, new with breast cancer MCF-7-E10 cells, which were stably- recently developed medicines, abiraterone acetate that transfected with ERE-GFP, in the presence of testosterone.
    [Show full text]