Investigation of Avian Haemosporidian Parasites from Raptor Birds in Turkey, with Molecular Characterisation and

Total Page:16

File Type:pdf, Size:1020Kb

Investigation of Avian Haemosporidian Parasites from Raptor Birds in Turkey, with Molecular Characterisation and ������������ ��������� © Institute of Parasitology, Biology Centre CAS Folia Parasitologica 2016, 63: 023 doi: 10.14411/fp.2016.023 http://folia.paru.cas.cz Research Article Investigation of avian haemosporidian parasites from raptor birds in Turkey, with molecular characterisation and [ Arif Ciloglu1, Alparslan Yildirim1, Onder Duzlu1, Zuhal Onder1, Zafer Dogan2 and Abdullah Inci1 1 Department of Parasitology, Faculty of Veterinary Medicine, Erciyes University, Kayseri, Turkey; 2 Department of Surgery, Faculty of Veterinary Medicine, Erciyes University, Kayseri, Turkey Abstract: Avian haemosporidians are common vector-borne blood parasites that have been reported in birds all over the world. Investi- gations of avian haemosporidian parasites are conducted mainly on passerine birds. However, studies that focus on non-passerine avian [ In the present study, blood samples from a total of 22 raptor birds belonging to two orders, two families and six species from the Central Anatolia Region of Turkey were investigated for three genera of avian haemosporidians (Plasmodium Marchiafava et Celli, 1885, Hae- moproteus Kruse, 1890 and Leucocytozoon!"[ PCR targeting the parasite mitochondrial cytochrome b gene (cyt-b!#"[ of Plasmodium or Leucocytozoon$%[[ parasite cyt-b[&Plasmodium haplotype is linked to a corre- sponding morphospecies (P-TURDUS1, \ Kikuth, 1931). All haplotypes were clearly distinguishable in phy- &$'&* Turkey, this study provides important new information on the phylogenetic relationships and genetic diversity of avian haemosporidian %["$ attention to the need for microscopy to detect parasite sexual development stages in surveys of avian haemosporidians. Keywords: Plasmodium, Haemoproteus, Leucocytozoon, Accipitriformes, Strigiformes, cytochrome b gene, blood parasites Avian haemosporidians (Apicomplexa: Haemosporida) [ belonging to the families Haemoproteidae, Plasmodiidae parasites in raptor birds, particularly since raptor hosts are and Leucocytozoidae are vector-borne parasites that are highly diverse and can support cryptic speciation of avian found in birds all over the world. Avian haemosporidian haemosporidians (Sehgal et al. 2006, Pérez-Rodríguez et \= al. 2013). Moreover, while the blood parasites are general- \>?G=<NQ!WNQ- ly thought to be harmless, there is evidence that infections cies of avian haemosporidians have been described and can be harmful (Remple 2004). Studies have suggested named according to morphological characteristics of para- that avian haemosporidian infection can cause reduced N> \ [ loss, anemia, airsacculitis and arthritis in hosts (Remple ?G=<NQXN'=NY!X- 1981, 2004, Dawson and Bortolotti 2000, Merino et al. cause these blood parasites are abundant and diverse, they 2000). Thus, from a conservation perspective, the diagno- constitute excellent model organisms for the study of wild- sis and treatment of avian haemosporidian infections are life parasitology and have been the focus of research efforts important for controlling the cumulative effects of blood ?G=<NQXNZ! parasites in raptor birds. Raptor birds (Accipitriformes and Strigiformes) are lo- Turkey is home to a high diversity of birds and is con- cated at the top of the food chain and can play very im- sidered one of the most important regions in Europe and portant roles in the ecosystem. However, most studies of the Middle East for migratory birds that travel through Af- avian haemosporidian parasites have been conducted on rica, Europe and Asia (Yigit et al. 2008). However, there passerines (Passeriformes), with very little focus on raptor are very few studies on avian haemosporidians and their hosts (Krone et al. 2008, Clark et al. 2014). More stud- vectors in this geographic region (Inci et al. 2012, 2013). ies are crucial to improve our understanding of the true Moreover, most avian haemosporidian investigations Address for correspondence: A. Ciloglu, Department of Parasitology, Faculty of Veterinary Medicine, Erciyes University, 38039, Kayseri, Turkey. Phone: +903522076666/29943; Fax: +903523372740; E-mail: [email protected] This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. doi: 10.14411/fp.2016.023 Ciloglu et al.: Haemosporidians from raptor birds in Turkey Table 1.*"[}'*X= numbers of parasite haplotypes are given in parentheses. Positive in microscopic examination Positive in PCR screening No. No. Raptor species No. HLPco-infected Total H L P co-infected Total Parasite haplotypes with tested (H, L, P) (L, P) GenBank Accession Nos. Accipiter nisus (Linnaeus) 1 - - 1 - 1 - - 1 - 1 P-BUTBUT021 (KP883280) Asio otus (Linnaeus) 1 - - - - - - 1 - - 1 L-CIAE02 (KP000840) P-BUTBUT021 (KP883279), P-TURDUS1 (KP000842), Buteo buteo (Linnaeus) 5-11 1 3 -11 1 3L-BUTBUT011 (KP000841), L-CIAE02 (KC962152) [ Cretzschmar 13 - 1 - - 1 - 1 - - 1 L-CIAE02 (KC962151) Neophron percnopterus (Linnaeus) 1 --- - - --- - - - Linnaeus 1 - 1 - - 1 - 1 - - 1 L-STAL51 (KC876042) Total 22 - 3 2 1 6 - 4 2 1 7 - H – Haemoproteus sp.; L – Leucocytozoon sp.; P – Plasmodium sp.; 1 newly described haplotypes. that have been carried out in Turkey have relied entirely were brought to the Surgery Department of Veterinary Education on traditional microscopic examinations (Özmen et al. Research and Practice Hospital of Erciyes University, Kayseri 2005, 2009). According to our knowledge, there are only for treatment and rehabilitation between February 2013 and June two published molecular surveys of avian haemosporidi- 2014. Blood samples were taken from vena cutanea ulnaris of ans in Turkey, one that focused on the Krüper’s nuthatch 20 accipitriform and 2 strigiform hosts using insulin syringes for (Sitta krueperi Pelzeln) and another that sampled a tawny investigating the presence of haemosporidian parasites during owl ( Linnaeus) (Marzal and Albayrak 2012, the hospitalisation process (Table 1). About 50–100 μl of blood Yildirim et al. 2013). was taken and stored in EDTA (ethylenediaminetetraacetic acid) The ability to detect avian haemosporidians in verte- tubes and immediately placed at -20 °C for DNA extractions. Im- brate hosts has been improved recently with the advent of [ $>?XN were prepared on clean glass slides from each bird and air-dried Ricklefs and Fallon 2002, Beadell et al. 2004). In addition, QMX[" our understanding of the genetic diversity and host speci- 100% methanol and stained with 10% Giemsa as described by [ G=<?N! through molecular surveys (Hellgren et al. 2009, Ventim et Microscopic examinations were carried out to distinguish be- al. 2012) and these methods have facilitated the descrip- tween parasite sexual or asexual blood stages, a determination \]&> }'*[~[ deposited in GenBank and the MalAvi databases (Ricklefs carefully examined using an Olympus BX43 light microscope et al. 2004, Waldenström et al. 2004, Bensch et al. 2009, ?=!>\}Z MalAvi 2015). Nevertheless, although PCR-based meth- &["Y&& ods have very low detection thresholds and are considered [ ZMYQ W [ more sensitive than traditional parasitological methods, G=<?NQ! microscopic analyses remain essential for understanding Prior to DNA extraction, 10–15 μl of blood from each sample [ - was diluted with 200 μl of PBS buffer (0.01 M phosphate buff- ?G=<N'=NQ!# er, 0.0027 M KCl, 0.137 M NaCl, pH 7.4). Total genomic DNA therefore important to combine microscopic and molecular (gDNA) was extracted from blood samples using Blood Genom- surveys for characterising avian haemosporidians in wild ic DNA Kits (AP-MN-BL-GDNA-250, Axygen Biosciences, ?G=<N'=NY! Tewksbury, MA, USA) and eluted in 50 μl elution buffer fol- In the present study, we aim to investigate avian haemo- lowing the manufacturer’s instructions. The isolated gDNA was sporidian parasites in accipitriform and strigiform host stored at -20 °C until molecular analysis. DNA concentrations of samples from the Central Anatolia Region of Turkey. We samples were measured using the Nano Drop Spectrophotometer combine both traditional microscopy and molecular-based (ASP-3700, ACT Gene, Piscataway, NJ, USA) prior to molecular >[ analyses to standardise the amount of gDNA used in PCR ampli- of the phylogenetic relationships, haplotype diversity and [ [ Genomic DNA from blood samples was analysed by nested birds. }'*[b gene (cyt-b) of avian haemosporidian mitochondrial DNA (mtDNA). For the MATERIALS AND METHODS [ [ ]# ]*Z We sampled injured and/or sick individual accipitriform and which were designed to detect DNA from species of Leucocy- strigiform birds that were found in Kayseri Province or near cit- tozoon Sambon, 1908, Hae moproteus Kruse, 1890 and Plasmo- ies in the Central Anatolia Region of Turkey. All sampled birds dium Marchiafava et Celli, 1885 (see Hellgren et al. 2004). For Folia Parasitologica 2016, 63: 023 Page 2 of 8 doi: 10.14411/fp.2016.023 Ciloglu et al.: Haemosporidians from raptor birds in Turkey the second PCR round, HAEMF-HAEMR2 primers (Bensch et ible Model including invariable sites and variation among sites al. 2000) and HaemFL-HaemR2L primers (Hellgren et al. 2004) (GTR + I + G) was utilised according to the results of the Akaike’s [Haemoproteus/Plas- Information Criterion in jModelTest version 0.1.1 (Posada 2008). modium and Leucocytozoon[}'* Two Markov Chain Monte Carlo (MCMC) simulations were run NQ)NQ) simultaneously for 10 million generations with sampling every
Recommended publications
  • ~.. R---'------­ : KASMERA: Vol
    ~.. r---'--------------­ : KASMERA: Vol.. 9, No. 1 4,1981 Zulla. Maracaibo. Venezuela. PROTOZOOS DE VENEZUELA Carlos Diaz Ungrla· Tratamos con este trabajo de ofrecer una puesta al día de los protozoos estudiados en nuestro país. Con ello damos un anticipo de lo que será nuestra próxima obra, en la cual, además de actualizar los problemas taxonómicos, pensamos hacer énfasis en la ultraestructura, cuyo cono­ cimiento es básico hoy día para manejar los protozoos, comQ animales unicelulares que son. Igualmente tratamos de difundir en nuestro medio la clasificación ac­ tual, que difiere tanto de la que se sigue estudiando. y por último, tratamos de reunir en un solo trabajo toda la infor­ mación bibliográfica venezolana, ya que es sabido que nuestros autores se ven precisados a publicar en revistas foráneas, y esto se ha acentuado en los últimos diez (10) años. En nuestro trabajo presentaremos primero la lista alfabética de los protozoos venezolanos, después ofreceremos su clasificación, para terminar por distribuirlos de acuerdo a sus hospedadores . • Profesor de la Facultad de Ciencias Veterinarias de la Universidad del Zulia. Maracaibo-Venezuela. -147­ Con la esperanza de que nuestro trabajo sea útil anuestros colegas. En Maracaibo, abril de mil novecientos ochenta. 1 LISTA ALF ABETICA DE LOS PROTOZOOS DE VENEZUELA Babesia (Babesia) bigemina, Smith y Kilbome, 1893. Seflalada en Bos taurus por Zieman (1902). Deutsch. Med. Wochens., 20 y 21. Babesia (Babesia) caballi Nuttall y Stricldand. 1910. En Equus cabal/uso Gallo y Vogelsang (1051). Rev. Med.Vet. y Par~. 10 (1-4); 3. Babesia (Babesia) canis. Piana y Galli Valerio, 1895. En Canis ¡ami/iaris.
    [Show full text]
  • And Toxoplasmosis in Jackass Penguins in South Africa
    IMMUNOLOGICAL SURVEY OF BABESIOSIS (BABESIA PEIRCEI) AND TOXOPLASMOSIS IN JACKASS PENGUINS IN SOUTH AFRICA GRACZYK T.K.', B1~OSSY J.].", SA DERS M.L. ', D UBEY J.P.···, PLOS A .. ••• & STOSKOPF M. K .. •••• Sununary : ReSlIlIle: E x-I1V\c n oN l~ lIrIUSATION D'Ar\'"TIGENE DE B ;IB£,'lA PH/Re El EN ELISA ET simoNi,cATIVlTli t'OUR 7 bxo l'l.ASMA GONIJfI DE SI'I-IENICUS was extracted from nucleated erythrocytes Babesia peircei of IJEMIiNSUS EN ArRIQUE D U SUD naturally infected Jackass penguin (Spheniscus demersus) from South Africo (SA). Babesia peircei glycoprotein·enriched fractions Babesia peircei a ele extra it d 'erythrocytes nue/fies p,ovenanl de Sphenicus demersus originoires d 'Afrique du Sud infectes were obto ined by conca navalin A-Sepharose affinity column natulellement. Des fractions de Babesia peircei enrichies en chromatogrophy and separated by sod ium dodecyl sulphate­ glycoproleines onl ele oblenues par chromatographie sur colonne polyacrylam ide gel electrophoresis (SDS-PAGE ). At least d 'alfinite concona valine A-Sephorose et separees par 14 protein bonds (9, 11, 13, 20, 22, 23, 24, 43, 62, 90, electrophorese en gel de polyacrylamide-dodecylsuJfale de sodium 120, 204, and 205 kDa) were observed, with the major protein (SOS'PAGE) Q uotorze bandes proleiques au minimum ont ete at 25 kDa. Blood samples of 191 adult S. demersus were tes ted observees (9, 1 I, 13, 20, 22, 23, 24, 43, 62, 90, 120, 204, by enzyme-linked immunosorbent assoy (ELISA) utilizing B. peircei et 205 Wa), 10 proleine ma;eure elant de 25 Wo.
    [Show full text]
  • Reconstruction of the Evolutionary History of Haemosporida
    Parasitology International 65 (2016) 5–11 Contents lists available at ScienceDirect Parasitology International journal homepage: www.elsevier.com/locate/parint Reconstruction of the evolutionary history of Haemosporida (Apicomplexa) based on the cyt b gene with characterization of Haemocystidium in geckos (Squamata: Gekkota) from Oman João P. Maia a,b,c,⁎, D. James Harris a,b, Salvador Carranza c a CIBIO Research Centre in Biodiversity and Genetic Resources, InBIO, Universidade do Porto, Campus Agrário de Vairão, Rua Padre Armando Quintas, N° 7, 4485-661 Vairão, Vila do Conde, Portugal b Departamento de Biologia, Faculdade de Ciências, Universidade do Porto, Rua do Campo Alegre FC4 4169-007 Porto, Portugal c Institut de Biologia Evolutiva (CSIC-Universitat Pompeu Fabra), Passeig Maritím de la Barceloneta, 37-49, 08003 Barcelona, Spain article info abstract Article history: The order Haemosporida (Apicomplexa) includes many medically important parasites. Knowledge on the diver- Received 4 April 2015 sity and distribution of Haemosporida has increased in recent years, but remains less known in reptiles and their Received in revised form 7 September 2015 taxonomy is still uncertain. Further, estimates of evolutionary relationships of this order tend to change when Accepted 10 September 2015 new genes, taxa, outgroups or alternative methodologies are used. We inferred an updated phylogeny for the Available online 12 September 2015 Cytochrome b gene (cyt b) of Haemosporida and screened a total of 80 blood smears from 17 lizard species from Oman belonging to 11 genera. The inclusion of previously underrepresented genera resulted in an alterna- Keywords: Haemoproteus tive estimate of phylogeny for Haemosporida based on the cyt b gene.
    [Show full text]
  • <I>Typanuchus Pallidicinctus</I>
    University of Nebraska - Lincoln DigitalCommons@University of Nebraska - Lincoln Faculty Publications from the Harold W. Manter Laboratory of Parasitology Parasitology, Harold W. Manter Laboratory of 4-2003 Survey for Coccidia and Haemosporidia in the Lesser Prairie Chicken (Typanuchus pallidicinctus) from New Mexico with the Description of a New Eimeria Species B. H. Smith University of New Mexico, [email protected] Donald Duszynski University of New Mexico, [email protected] K. Johnson University of New Mexico Follow this and additional works at: https://digitalcommons.unl.edu/parasitologyfacpubs Part of the Parasitology Commons Smith, B. H.; Duszynski, Donald; and Johnson, K., "Survey for Coccidia and Haemosporidia in the Lesser Prairie Chicken (Typanuchus pallidicinctus) from New Mexico with the Description of a New Eimeria Species" (2003). Faculty Publications from the Harold W. Manter Laboratory of Parasitology. 194. https://digitalcommons.unl.edu/parasitologyfacpubs/194 This Article is brought to you for free and open access by the Parasitology, Harold W. Manter Laboratory of at DigitalCommons@University of Nebraska - Lincoln. It has been accepted for inclusion in Faculty Publications from the Harold W. Manter Laboratory of Parasitology by an authorized administrator of DigitalCommons@University of Nebraska - Lincoln. JOURNAL OF WILDLIFE DISEASES Thursday May 22 2003 03:14 PM jwdi 39_212 Mp_347 Allen Press x DTPro System File # 12em Journal of Wildlife Diseases, 39(2), 2003, pp. 347±353 q Wildlife Disease Association 2003 SURVEY FOR COCCIDIA AND HAEMOSPORIDIA IN THE LESSER PRAIRIE-CHICKEN (TYMPANUCHUS PALLIDICINCTUS) FROM NEW MEXICO WITH DESCRIPTION OF A NEW EIMERIA SPECIES B. H. Smith,1,2 D. W. Duszynski,1 and K.
    [Show full text]
  • Wildlife Parasitology in Australia: Past, Present and Future
    CSIRO PUBLISHING Australian Journal of Zoology, 2018, 66, 286–305 Review https://doi.org/10.1071/ZO19017 Wildlife parasitology in Australia: past, present and future David M. Spratt A,C and Ian Beveridge B AAustralian National Wildlife Collection, National Research Collections Australia, CSIRO, GPO Box 1700, Canberra, ACT 2601, Australia. BVeterinary Clinical Centre, Faculty of Veterinary and Agricultural Sciences, University of Melbourne, Werribee, Vic. 3030, Australia. CCorresponding author. Email: [email protected] Abstract. Wildlife parasitology is a highly diverse area of research encompassing many fields including taxonomy, ecology, pathology and epidemiology, and with participants from extremely disparate scientific fields. In addition, the organisms studied are highly dissimilar, ranging from platyhelminths, nematodes and acanthocephalans to insects, arachnids, crustaceans and protists. This review of the parasites of wildlife in Australia highlights the advances made to date, focussing on the work, interests and major findings of researchers over the years and identifies current significant gaps that exist in our understanding. The review is divided into three sections covering protist, helminth and arthropod parasites. The challenge to document the diversity of parasites in Australia continues at a traditional level but the advent of molecular methods has heightened the significance of this issue. Modern methods are providing an avenue for major advances in documenting and restructuring the phylogeny of protistan parasites in particular, while facilitating the recognition of species complexes in helminth taxa previously defined by traditional morphological methods. The life cycles, ecology and general biology of most parasites of wildlife in Australia are extremely poorly understood. While the phylogenetic origins of the Australian vertebrate fauna are complex, so too are the likely origins of their parasites, which do not necessarily mirror those of their hosts.
    [Show full text]
  • The Nuclear 18S Ribosomal Dnas of Avian Haemosporidian Parasites Josef Harl1, Tanja Himmel1, Gediminas Valkiūnas2 and Herbert Weissenböck1*
    Harl et al. Malar J (2019) 18:305 https://doi.org/10.1186/s12936-019-2940-6 Malaria Journal RESEARCH Open Access The nuclear 18S ribosomal DNAs of avian haemosporidian parasites Josef Harl1, Tanja Himmel1, Gediminas Valkiūnas2 and Herbert Weissenböck1* Abstract Background: Plasmodium species feature only four to eight nuclear ribosomal units on diferent chromosomes, which are assumed to evolve independently according to a birth-and-death model, in which new variants origi- nate by duplication and others are deleted throughout time. Moreover, distinct ribosomal units were shown to be expressed during diferent developmental stages in the vertebrate and mosquito hosts. Here, the 18S rDNA sequences of 32 species of avian haemosporidian parasites are reported and compared to those of simian and rodent Plasmodium species. Methods: Almost the entire 18S rDNAs of avian haemosporidians belonging to the genera Plasmodium (7), Haemo- proteus (9), and Leucocytozoon (16) were obtained by PCR, molecular cloning, and sequencing ten clones each. Phy- logenetic trees were calculated and sequence patterns were analysed and compared to those of simian and rodent malaria species. A section of the mitochondrial CytB was also sequenced. Results: Sequence patterns in most avian Plasmodium species were similar to those in the mammalian parasites with most species featuring two distinct 18S rDNA sequence clusters. Distinct 18S variants were also found in Haemopro- teus tartakovskyi and the three Leucocytozoon species, whereas the other species featured sets of similar haplotypes. The 18S rDNA GC-contents of the Leucocytozoon toddi complex and the subgenus Parahaemoproteus were extremely high with 49.3% and 44.9%, respectively.
    [Show full text]
  • Haemocystidium Spp., a Species Complex Infecting Ancient Aquatic Turtles of the Family Podocnemididae First Report of These
    IJP: Parasites and Wildlife 10 (2019) 299–309 Contents lists available at ScienceDirect IJP: Parasites and Wildlife journal homepage: www.elsevier.com/locate/ijppaw Haemocystidium spp., a species complex infecting ancient aquatic turtles of the family Podocnemididae: First report of these parasites in Podocnemis T vogli from the Orinoquia Leydy P. Gonzáleza,b, M. Andreína Pachecoc, Ananías A. Escalantec, Andrés David Jiménez Maldonadoa,d, Axl S. Cepedaa, Oscar A. Rodríguez-Fandiñoe, ∗ Mario Vargas‐Ramírezd, Nubia E. Mattaa, a Departamento de Biología, Facultad de Ciencias, Universidad Nacional de Colombia, Sede Bogotá, Carrera 30 No 45-03, Bogotá, Colombia b Instituto de Biotecnología, Facultad de Ciencias, Universidad Nacional de Colombia, Sede Bogotá, Carrera 30 No 45-03, Bogotá, Colombia c Department of Biology/Institute for Genomics and Evolutionary Medicine (iGEM), Temple University, Philadelphia, PA, USA d Instituto de Genética, Universidad Nacional de Colombia, Sede Bogotá, Carrera 30 No 45-03, Bogotá, Colombia e Fundación Universitaria-Unitrópico, Dirección de Investigación, Grupo de Investigación en Ciencias Biológicas de la Orinoquía (GINBIO), Colombia ARTICLE INFO ABSTRACT Keywords: The genus Haemocystidium was described in 1904 by Castellani and Willey. However, several studies considered Haemoparasites it a synonym of the genera Plasmodium or Haemoproteus. Recently, molecular evidence has shown the existence Reptile of a monophyletic group that corresponds to the genus Haemocystidium. Here, we further explore the clade Simondia Haemocystidium spp. by studying parasites from Testudines. A total of 193 individuals belonging to six families of Chelonians Testudines were analyzed. The samples were collected in five localities in Colombia: Casanare, Vichada, Arauca, Colombia Antioquia, and Córdoba. From each individual, a blood sample was taken for molecular analysis, and peripheral blood smears were made, which were fixed and subsequently stained with Giemsa.
    [Show full text]
  • Plasmodium and Leucocytozoon (Sporozoa: Haemosporida) of Wild Birds in Bulgaria
    Acta Protozool. (2003) 42: 205 - 214 Plasmodium and Leucocytozoon (Sporozoa: Haemosporida) of Wild Birds in Bulgaria Peter SHURULINKOV and Vassil GOLEMANSKY Institute of Zoology, Bulgarian Academy of Sciences, Sofia, Bulgaria Summary. Three species of parasites of the genus Plasmodium (P. relictum, P. vaughani, P. polare) and 6 species of the genus Leucocytozoon (L. fringillinarum, L. majoris, L. dubreuili, L. eurystomi, L. danilewskyi, L. bennetti) were found in the blood of 1332 wild birds of 95 species (mostly passerines), collected in the period 1997-2001. Data on the morphology, size, hosts, prevalence and infection intensity of the observed parasites are given. The total prevalence of the birds infected with Plasmodium was 6.2%. Plasmodium was observed in blood smears of 82 birds (26 species, all passerines). The highest prevalence of Plasmodium was found in the family Fringillidae: 18.5% (n=65). A high rate was also observed in Passeridae: 18.3% (n=71), Turdidae: 11.2% (n=98) and Paridae: 10.3% (n=68). The lowest prevalence was diagnosed in Hirundinidae: 2.5% (n=81). Plasmodium was found from March until October with no significant differences in the monthly values of the total prevalence. Resident birds were more often infected (13.2%, n=287) than locally nesting migratory birds (3.8%, n=213). Spring migrants and fall migrants were infected at almost the same rate of 4.2% (n=241) and 4.7% (n=529) respectively. Most infections were of low intensity (less than 1 parasite per 100 microscope fields at magnification 2000x). Leucocytozoon was found in 17 wild birds from 9 species (n=1332).
    [Show full text]
  • (Haemosporida: Haemoproteidae), with Report of in Vitro Ookinetes of Haemoproteus Hirundi
    Chagas et al. Parasites Vectors (2019) 12:422 https://doi.org/10.1186/s13071-019-3679-1 Parasites & Vectors RESEARCH Open Access Sporogony of four Haemoproteus species (Haemosporida: Haemoproteidae), with report of in vitro ookinetes of Haemoproteus hirundinis: phylogenetic inference indicates patterns of haemosporidian parasite ookinete development Carolina Romeiro Fernandes Chagas* , Dovilė Bukauskaitė, Mikas Ilgūnas, Rasa Bernotienė, Tatjana Iezhova and Gediminas Valkiūnas Abstract Background: Haemoproteus (Parahaemoproteus) species (Haemoproteidae) are widespread blood parasites that can cause disease in birds, but information about their vector species, sporogonic development and transmission remain fragmentary. This study aimed to investigate the complete sporogonic development of four Haemoproteus species in Culicoides nubeculosus and to test if phylogenies based on the cytochrome b gene (cytb) refect patterns of ookinete development in haemosporidian parasites. Additionally, one cytb lineage of Haemoproteus was identifed to the spe- cies level and the in vitro gametogenesis and ookinete development of Haemoproteus hirundinis was characterised. Methods: Laboratory-reared C. nubeculosus were exposed by allowing them to take blood meals on naturally infected birds harbouring single infections of Haemoproteus belopolskyi (cytb lineage hHIICT1), Haemoproteus hirun- dinis (hDELURB2), Haemoproteus nucleocondensus (hGRW01) and Haemoproteus lanii (hRB1). Infected insects were dissected at intervals in order to detect sporogonic stages. In vitro exfagellation, gametogenesis and ookinete development of H. hirundinis were also investigated. Microscopic examination and PCR-based methods were used to confrm species identity. Bayesian phylogenetic inference was applied to study the relationships among Haemopro- teus lineages. Results: All studied parasites completed sporogony in C. nubeculosus. Ookinetes and sporozoites were found and described. Development of H. hirundinis ookinetes was similar both in vivo and in vitro.
    [Show full text]
  • Plasmodium Asexual Growth and Sexual Development in the Haematopoietic Niche of the Host
    REVIEWS Plasmodium asexual growth and sexual development in the haematopoietic niche of the host Kannan Venugopal 1, Franziska Hentzschel1, Gediminas Valkiūnas2 and Matthias Marti 1* Abstract | Plasmodium spp. parasites are the causative agents of malaria in humans and animals, and they are exceptionally diverse in their morphology and life cycles. They grow and develop in a wide range of host environments, both within blood- feeding mosquitoes, their definitive hosts, and in vertebrates, which are intermediate hosts. This diversity is testament to their exceptional adaptability and poses a major challenge for developing effective strategies to reduce the disease burden and transmission. Following one asexual amplification cycle in the liver, parasites reach high burdens by rounds of asexual replication within red blood cells. A few of these blood- stage parasites make a developmental switch into the sexual stage (or gametocyte), which is essential for transmission. The bone marrow, in particular the haematopoietic niche (in rodents, also the spleen), is a major site of parasite growth and sexual development. This Review focuses on our current understanding of blood-stage parasite development and vascular and tissue sequestration, which is responsible for disease symptoms and complications, and when involving the bone marrow, provides a niche for asexual replication and gametocyte development. Understanding these processes provides an opportunity for novel therapies and interventions. Gametogenesis Malaria is one of the major life- threatening infectious Malaria parasites have a complex life cycle marked Maturation of male and female diseases in humans and is particularly prevalent in trop- by successive rounds of asexual replication across gametes. ical and subtropical low- income regions of the world.
    [Show full text]
  • Blood Parasites in Galliformes from the Some Districts of Absheron Region
    Journal of Entomology and Zoology Studies 2017; 5(6): 2404-2407 E-ISSN: 2320-7078 P-ISSN: 2349-6800 JEZS 2017; 5(6): 2404-2407 Blood parasites in Galliformes from the some © 2017 JEZS Received: 15-09-2017 districts of Absheron region Accepted: 19-10-2017 Samadova SO Samadova SO, Ahmadov EI, Hasanova JV and Mammadova FZ Institute of Zoology of Azerbaijan National Academy of Abstract Sciences AZ1073, Pass.1128, bloc.504, Baku, Azerbaijan In the present study, fecal and blood samples of chickens and quails were collected to determine the presence of intestinal and blood parasites from the Absheron region of the Baku. A total of 313chickens Ahmadov EI (Gallus gallus domesticus) and 273 quails (Coturnix coturnix) have been selected and gathering place is Institute of Zoology of different localities during 2015-2016. The study on prevelence of intestinal parasites as folows: E.mitis Azerbaijan National Academy of 37.7%, E.tenella 42% in chickens, and E.bateri 44% in quails. Plasmodium was detected in 69 chickens Sciences AZ1073, Pass.1128, (22%) and in 76 quails (28%). Leucocytozoon, Haemoproteus had lower prevalence rates 20.7%, 19.2% bloc.504, Baku, Azerbaijan for chickens and 32.6% and 28.5% for quails respectively. Hasanova JV Keywords: Absheron, microscopy, parasites, Plasmodium, Haemoproteus. Institute of Zoology of Azerbaijan National Academy of Sciences AZ1073, Pass.1128, 1. Introduction [1] bloc.504, Baku, Azerbaijan Haemosporidians have been studied since 1884 until recent years . Mixed infection haemoparasites and coccidia has been found and described by many authors [2]. Mammadova FZ Avian haemoparasites are known to be pathogenic to domestic poultry causing high Institute of Zoology of mortalities, reproductive failure, retardation of growth, reduced productivity [3].
    [Show full text]
  • Blood Parasites in Owls with Conservation Implications for the Spotted Owl (Strix Occidentalis)
    University of Nebraska - Lincoln DigitalCommons@University of Nebraska - Lincoln USGS Staff -- Published Research US Geological Survey 2008 Blood Parasites in Owls with Conservation Implications for the Spotted Owl (Strix occidentalis) Heather D. Ishak San Francisco State University, [email protected] John P. Dumbacher San Francisco State University Nancy L. Anderson Lindsay Wildlife Museum John J. Keane USDA Forest Service Gediminas Valkiūnas Vilnius University See next page for additional authors Follow this and additional works at: https://digitalcommons.unl.edu/usgsstaffpub Ishak, Heather D.; Dumbacher, John P.; Anderson, Nancy L.; Keane, John J.; Valkiūnas, Gediminas; Haig, Susan M.; Tell, Lisa A.; and Sehgal, Ravinder N. M., "Blood Parasites in Owls with Conservation Implications for the Spotted Owl (Strix occidentalis)" (2008). USGS Staff -- Published Research. 691. https://digitalcommons.unl.edu/usgsstaffpub/691 This Article is brought to you for free and open access by the US Geological Survey at DigitalCommons@University of Nebraska - Lincoln. It has been accepted for inclusion in USGS Staff -- Published Research by an authorized administrator of DigitalCommons@University of Nebraska - Lincoln. Authors Heather D. Ishak, John P. Dumbacher, Nancy L. Anderson, John J. Keane, Gediminas Valkiūnas, Susan M. Haig, Lisa A. Tell, and Ravinder N. M. Sehgal This article is available at DigitalCommons@University of Nebraska - Lincoln: https://digitalcommons.unl.edu/ usgsstaffpub/691 Blood Parasites in Owls with Conservation Implications
    [Show full text]