Molecular Probes for the Identification of Avian Haemoproteus and Leucocytozoon Parasites in Tissue Sections by Chromogenic in S

Total Page:16

File Type:pdf, Size:1020Kb

Molecular Probes for the Identification of Avian Haemoproteus and Leucocytozoon Parasites in Tissue Sections by Chromogenic in S Himmel et al. Parasites Vectors (2019) 12:282 https://doi.org/10.1186/s13071-019-3536-2 Parasites & Vectors RESEARCH Open Access Molecular probes for the identifcation of avian Haemoproteus and Leucocytozoon parasites in tissue sections by chromogenic in situ hybridization Tanja Himmel1, Josef Harl1, Anna Kübber‑Heiss2, Cornelia Konicek3, Nuhacet Fernández4, Carles Juan‑Sallés5, Mikas Ilgūnas6, Gediminas Valkiūnas6 and Herbert Weissenböck1* Abstract Background: Avian haemosporidian parasites can cause severe disease in their hosts due to excessive exo‑eryth‑ rocytic merogony and anaemia caused by blood stages. Notably, the development of megalomeronts by species of Haemoproteus and Leucocytozoon has been associated with mortalities in birds. Diagnosis of lethal infections is currently accomplished by the detection of parasites’ tissue stages in histological sections combined with PCR and sequencing. However, sequences frequently are not reliably obtained and the generic discrimination of exo‑eryth‑ rocytic tissue stages based on morphological characters is challenging. Therefore, the present study aimed at devel‑ oping specifc molecular probes for the identifcation of Haemoproteus spp. and Leucocytozoon spp. in histological sections using chromogenic in situ hybridization. Methods: Parasite subgenus‑specifc oligonucleotide probes were designed to target the 18S ribosomal RNA of Haemoproteus species (subgenus Parahaemoproteus) and Leucocytozoon spp. (subgenus Leucocytozoon) and were in situ hybridized to sections from formalin‑fxed, parafn‑embedded tissue samples determined positive for these parasites by PCR and histopathology. To confrm the presence of parasites at sites of probe hybridization, consecutive sections were stained with haematoxylin–eosin and examined. Results: Parahaemoproteus‑ and Leucocytozoon‑specifc probes labelled erythrocytic and exo‑erythrocytic stages of Haemoproteus spp. and Leucocytozoon spp., respectively. Binding of probes to parasites was consistent with detection of the same exo‑erythrocytic meronts in consecutive haematoxylin–eosin‑stained sections. Cross‑reactivity of the probes was ruled out by negative chromogenic in situ hybridization when applied to samples positive for a parasite of a genus diferent from the probes’ target. Conclusions: Chromogenic in situ hybridization using 18S ribosomal RNA‑specifc oligonucleotide probes reliably identifes and discriminates Haemoproteus and Leucocytozoon parasites in tissue sections and enables unequivocal diagnosis of haemosporidioses. Keywords: In situ hybridization, Haemoproteus, Leucocytozoon, Birds, Pathology, Exo‑erythrocytic meronts, 18S ribosomal RNA, Haemosporidians *Correspondence: [email protected] 1 Institute of Pathology, Department of Pathobiology, University of Veterinary Medicine Vienna, Vienna, Austria Full list of author information is available at the end of the article © The Author(s) 2019. This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creat iveco mmons .org/licen ses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The Creative Commons Public Domain Dedication waiver (http://creat iveco mmons .org/ publi cdoma in/zero/1.0/) applies to the data made available in this article, unless otherwise stated. Himmel et al. Parasites Vectors (2019) 12:282 Page 2 of 10 Background parasites have been identifed to cause morbidity and Avian haemosporidian parasites (Haemosporida) are mortality in several bird species. Severe haemosporidi- widespread almost all over the world and infect birds of oses caused by these parasites have been repeatedly diverse families and orders. Te majority of described reported in both captive [12–15, 17–25] and wild birds parasites belong to the genera Plasmodium, Haemo- [9, 10, 16, 18, 26] and were commonly associated with the proteus and Leucocytozoon, comprising more than 200 development of megalomeronts in diverse organs of their morphologically distinct species [1]. Te life-cycle of hosts. haemosporidians in the avian host includes development Unequivocal determination of parasitic tissue stages both in tissues (exo-erythrocytic merogony) and blood in haemosporidian infections is difcult. Diagnosis of cells. Haemosporidians always undergo exo-erythrocytic haemosporidian infections in lethal cases is primar- merogony producing meronts in tissue cells before they ily achieved by necropsy followed by histopathological infect blood cells and form gametocytes, the parasite examination and PCR-based testing. Parasites can be stage infective for vectors [2]. detected in routinely stained histological sections; how- Te pathogenic impact of haemosporidians on the host ever, microscopic examination is time-consuming and can be variable at diferent developmental stages, and parasites can be overlooked or confounded with nuclear severity of infection in avian hosts depends on many fac- fragments in necrotic tissue or cell debris. Although mor- tors [3]. Generally, haemosporidian infection is subclini- phological features can indicate their generic identity, cal in birds; however, it is well established that parasites the correct assignment of parasites is often challenging, not only cause haematological disorders but can also especially in cases of aberrant infections due to unusual elicit severe damage to organs due to marked merogony morphology and location in atypical hosts [2]. Tere are in tissues [2]. For example, Plasmodium infections can several reports presenting severe cases of haemosporidi- result in excessive multiplication of parasites in various oses, in which conclusive determination of the parasites organs including the brain, where meronts cause block- based on tissue stages was not achieved, particularly in age of capillaries, ultimately leading to death of the host cases of Haemoproteus and Leucocytozoon infections [10, [4]. Such lethal infections were frequently reported in 26–28]. In many cases, identifcation of involved parasites immunologically naive hosts, which are highly suscepti- is accomplished by histological analysis in combination ble to infection, e.g. penguins [5–7]. However, there are with PCR and sequencing. However, even sensitive PCR also cases, albeit less numerous, which demonstrate mor- does not always reliably detect parasites, especially in talities linked to malaria in wild birds inhabiting regions co-infections, which are common in birds [29] hamper- with haemosporidian transmission [8–10]. Exo-eryth- ing correct attribution of detected genotypes to morpho- rocytic merogony of Haemoproteus and Leucocytozoon, logical stages observed in histology. Tis is a particularly the most diverse avian haemosporidian genera besides sensitive issue in distinguishing growing (young) exo- Plasmodium, has been investigated only fragmentarily erythrocytic meronts of Plasmodium and Haemoproteus because of methodological difculties to access these life- parasites, which usually are morphologically identical at cycle stages, particularly in wild animals. Data on com- this stage of development [1]. plete tissue merogony are available only for a few of these Te aim of the present study was to develop molecular blood parasite species [2]. Experimental research might probes for the specifc detection of Haemoproteus (sub- provide convincing data [1], but is challenging to design genus Parahaemoproteus) and Leucocytozoon (subgenus with Haemoproteus and Leucocytozoon parasites, mainly Leucocytozoon) parasites in formalin-fxed, parafn wax- because of difculties to obtain sporozoites, the only embedded (FFPE) tissue samples by using chromogenic infective stage that can initiate exo-erythrocytic devel- in situ hybridization (CISH). Tis method has already opment of these haemosporidians in vertebrate hosts. been established for the detection of Plasmodium spe- Cultivation and experimental infection of vectors (spe- cies by using probes which target the 18S ribosomal cies of Ceratopogonidae, Hippoboscidae and Simuliidae) RNA (rRNA) of parasites [7]. Based on these convinc- are needed for such experiments. With rare exceptions, ing results, molecular probes targeting the 18S rRNA Haemoproteus and Leucocytozoon parasites were usually of Haemoproteus species and Leucocytozoon spp. were considered to be relatively benign in avian hosts, par- designed. ticularly in wildlife [11]. Tat hampered research in this feld of parasitology and veterinary medicine for better Methods understanding virulence of haemosporidian infections. Probe design Numerous veterinary observations and feld case reports Oligonucleotide probes were designed to target the contradicted this opinion, but they did not receive due 18S rRNA of parasites from the avian haemosporidian attention [12–16]. Haemoproteus and Leucocytozoon genera Haemoproteus (subgenus Parahaemoproteus) Himmel et al. Parasites Vectors (2019) 12:282 Page 3 of 10 and Leucocytozoon (subgenus Leucocytozoon). Hae- Tissue samples mosporidian 18S ribosomal DNA (rDNA) sequences Formalin-fxed, parafn wax-embedded (FFPE) tissue were isolated from genomes published in NCBI Gen- samples including various organs from infected wild Bank [30] (accession numbers X13706, AY625607, birds were obtained from the archive of the Institute of PRJEB9073, PRJEB9074) and aligned with sequences Pathology and the Research
Recommended publications
  • And Toxoplasmosis in Jackass Penguins in South Africa
    IMMUNOLOGICAL SURVEY OF BABESIOSIS (BABESIA PEIRCEI) AND TOXOPLASMOSIS IN JACKASS PENGUINS IN SOUTH AFRICA GRACZYK T.K.', B1~OSSY J.].", SA DERS M.L. ', D UBEY J.P.···, PLOS A .. ••• & STOSKOPF M. K .. •••• Sununary : ReSlIlIle: E x-I1V\c n oN l~ lIrIUSATION D'Ar\'"TIGENE DE B ;IB£,'lA PH/Re El EN ELISA ET simoNi,cATIVlTli t'OUR 7 bxo l'l.ASMA GONIJfI DE SI'I-IENICUS was extracted from nucleated erythrocytes Babesia peircei of IJEMIiNSUS EN ArRIQUE D U SUD naturally infected Jackass penguin (Spheniscus demersus) from South Africo (SA). Babesia peircei glycoprotein·enriched fractions Babesia peircei a ele extra it d 'erythrocytes nue/fies p,ovenanl de Sphenicus demersus originoires d 'Afrique du Sud infectes were obto ined by conca navalin A-Sepharose affinity column natulellement. Des fractions de Babesia peircei enrichies en chromatogrophy and separated by sod ium dodecyl sulphate­ glycoproleines onl ele oblenues par chromatographie sur colonne polyacrylam ide gel electrophoresis (SDS-PAGE ). At least d 'alfinite concona valine A-Sephorose et separees par 14 protein bonds (9, 11, 13, 20, 22, 23, 24, 43, 62, 90, electrophorese en gel de polyacrylamide-dodecylsuJfale de sodium 120, 204, and 205 kDa) were observed, with the major protein (SOS'PAGE) Q uotorze bandes proleiques au minimum ont ete at 25 kDa. Blood samples of 191 adult S. demersus were tes ted observees (9, 1 I, 13, 20, 22, 23, 24, 43, 62, 90, 120, 204, by enzyme-linked immunosorbent assoy (ELISA) utilizing B. peircei et 205 Wa), 10 proleine ma;eure elant de 25 Wo.
    [Show full text]
  • Reconstruction of the Evolutionary History of Haemosporida
    Parasitology International 65 (2016) 5–11 Contents lists available at ScienceDirect Parasitology International journal homepage: www.elsevier.com/locate/parint Reconstruction of the evolutionary history of Haemosporida (Apicomplexa) based on the cyt b gene with characterization of Haemocystidium in geckos (Squamata: Gekkota) from Oman João P. Maia a,b,c,⁎, D. James Harris a,b, Salvador Carranza c a CIBIO Research Centre in Biodiversity and Genetic Resources, InBIO, Universidade do Porto, Campus Agrário de Vairão, Rua Padre Armando Quintas, N° 7, 4485-661 Vairão, Vila do Conde, Portugal b Departamento de Biologia, Faculdade de Ciências, Universidade do Porto, Rua do Campo Alegre FC4 4169-007 Porto, Portugal c Institut de Biologia Evolutiva (CSIC-Universitat Pompeu Fabra), Passeig Maritím de la Barceloneta, 37-49, 08003 Barcelona, Spain article info abstract Article history: The order Haemosporida (Apicomplexa) includes many medically important parasites. Knowledge on the diver- Received 4 April 2015 sity and distribution of Haemosporida has increased in recent years, but remains less known in reptiles and their Received in revised form 7 September 2015 taxonomy is still uncertain. Further, estimates of evolutionary relationships of this order tend to change when Accepted 10 September 2015 new genes, taxa, outgroups or alternative methodologies are used. We inferred an updated phylogeny for the Available online 12 September 2015 Cytochrome b gene (cyt b) of Haemosporida and screened a total of 80 blood smears from 17 lizard species from Oman belonging to 11 genera. The inclusion of previously underrepresented genera resulted in an alterna- Keywords: Haemoproteus tive estimate of phylogeny for Haemosporida based on the cyt b gene.
    [Show full text]
  • Characterizing the Genetic Diversity of the Monkey Malaria Parasite Plasmodium Cynomolgi
    Infection, Genetics and Evolution 40 (2016) 243–252 Contents lists available at ScienceDirect Infection, Genetics and Evolution journal homepage: www.elsevier.com/locate/meegid Characterizing the genetic diversity of the monkey malaria parasite Plasmodium cynomolgi Patrick L. Sutton a,1, Zunping Luo a,PaulC.S.Divisb,c, Volney K. Friedrich d,2,DavidJ.Conwayb,c, Balbir Singh c, John W. Barnwell e,JaneM.Carltona, Steven A. Sullivan a,⁎ a Center for Genomics and Systems Biology, Department of Biology, New York University, 12 Waverly Place, New York, NY 10003, United States b Pathogen Molecular Biology Department, London School of Hygiene and Tropical Medicine, Keppel St, London WC1E 7HT, United Kingdom c Malaria Research Centre, Faculty of Medicine and Health Sciences, University Malaysia Sarawak, 94300 Kota Samarahan, Sarawak, Malaysia d Department of Anthropology, New York University, 38 Waverly Place, New York, NY 10003, United States e Laboratory Research and Development Unit, Malaria Branch, Centers for Disease Control and Prevention, Atlanta, GA, United States article info abstract Article history: Plasmodium cynomolgi is a malaria parasite that typically infects Asian macaque monkeys, and humans on rare Received 4 January 2016 occasions. P. cynomolgi serves as a model system for the human malaria parasite Plasmodium vivax, with which Received in revised form 1 March 2016 it shares such important biological characteristics as formation of a dormant liver stage and a preference to Accepted 2 March 2016 invade reticulocytes. While genomes of three P. cynomolgi strains have been sequenced, genetic diversity of Available online 14 March 2016 P. cynomolgi has not been widely investigated. To address this we developed the first panel of P.
    [Show full text]
  • Wildlife Parasitology in Australia: Past, Present and Future
    CSIRO PUBLISHING Australian Journal of Zoology, 2018, 66, 286–305 Review https://doi.org/10.1071/ZO19017 Wildlife parasitology in Australia: past, present and future David M. Spratt A,C and Ian Beveridge B AAustralian National Wildlife Collection, National Research Collections Australia, CSIRO, GPO Box 1700, Canberra, ACT 2601, Australia. BVeterinary Clinical Centre, Faculty of Veterinary and Agricultural Sciences, University of Melbourne, Werribee, Vic. 3030, Australia. CCorresponding author. Email: [email protected] Abstract. Wildlife parasitology is a highly diverse area of research encompassing many fields including taxonomy, ecology, pathology and epidemiology, and with participants from extremely disparate scientific fields. In addition, the organisms studied are highly dissimilar, ranging from platyhelminths, nematodes and acanthocephalans to insects, arachnids, crustaceans and protists. This review of the parasites of wildlife in Australia highlights the advances made to date, focussing on the work, interests and major findings of researchers over the years and identifies current significant gaps that exist in our understanding. The review is divided into three sections covering protist, helminth and arthropod parasites. The challenge to document the diversity of parasites in Australia continues at a traditional level but the advent of molecular methods has heightened the significance of this issue. Modern methods are providing an avenue for major advances in documenting and restructuring the phylogeny of protistan parasites in particular, while facilitating the recognition of species complexes in helminth taxa previously defined by traditional morphological methods. The life cycles, ecology and general biology of most parasites of wildlife in Australia are extremely poorly understood. While the phylogenetic origins of the Australian vertebrate fauna are complex, so too are the likely origins of their parasites, which do not necessarily mirror those of their hosts.
    [Show full text]
  • Seroprevalence and Clinical Outcomes of Neospora Caninum, Toxoplasma Gondii and Besnoitia Besnoiti Infections in Water Buffaloes (Bubalus Bubalis)
    animals Article Seroprevalence and Clinical Outcomes of Neospora caninum, Toxoplasma gondii and Besnoitia besnoiti Infections in Water Buffaloes (Bubalus bubalis) Lavinia Ciuca, Giuliano Borriello , Antonio Bosco, Luigi D’Andrea * , Giuseppe Cringoli, Paolo Ciaramella, Maria Paola Maurelli, Antonio Di Loria , Laura Rinaldi and Jacopo Guccione Department of Veterinary Medicine and Animal Production, University of Naples Federico II, Via Delpino 1, 80137 Naples, Italy; [email protected] (L.C.); [email protected] (G.B.); [email protected] (A.B.); [email protected] (G.C.); [email protected] (P.C.); [email protected] (M.P.M.); [email protected] (A.D.L.); [email protected] (L.R.); [email protected] (J.G.) * Correspondence: [email protected] Received: 26 February 2020; Accepted: 19 March 2020; Published: 22 March 2020 Simple Summary: Over the recent years, increasing demand for buffalo products and consequently expanding its productivity has generated concerns regarding diseases that reduce fertility or cause abortion but the attention has been focused mostly on infectious diseases. Thus, exploration on the capacity of parasitic pathogens in relation to reproductive losses in this species are needed. This was the first study investigating, simultaneously, the role and changes induced by Neospora caninum, Toxoplasma gondii and Besnoitia besnoiti in water buffaloes in southern Italy. The outcome of this study revealed a high exposure of water buffaloes to both N. caninum and T. gondii, whereas all the animals resulted negative to B. besnoiti. The mono-infection with N. caninum seems mainly associated with abortion and presence of retained foetal membranes, while mono-infection with T.
    [Show full text]
  • The Nuclear 18S Ribosomal Dnas of Avian Haemosporidian Parasites Josef Harl1, Tanja Himmel1, Gediminas Valkiūnas2 and Herbert Weissenböck1*
    Harl et al. Malar J (2019) 18:305 https://doi.org/10.1186/s12936-019-2940-6 Malaria Journal RESEARCH Open Access The nuclear 18S ribosomal DNAs of avian haemosporidian parasites Josef Harl1, Tanja Himmel1, Gediminas Valkiūnas2 and Herbert Weissenböck1* Abstract Background: Plasmodium species feature only four to eight nuclear ribosomal units on diferent chromosomes, which are assumed to evolve independently according to a birth-and-death model, in which new variants origi- nate by duplication and others are deleted throughout time. Moreover, distinct ribosomal units were shown to be expressed during diferent developmental stages in the vertebrate and mosquito hosts. Here, the 18S rDNA sequences of 32 species of avian haemosporidian parasites are reported and compared to those of simian and rodent Plasmodium species. Methods: Almost the entire 18S rDNAs of avian haemosporidians belonging to the genera Plasmodium (7), Haemo- proteus (9), and Leucocytozoon (16) were obtained by PCR, molecular cloning, and sequencing ten clones each. Phy- logenetic trees were calculated and sequence patterns were analysed and compared to those of simian and rodent malaria species. A section of the mitochondrial CytB was also sequenced. Results: Sequence patterns in most avian Plasmodium species were similar to those in the mammalian parasites with most species featuring two distinct 18S rDNA sequence clusters. Distinct 18S variants were also found in Haemopro- teus tartakovskyi and the three Leucocytozoon species, whereas the other species featured sets of similar haplotypes. The 18S rDNA GC-contents of the Leucocytozoon toddi complex and the subgenus Parahaemoproteus were extremely high with 49.3% and 44.9%, respectively.
    [Show full text]
  • The Revised Classification of Eukaryotes
    See discussions, stats, and author profiles for this publication at: https://www.researchgate.net/publication/231610049 The Revised Classification of Eukaryotes Article in Journal of Eukaryotic Microbiology · September 2012 DOI: 10.1111/j.1550-7408.2012.00644.x · Source: PubMed CITATIONS READS 961 2,825 25 authors, including: Sina M Adl Alastair Simpson University of Saskatchewan Dalhousie University 118 PUBLICATIONS 8,522 CITATIONS 264 PUBLICATIONS 10,739 CITATIONS SEE PROFILE SEE PROFILE Christopher E Lane David Bass University of Rhode Island Natural History Museum, London 82 PUBLICATIONS 6,233 CITATIONS 464 PUBLICATIONS 7,765 CITATIONS SEE PROFILE SEE PROFILE Some of the authors of this publication are also working on these related projects: Biodiversity and ecology of soil taste amoeba View project Predator control of diversity View project All content following this page was uploaded by Smirnov Alexey on 25 October 2017. The user has requested enhancement of the downloaded file. The Journal of Published by the International Society of Eukaryotic Microbiology Protistologists J. Eukaryot. Microbiol., 59(5), 2012 pp. 429–493 © 2012 The Author(s) Journal of Eukaryotic Microbiology © 2012 International Society of Protistologists DOI: 10.1111/j.1550-7408.2012.00644.x The Revised Classification of Eukaryotes SINA M. ADL,a,b ALASTAIR G. B. SIMPSON,b CHRISTOPHER E. LANE,c JULIUS LUKESˇ,d DAVID BASS,e SAMUEL S. BOWSER,f MATTHEW W. BROWN,g FABIEN BURKI,h MICAH DUNTHORN,i VLADIMIR HAMPL,j AARON HEISS,b MONA HOPPENRATH,k ENRIQUE LARA,l LINE LE GALL,m DENIS H. LYNN,n,1 HILARY MCMANUS,o EDWARD A. D.
    [Show full text]
  • Haemocystidium Spp., a Species Complex Infecting Ancient Aquatic Turtles of the Family Podocnemididae First Report of These
    IJP: Parasites and Wildlife 10 (2019) 299–309 Contents lists available at ScienceDirect IJP: Parasites and Wildlife journal homepage: www.elsevier.com/locate/ijppaw Haemocystidium spp., a species complex infecting ancient aquatic turtles of the family Podocnemididae: First report of these parasites in Podocnemis T vogli from the Orinoquia Leydy P. Gonzáleza,b, M. Andreína Pachecoc, Ananías A. Escalantec, Andrés David Jiménez Maldonadoa,d, Axl S. Cepedaa, Oscar A. Rodríguez-Fandiñoe, ∗ Mario Vargas‐Ramírezd, Nubia E. Mattaa, a Departamento de Biología, Facultad de Ciencias, Universidad Nacional de Colombia, Sede Bogotá, Carrera 30 No 45-03, Bogotá, Colombia b Instituto de Biotecnología, Facultad de Ciencias, Universidad Nacional de Colombia, Sede Bogotá, Carrera 30 No 45-03, Bogotá, Colombia c Department of Biology/Institute for Genomics and Evolutionary Medicine (iGEM), Temple University, Philadelphia, PA, USA d Instituto de Genética, Universidad Nacional de Colombia, Sede Bogotá, Carrera 30 No 45-03, Bogotá, Colombia e Fundación Universitaria-Unitrópico, Dirección de Investigación, Grupo de Investigación en Ciencias Biológicas de la Orinoquía (GINBIO), Colombia ARTICLE INFO ABSTRACT Keywords: The genus Haemocystidium was described in 1904 by Castellani and Willey. However, several studies considered Haemoparasites it a synonym of the genera Plasmodium or Haemoproteus. Recently, molecular evidence has shown the existence Reptile of a monophyletic group that corresponds to the genus Haemocystidium. Here, we further explore the clade Simondia Haemocystidium spp. by studying parasites from Testudines. A total of 193 individuals belonging to six families of Chelonians Testudines were analyzed. The samples were collected in five localities in Colombia: Casanare, Vichada, Arauca, Colombia Antioquia, and Córdoba. From each individual, a blood sample was taken for molecular analysis, and peripheral blood smears were made, which were fixed and subsequently stained with Giemsa.
    [Show full text]
  • Stump-Tailed Macaques (Macaca Arctoides)
    Fungfuang et al. Malar J (2020) 19:350 https://doi.org/10.1186/s12936-020-03424-0 Malaria Journal RESEARCH Open Access Malaria parasites in macaques in Thailand: stump-tailed macaques (Macaca arctoides) are new natural hosts for Plasmodium knowlesi, Plasmodium inui, Plasmodium coatneyi and Plasmodium feldi Wirasak Fungfuang1, Chanya Udom1, Daraka Tongthainan2, Khamisah Abdul Kadir3 and Balbir Singh3* Abstract Background: Certain species of macaques are natural hosts of Plasmodium knowlesi and Plasmodium cynomolgi, which can both cause malaria in humans, and Plasmodium inui, which can be experimentally transmitted to humans. A signifcant number of zoonotic malaria cases have been reported in humans throughout Southeast Asia, includ- ing Thailand. There have been only two studies undertaken in Thailand to identify malaria parasites in non-human primates in 6 provinces. The objective of this study was to determine the prevalence of P. knowlesi, P. cynomolgi, P. inui, Plasmodium coatneyi and Plasmodium feldi in non-human primates from 4 new locations in Thailand. Methods: A total of 93 blood samples from Macaca fascicularis, Macaca leonina and Macaca arctoides were collected from four locations in Thailand: 32 were captive M. fascicularis from Chachoengsao Province (CHA), 4 were wild M. fascicularis from Ranong Province (RAN), 32 were wild M. arctoides from Prachuap Kiri Khan Province (PRA), and 25 were wild M. leonina from Nakornratchasima Province (NAK). DNA was extracted from these samples and analysed by nested PCR assays to detect Plasmodium, and subsequently to detect P. knowlesi, P. coatneyi, P. cynomolgi, P. inui and P. feldi. Results: Twenty-seven of the 93 (29%) samples were Plasmodium-positive by nested PCR assays.
    [Show full text]
  • Plasmodium Vivax-Like Genome Sequences Shed New Insights Into Plasmodium Vivax Biology and Evolution
    bioRxiv preprint doi: https://doi.org/10.1101/205302; this version posted March 12, 2018. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. Title: Plasmodium vivax-like genome sequences shed new insights into Plasmodium vivax biology and evolution Authors: Aude Gilabert1,#, Thomas D. Otto2,3,#, Gavin G. Rutledge2, Blaise Franzon1, Benjamin Ollomo4, Céline Arnathau1, Patrick Durand1, Nancy D. Moukodoum4, Alain- Prince Okouga4, Barthélémy Ngoubangoye4, Boris Makanga4, Larson Boundenga4, Christophe Paupy1,4, François Renaud1, Franck Prugnolle1,4,*, Virginie Rougeron1,4,* Affiliations: 1MIVEGEC, IRD, CNRS, Univ. Montpellier, Montpellier, FRANCE 2Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Cambridge CB10 1SA, UK 3 Institute of Infection, Immunity and Inflammation, University of Glasgow, College of Medical, Veterinary and Life Sciences, Sir Graeme Davies Building, 120 University Place, Glasgow G12 8TA, UK 4Centre International de Recherches Médicales de Franceville, B.P. 769, Franceville, GABON #Contributed equally to this work *Corresponding authors: Rougeron Virginie; Laboratoire MIVEGEC (UM-CNRS-IRD), 34394 Montpellier, France; [email protected] / [email protected]; Prugnolle Franck; Laboratoire MIVEGEC (UM-CNRS-IRD), 34394 Montpellier, France; [email protected] 1 bioRxiv preprint doi: https://doi.org/10.1101/205302; this version posted March 12, 2018. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. Abstract Although Plasmodium vivax is responsible for the majority of malaria infections outside Africa, little is known about its evolution and pathway to humans.
    [Show full text]
  • Protozoan Parasites
    Welcome to “PARA-SITE: an interactive multimedia electronic resource dedicated to parasitology”, developed as an educational initiative of the ASP (Australian Society of Parasitology Inc.) and the ARC/NHMRC (Australian Research Council/National Health and Medical Research Council) Research Network for Parasitology. PARA-SITE was designed to provide basic information about parasites causing disease in animals and people. It covers information on: parasite morphology (fundamental to taxonomy); host range (species specificity); site of infection (tissue/organ tropism); parasite pathogenicity (disease potential); modes of transmission (spread of infections); differential diagnosis (detection of infections); and treatment and control (cure and prevention). This website uses the following devices to access information in an interactive multimedia format: PARA-SIGHT life-cycle diagrams and photographs illustrating: > developmental stages > host range > sites of infection > modes of transmission > clinical consequences PARA-CITE textual description presenting: > general overviews for each parasite assemblage > detailed summaries for specific parasite taxa > host-parasite checklists Developed by Professor Peter O’Donoghue, Artwork & design by Lynn Pryor School of Chemistry & Molecular Biosciences The School of Biological Sciences Published by: Faculty of Science, The University of Queensland, Brisbane 4072 Australia [July, 2010] ISBN 978-1-8649999-1-4 http://parasite.org.au/ 1 Foreword In developing this resource, we considered it essential that
    [Show full text]
  • Evolutionary History of Human Plasmodium Vivax Revealed by Genome-Wide Analyses of Related Ape Parasites
    Evolutionary history of human Plasmodium vivax revealed by genome-wide analyses of related ape parasites Dorothy E. Loya,b,1, Lindsey J. Plenderleithc,d,1, Sesh A. Sundararamana,b, Weimin Liua, Jakub Gruszczyke, Yi-Jun Chend,f, Stephanie Trimbolia, Gerald H. Learna, Oscar A. MacLeanc,d, Alex L. K. Morganc,d, Yingying Lia, Alexa N. Avittoa, Jasmin Gilesa, Sébastien Calvignac-Spencerg, Andreas Sachseg, Fabian H. Leendertzg, Sheri Speedeh, Ahidjo Ayoubai, Martine Peetersi, Julian C. Raynerj, Wai-Hong Thame,f, Paul M. Sharpc,d,2, and Beatrice H. Hahna,b,2,3 aDepartment of Medicine, University of Pennsylvania, Philadelphia, PA 19104; bDepartment of Microbiology, University of Pennsylvania, Philadelphia, PA 19104; cInstitute of Evolutionary Biology, University of Edinburgh, Edinburgh EH9 3FL, United Kingdom; dCentre for Immunity, Infection and Evolution, University of Edinburgh, Edinburgh EH9 3FL, United Kingdom; eWalter and Eliza Hall Institute of Medical Research, Parkville VIC 3052, Australia; fDepartment of Medical Biology, The University of Melbourne, Parkville VIC 3010, Australia; gRobert Koch Institute, 13353 Berlin, Germany; hSanaga-Yong Chimpanzee Rescue Center, International Development Association-Africa, Portland, OR 97208; iRecherche Translationnelle Appliquée au VIH et aux Maladies Infectieuses, Institut de Recherche pour le Développement, University of Montpellier, INSERM, 34090 Montpellier, France; and jMalaria Programme, Wellcome Trust Sanger Institute, Genome Campus, Hinxton Cambridgeshire CB10 1SA, United Kingdom Contributed by Beatrice H. Hahn, July 13, 2018 (sent for review June 12, 2018; reviewed by David Serre and L. David Sibley) Wild-living African apes are endemically infected with parasites most recently in bonobos (Pan paniscus)(7–11). Phylogenetic that are closely related to human Plasmodium vivax,aleadingcause analyses of available sequences revealed that ape and human of malaria outside Africa.
    [Show full text]