NVIDIA 455.28 Released

Total Page:16

File Type:pdf, Size:1020Kb

NVIDIA 455.28 Released Published on Tux Machines (http://www.tuxmachines.org) Home > content > NVIDIA 455.28 Released NVIDIA 455.28 Released By Roy Schestowitz Created 07/10/2020 - 6:07pm Submitted by Roy Schestowitz on Wednesday 7th of October 2020 06:07:09 PM Filed under Graphics/Benchmarks [1] NVIDIA 455.28 Released As Stable Linux Driver For RTX 3080/3090 [2] Last month marked the release of the 455.23.04 beta driver for NVIDIA Linux users in providing support for the GeForce RTX 3080 and 3090 graphics cards. The NVIDIA 455.28 Linux driver is out today as their first official 455 series release and also stable RTX 3080/3090 Ampere support. On top of the NVIDIA 455 series supporting the Ampere RTX 30 series, the driver series for Linux users also adds VDPAU VP9 10/12-bit support, improved base mosaic support, support for the NVIDIA NGX updater, Vulkan additions, and more. NVIDIA driver 455.28 is out for Linux, new GPU support and lots of bug fixes[3] NVIDIA have produced a brand new stable Linux driver with version 455.28, which adds in new GPU support and there's plenty of fixes for us too. This is a proper mainline stable driver, so it should be good for anyone to upgrade with. A lot of this is coming over from previous Beta releases. With this new 455.28 driver it sees official Linux support for the GeForce RTX 3080, GeForce RTX 3090 and the GeForce MX450. That's not all that was added. In this release they hooked up support for a new device-local VkMemoryType which is host-coherent and host-visible, which they said may lead to better performance for running certain titles with the DXVK translation layer like DiRT Rally 2.0, DOOM: Eternal and World of Warcraft. It also adds NVIDIA VDPAU driver support for decoding VP9 10- and 12-bit bitstreams. Graphics/Benchmarks Source URL: http://www.tuxmachines.org/node/142956 Links: [1] http://www.tuxmachines.org/taxonomy/term/148 [2] https://www.phoronix.com/scan.php?page=news_item&px=NVIDIA-455.28-Linux-Driver [3] https://www.gamingonlinux.com/2020/10/nvidia-driver-45528-is-out-for-linux-new-gpu-support-and-lots-of-bug- fixes.
Recommended publications
  • GPU-Based Deep Learning Inference
    Whitepaper GPU-Based Deep Learning Inference: A Performance and Power Analysis November 2015 1 Contents Abstract ......................................................................................................................................................... 3 Introduction .................................................................................................................................................. 3 Inference versus Training .............................................................................................................................. 4 GPUs Excel at Neural Network Inference ..................................................................................................... 5 Inference Optimizations in Caffe and cuDNN 4 ........................................................................................ 5 Experimental Setup and Testing Methodology ........................................................................................ 7 Inference on Small and Large GPUs .......................................................................................................... 8 Conclusion ................................................................................................................................................... 10 References .................................................................................................................................................. 10 2 Abstract Deep learning methods are revolutionizing various areas of machine perception. On a
    [Show full text]
  • Numerical Behavior of NVIDIA Tensor Cores
    Numerical behavior of NVIDIA tensor cores Massimiliano Fasi1, Nicholas J. Higham2, Mantas Mikaitis2 and Srikara Pranesh2 1 School of Science and Technology, Örebro University, Örebro, Sweden 2 Department of Mathematics, University of Manchester, Manchester, UK ABSTRACT We explore the floating-point arithmetic implemented in the NVIDIA tensor cores, which are hardware accelerators for mixed-precision matrix multiplication available on the Volta, Turing, and Ampere microarchitectures. Using Volta V100, Turing T4, and Ampere A100 graphics cards, we determine what precision is used for the intermediate results, whether subnormal numbers are supported, what rounding mode is used, in which order the operations underlying the matrix multiplication are performed, and whether partial sums are normalized. These aspects are not documented by NVIDIA, and we gain insight by running carefully designed numerical experiments on these hardware units. Knowing the answers to these questions is important if one wishes to: (1) accurately simulate NVIDIA tensor cores on conventional hardware; (2) understand the differences between results produced by code that utilizes tensor cores and code that uses only IEEE 754-compliant arithmetic operations; and (3) build custom hardware whose behavior matches that of NVIDIA tensor cores. As part of this work we provide a test suite that can be easily adapted to test newer versions of the NVIDIA tensorcoresaswellassimilaracceleratorsfromothervendors,astheybecome available. Moreover, we identify a non-monotonicity issue
    [Show full text]
  • Manycore GPU Architectures and Programming, Part 1
    Lecture 19: Manycore GPU Architectures and Programming, Part 1 Concurrent and Mul=core Programming CSE 436/536, [email protected] www.secs.oakland.edu/~yan 1 Topics (Part 2) • Parallel architectures and hardware – Parallel computer architectures – Memory hierarchy and cache coherency • Manycore GPU architectures and programming – GPUs architectures – CUDA programming – Introduc?on to offloading model in OpenMP and OpenACC • Programming on large scale systems (Chapter 6) – MPI (point to point and collec=ves) – Introduc?on to PGAS languages, UPC and Chapel • Parallel algorithms (Chapter 8,9 &10) – Dense matrix, and sorng 2 Manycore GPU Architectures and Programming: Outline • Introduc?on – GPU architectures, GPGPUs, and CUDA • GPU Execuon model • CUDA Programming model • Working with Memory in CUDA – Global memory, shared and constant memory • Streams and concurrency • CUDA instruc?on intrinsic and library • Performance, profiling, debugging, and error handling • Direc?ve-based high-level programming model – OpenACC and OpenMP 3 Computer Graphics GPU: Graphics Processing Unit 4 Graphics Processing Unit (GPU) Image: h[p://www.ntu.edu.sg/home/ehchua/programming/opengl/CG_BasicsTheory.html 5 Graphics Processing Unit (GPU) • Enriching user visual experience • Delivering energy-efficient compung • Unlocking poten?als of complex apps • Enabling Deeper scien?fic discovery 6 What is GPU Today? • It is a processor op?mized for 2D/3D graphics, video, visual compu?ng, and display. • It is highly parallel, highly multhreaded mulprocessor op?mized for visual
    [Show full text]
  • GPU Technology Conference 2010 Sessions on 2095
    GPU Technology Conference 2010 Sessions on Video Processing (subject to change) IMPORTANT: Visit www.nvidia.com/gtc for the most up-to-date schedule and to enroll into sessions to ensure your spot in the most popular courses. 2095 - Building High Density Real-Time Video Processing Systems Learn how GPU Direct can be used to effectively build real time, high performance, cost effective video processing products. We will focus especially on how to optimize bus throughput while keeping CPU load and latency minimal. Speaker: Ronny Dewaele, Barco Topics: Video Processing, Imaging Time: Thursday, September, 23rd, 16:00 - 16:50 2029 - Computer Vision Algorithms for Automating HD Post- Production Discover how post-production tasks can be accelerated by taking advantage of GPU-based algorithms. In this talk we present computer vision algorithms for corner detection, feature point tracking, image warping and image inpainting, and their efficient implementation on GPUs using CUDA. We also show how to use these algorithms to do real-time stabilization and temporal re-sampling (re-timing) of high definition video sequences, both common tasks in post-production. Benchmarking of the GPU implementations against optimized CPU algorithms demonstrates a speedup of approximately an order of magnitude. Speaker: Hannes Fassold, JOANNEUM RESEARCH Topics: Computer Vision, Video Processing Time: Wednesday, September, 22nd, 15:00 - 15:50 2125 - Developing GPU Enabled Visual Effects For Film And Video 1 The arrival of fully programable GPUs is now changing the visual effects industry, which traditionally relied on CPU computation to create their spectacular imagery. Implementing the complex image processing algorithms used by VFX is a challenge, but the payoffs in terms of interactivity and throughput can be enormous.
    [Show full text]
  • Der Optimale PC
    ct.2509.001 16.11.2009 12:04 Uhr Seite 1 Mit Stellenmarkt www.ct.de e 3,50 magazin für Österreich e 3,70 magazin für Schweiz CHF 6,90 • Benelux e 4,20 ItalienItalien e 4,60 • Spanien e 4,60 25/2009 c computercomputer 2525 techniktechnik 23. 11. 2009 E-Books und Zeitungen im Online-Zugriff Das universelle Buch Kindle & Co. im Test • Lesestoff selbst aufbereiten Multifunktionsdrucker Videoschnittprogramme Fernseher mit LED-Backlight Aktuelle Spielkonsolen Günstige Android-Handys i5-PCs,i5-PCs, i7-Notebooksi7-Notebooks Quad-Core-Power Von XP auf Windows 7 E-Books • Der optimale PC Core i5 & i7, Strom sparen im Netz Wissenschaftler im Web Strom sparen im Netz Linux: Initskripte verwalten Notebook oder Desktop Heise h DerDer optimaleoptimale PCPC Komplettsysteme vs. superleise Selbstbaurechner ct.0108.999.anzeige.EP 09.06.2008 16:00 Uhr Seite 2 © Copyright by Heise Zeitschriften Verlag GmbH & Co. KG. Veröffentlichung und Vervielfältigung nur mit Genehmigung des Heise Zeitschriften Verlags. ct.2509.003 17.11.2009 15:22 Uhr Seite 3 c Nicht nachmachen "Wow, das Spiel ist wirklich geil!!!1111" Bei solch fetten Gewinnen kann die Firma So oder ähnlich könnte man die Bewertungen gelassen in Kauf nehmen, wenn in den kommenden etlicher Spielemagazine zusammen fassen, die Wochen Jugendschützer auf die Barrikaden das viel diskutierte 3D-Ballerspiel Call of klettern. Außerdem könnte Activisions Erfolgs - Duty: Modern Warfare 2 vom US-Hersteller rezept als Vorlage für andere Hersteller dienen, Activision in den Himmel loben. Doch selten um vermehrt mit altbekannten Spielideen war die Diskrepanz zwischen dem Hype der kräftig Kasse zu machen.
    [Show full text]
  • The Road to the Mainline Zynqmp VCU Driver
    The Road to the Mainline ZynqMP VCU Driver FOSDEM ’21 Michael Tretter – [email protected] https://www.pengutronix.de Agenda Xilinx Zynq® UltraScale+™ MPSoC H.264/H.265 Video Codec Unit Video Encoders in Mainline Linux VCU Mainline Driver: Allegro A Glimpse into the Future 2/47 Xilinx Zynq® UltraScale+™ MPSoC 3/47 ZynqMP Platform Overview Luca Ceresoli: ARM64 + FPGA and more: Linux on the Xilinx ZynqMP https://archive.fosdem.org/ 2018/schedule/event/arm6 4_and_fpga 4/47 ZynqMP Mainline Status Mainline Linux just works, e.g., on ZCU104 Evaluation Kit U-Boot, Barebox, FSBL Sometimes more reliable with Xilinx downstream Xilinx is actively mainlining their drivers 5/47 Make Sure that Your ZynqMP has a VCU ZU # E V ZU: Zynq Ultrascale+ #: Value Index C/E: Processor System Identifier G/V: Engine Type 6/47 Focus on Video Encoding VCU supports video decoding, as well Linux mainline driver only supports encoding Decoding might be focus in a future talk 7/47 Basic Video Encoding Knowledge Expected Paul Kocialkowski: Supporting Hardware-Accelerated Video Encoding with Mainline https://www.youtube.com/watch?v=S5wCdZfGFew 8/47 H.264/H.265 Video Codec Unit 9/47 VCU: Documentation Hardware configuration Software usage Available on the Xilinx Website 10/47 VCU: Features The encoder engine is designed to process video streams using the HEVC (ISO/IEC 23008-2 high-efficiency Video Coding) and AVC (ISO/IEC 14496-10 Advanced Video Coding) standards. It provides complete support for these standards, including support for 8-bit and 10-bit color, Y- only (monochrome), 4:2:0 and 4:2:2 Chroma formats, up to 4K UHD at 60 Hz performance.
    [Show full text]
  • AMD Linux Driver 2021.10 Release Notes
    [AMD Official Use Only - Internal Distribution Only] AMD Linux Driver 2021.10 Release Notes 1. Overview AMD’s Linux® Driver’s includes open source graphics driver for AMD’s embedded platforms and other peripheral devices on selected development platforms. New features supported in this release: 1. New LTS kernel 5.10.5. 2. Bug fixes and driver updates. 2. Linux® kernel Support 1. 5.10.5 LTS 3. Linux Distribution Support 1. Ubuntu 20.04.1 4. Component Versions The following table shows git commit details of the sources and binaries used in the package. The patches present in patches folder of this release package has to be applied on top of the git commit mentioned in the below table to get the full sources corresponding to this driver release. The sources directory in this package contains patches pre-applied to these commit ids. 2021.10 Linux Driver Release Notes 1 [AMD Official Use Only - Internal Distribution Only] Component Version Commit ID Source Link for git clone Name Kernel 5.10.5 f5247949c0a9304ae43a895f29216a9d876f https://git.kernel.org/pub/scm/linux/ker 3919 nel/git/stable/linux.git Libdrm 2.4.103 5dea8f56ee620e9a3ace34a99ebf0175efb5 https://github.com/freedesktop/mesa- 7b11 drm.git Mesa 21.1.0-dev 38f012e0238f145f4c83bf7abf59afceee333 https://github.com/mesa3d/mesa.git 397 Ddx 19.1.0 6234a1b2652f469071c0c9b0d8b0f4a8079e https://github.com/freedesktop/xorg- fe74 xf86-video-amdgpu.git Gstomx 1.0.0.1 5c4bff4a433dff1c5d005edfceaf727b6214b git://people.freedesktop.org/~leoliu/gsto b74 mx Wayland 1.15.0 ea09c2fde7fcfc7e24a19ae5c5977981e9bef
    [Show full text]
  • Numerical Behavior of NVIDIA Tensor Cores Fasi, Massimiliano And
    Numerical Behavior of NVIDIA Tensor Cores Fasi, Massimiliano and Higham, Nicholas J. and Mikaitis, Mantas and Pranesh, Srikara 2020 MIMS EPrint: 2020.10 Manchester Institute for Mathematical Sciences School of Mathematics The University of Manchester Reports available from: http://eprints.maths.manchester.ac.uk/ And by contacting: The MIMS Secretary School of Mathematics The University of Manchester Manchester, M13 9PL, UK ISSN 1749-9097 Numerical Behavior of NVIDIA Tensor Cores Massimiliano Fasi*1, Nicholas J. Higham2, Mantas Mikaitis2, and Srikara Pranesh2 1School of Science and Technology, Orebro¨ University, Orebro,¨ Sweden 2Department of Mathematics, University of Manchester, Manchester, United Kingdom Corresponding author: Mantas Mikaitis2 Email address: [email protected] ABSTRACT We explore the floating-point arithmetic implemented in the NVIDIA tensor cores, which are hardware accelerators for mixed-precision matrix multiplication available on the Volta, Turing, and Ampere microarchitectures. Using Volta V100, Turing T4 and Ampere A100 graphics cards, we determine what precision is used for the intermediate results, whether subnormal numbers are supported, what rounding mode is used, in which order the operations underlying the matrix multiplication are performed, and whether partial sums are normalized. These aspects are not documented by NVIDIA, and we gain insight by running carefully designed numerical experiments on these hardware units. Knowing the answers to these questions is important if one wishes to: 1) accurately simulate NVIDIA tensor cores on conventional hardware; 2) understand the differences between results produced by code that utilizes tensor cores and code that uses only IEEE 754-compliant arithmetic operations; and 3) build custom hardware whose behavior matches that of NVIDIA tensor cores.
    [Show full text]
  • NVIDIA's Opengl Functionality
    NVIDIANVIDIA ’’ss OpenGLOpenGL FunctionalityFunctionality Session 2127 | Room A5 | Monday, September, 20th, 16:00 - 17:20 San Jose Convention Center, San Jose, California Mark J. Kilgard • Principal System Software Engineer – OpenGL driver – Cg (“C for graphics”) shading language • OpenGL Utility Toolkit (GLUT) implementer • Author of OpenGL for the X Window System • Co-author of Cg Tutorial Outline • OpenGL’s importance to NVIDIA • OpenGL 3.3 and 4.0 • OpenGL 4.1 • Loose ends: deprecation, Cg, further extensions OpenGL Leverage Cg Parallel Nsight SceniX CompleX OptiX Example of Hybrid Rendering with OptiX OpenGL (Rasterization) OptiX (Ray tracing) Parallel Nsight Provides OpenGL Profiling Configure Application Trace Settings Parallel Nsight Provides OpenGL Profiling Magnified trace options shows specific OpenGL (and Cg) tracing options Parallel Nsight Provides OpenGL Profiling Parallel Nsight Provides OpenGL Profiling Trace of mix of OpenGL and CUDA shows glFinish & OpenGL draw calls OpenGL In Every NVIDIA Business OpenGL on Quadro – World class OpenGL 4 drivers – 18 years of uninterrupted API compatibility – Workstation application certifications – Workstation application profiles – Display list optimizations – Fast antialiased lines – Largest memory configurations: 6 gigabytes – GPU affinity – Enhanced interop with CUDA and multi-GPU OpenGL – Advanced multi-GPU rendering – Overlays – Genlock – Unified Back Buffer for less framebuffer memory usage – Cross-platform • Windows XP, Vista, Win7, Linux, Mac, FreeBSD, Solaris – SLI Mosaic –
    [Show full text]
  • Lecture: Manycore GPU Architectures and Programming, Part 1
    Lecture: Manycore GPU Architectures and Programming, Part 1 CSCE 569 Parallel Computing Department of Computer Science and Engineering Yonghong Yan [email protected] https://passlab.github.io/CSCE569/ 1 Manycore GPU Architectures and Programming: Outline • Introduction – GPU architectures, GPGPUs, and CUDA • GPU Execution model • CUDA Programming model • Working with Memory in CUDA – Global memory, shared and constant memory • Streams and concurrency • CUDA instruction intrinsic and library • Performance, profiling, debugging, and error handling • Directive-based high-level programming model – OpenACC and OpenMP 2 Computer Graphics GPU: Graphics Processing Unit 3 Graphics Processing Unit (GPU) Image: http://www.ntu.edu.sg/home/ehchua/programming/opengl/CG_BasicsTheory.html 4 Graphics Processing Unit (GPU) • Enriching user visual experience • Delivering energy-efficient computing • Unlocking potentials of complex apps • Enabling Deeper scientific discovery 5 What is GPU Today? • It is a processor optimized for 2D/3D graphics, video, visual computing, and display. • It is highly parallel, highly multithreaded multiprocessor optimized for visual computing. • It provide real-time visual interaction with computed objects via graphics images, and video. • It serves as both a programmable graphics processor and a scalable parallel computing platform. – Heterogeneous systems: combine a GPU with a CPU • It is called as Many-core 6 Graphics Processing Units (GPUs): Brief History GPU Computing General-purpose computing on graphics processing units (GPGPUs) GPUs with programmable shading Nvidia GeForce GE 3 (2001) with programmable shading DirectX graphics API OpenGL graphics API Hardware-accelerated 3D graphics S3 graphics cards- single chip 2D accelerator Atari 8-bit computer IBM PC Professional Playstation text/graphics chip Graphics Controller card 1970 1980 1990 2000 2010 Source of information http://en.wikipedia.org/wiki/Graphics_Processing_Unit 7 NVIDIA Products • NVIDIA Corp.
    [Show full text]
  • Generated by Doxygen 1.8.11
    VDPAU Generated by Doxygen 1.8.11 Contents 1 Video Decode and Presentation API for Unix1 1.1 Introduction .............................................. 1 1.2 API Partitioning ............................................ 1 1.3 Object Types.............................................. 1 1.3.1 Device Type.......................................... 2 1.3.2 Surface Types......................................... 2 1.3.3 Transfer Types ........................................ 2 1.4 Data Flow............................................... 2 1.5 Entry Point Retrieval.......................................... 3 1.5.1 Philosophy .......................................... 3 1.6 Multi-threading............................................. 3 1.7 Surface Endianness.......................................... 4 1.8 Video Decoder Usage......................................... 5 1.8.1 MPEG-1 and MPEG-2 .................................... 5 1.8.2 H.264............................................. 5 1.8.3 VC-1 Simple and Main Profile ................................ 6 1.8.4 VC-1 Advanced Profile.................................... 6 1.8.5 MPEG-4 Part 2 and DivX................................... 6 1.8.6 H.265/HEVC - High Efficiency Video Codec......................... 6 1.9 Video Mixer Usage .......................................... 7 1.9.1 VdpVideoSurface Content .................................. 7 1.9.2 VdpVideoMixer Surface List ................................. 7 1.9.3 Weave De-interlacing..................................... 8 1.9.4 Bob De-interlacing
    [Show full text]
  • Introduction to Cuda Programming
    INTRODUCTION TO CUDA PROGRAMMING BHUPENDER THAKUR Outline Outline of the talk • GPU architecture • CUDA programming model • CUDA tools and applicaons • Benchmarks Growth in GPU compung • Kepler is the current release. • SuperMike II has two Fermi 2090 GPU’s on the gpu nodes • Queenbee replacement is expected to have Nvidia Kepler GPUs hp://blogs.nvidia.com/blog/2014/03/25/gpu-roadmap-pascal/ Large theore?cal GFLOPs count hp://docs.nvidia.com/cuda/cuda-c-programming-guide/ High Bandwidth hp://docs.nvidia.com/cuda/cuda-c-programming-guide/ Notable Data Center products Tesla Data Center ProDucts GPU Compute Capability Tesla K20 3.5 Tesla K10 3.0 Tesla M2050/M2070/M2075/M2090 2.0 Tesla S1070 1.3 Tesla M1060 1.3 Tesla S870 1.0 Compute capabilies • The GPU’s were originally designed primarily for 3D game rendering. • SM – Streaming mul>-processors with mul>ple processing cores • Streaming mul>-processors with mul>ple processing cores • On Fermi, each SM contains 32 processing cores, Kepler SMX has 192 • Execute in a Single Instruc>on Mul>ple Thread (SIMT) fashion • Fermi has up to 16 SMs on a card for a maximum of 512 compute cores hp://www.theregister.co.uk/Print/2012/05/18/inside_nvidia_kepler2_gk110_gpu_tesla/ Outline • The GPU’s were originally designed primarily for 3D game rendering. • SM – Streaming mul>-processors with mul>ple processing cores • Streaming mul>-processors with mul>ple processing cores • On Fermi, each SM contains 32 processing cores, Kepler SMX has 192 • Execute in a Single Instruc>on Mul>ple Thread (SIMT) fashion • Fermi
    [Show full text]