Highly Ionized Plasma in the Large Magellanic Cloud: Evidence for ⋆ Outflows and a Possible Galactic Wind

Total Page:16

File Type:pdf, Size:1020Kb

Highly Ionized Plasma in the Large Magellanic Cloud: Evidence for ⋆ Outflows and a Possible Galactic Wind Mon. Not. R. Astron. Soc. 377, 687–704 (2007) doi:10.1111/j.1365-2966.2007.11631.x Highly ionized plasma in the Large Magellanic Cloud: evidence for ⋆ outflows and a possible galactic wind N. Lehner† and J. C. Howk Department of Physics, University of Notre Dame, 225 Nieuwland Science Hall, Notre Dame, IN 46556, USA Accepted 2007 February 15. Received 2007 February 15; in original form 2006 November 30 ABSTRACT Based on an analysis of the interstellar highly ionized species C IV,SiIV,NV and O VI observed in the Far Ultraviolet Spectroscopic Explorer (FUSE) and Hubble Space Telescope/Space Telescope Imaging Spectrograph (HST/STIS) E140M spectra of four hot stars in the Large Magellanic Cloud (LMC), we find evidence for a hot LMC halo fed by energetic outflows from the LMC disc and even possibly an LMC galactic wind. Signatures for such outflows 1 are the intermediate- and high-velocity components (vLSR 100 km s− ) relative to the LMC disc observed in the high- and low-ion absorption profiles. The stellar environments produce strong, narrow (T 2 104 K) components of C IV and Si IV associated with the LMC disc; × in particular they are likely signatures of H II regions and expanding shells. Broad components are observed in the profiles of C IV,SiIV and O VI with their widths implying hot, collisionally ionized gas at temperatures of a few times 105 K. There is a striking similarity in the O VI/C IV ratios for the broad LMC and high-velocity components, suggesting much of the material at 1 vLSR 100 km s− is associated with the LMC. The velocity of the high-velocity component is large enough to escape altogether the LMC, polluting the intergalactic space between the LMC and the Milky Way. The observed high-ion ratios of the broad LMC and high-velocity components are consistent with those produced in conductive interfaces; such models are also favoured by the apparent kinematically coupling between the high and the weakly ionized species. Key words: ISM: clouds – ISM: kinematics and dynamics – ISM: structure – galaxies: indi- vidual: Large Magellanic Cloud – galaxies: ISM – ultraviolet: ISM. fountain (Shapiro & Field 1976); in a low-mass system, this material 1 INTRODUCTION may escape the galaxy altogether in a galactic wind (Breitschwerdt, The structure and energetics of the interstellar medium (ISM) in Voelk & McKenzie 1991). Galactic fountains and winds affect the galaxies are strongly influenced by stellar winds and supernovae scale over which newly produced metals are distributed in the ISM (e.g. Abbot 1982). This is particularly true for spiral and irregular of a galaxy and/or in the intergalactic medium. For example, out- galaxies with on-going massive star formation, such as the Milky flows can affect the [α/Fe] ratios inside and outside dwarf galax- Way (MW), and the Large and Small Magellanic Clouds (LMC, ies (Recchi, Matteucci & D’Ercole 2001). Gas dynamics are there- SMC). The input of energy from winds and supernovae is expected fore critical in determining the evolution of galaxies (e.g. Matteucci to affect the ISM on kiloparsec scales, creating regions of super- 2003). Characterizing the phenomena of infall and outflow in nearby heated gas (e.g. Norman & Ikeuchi 1989). The 106-K gas that ex- galaxies is crucial for understanding the role they may play in galaxy pands into the halo of a disc galaxy may eventually cool and fall evolution and in the enrichment and evolution of the intergalactic back on to the disc in a massive system, participating in a galactic medium. The LMC is the nearest gas-rich disc galaxy to our own MW. As ⋆ such it has been the target of intense studies of its ISM, including Based on observations made with the NASA-CNES-CSA Far Ultraviolet its dust (e.g. Meixner et al. 2006), its molecular gas (Tumlinson Spectroscopic Explorer (FUSE). FUSE is operated for NASA by the Johns et al. 2002), its warm H I (Kim et al. 2003), its warm ionized gas Hopkins University under NASA contract NAS5-32985. Based on obser- vations made with the NASA/ESA Hubble Space Telescope, obtained at traced by Hα emission (e.g. Danforth et al. 2002), its warm-hot the Space Telescope Science Institute, which is operated by the Association gas traced by O VI (Howk et al. 2002; Danforth & Blair 2006) and of Universities for Research in Astronomy, Inc. under NASA contract no. its hot gas traced by X-rays (e.g. Snowden & Petre 1994). In this NAS5-26555. work, we report observations of interstellar absorption from the †E-mail: [email protected] Li-like ions N V,CIV,SiIV and O VI towards stars within the LMC. C C 2007 The Authors. Journal compilation 2007 RAS 688 N. Lehner and J. C. Howk These ions give us the means to study the highly ionized material LMC using FUSE and STIS. Two of these sight lines probe promi- produced by feedback processes in the MW and in the Magellanic nent superbubbles, while the other two probe H II regions, allowing Clouds. Si IV,CIV,NV and O VI peak in abundance at (0.6, 1.0, 1.8 us to compare the highly ionized species and their connection with and 2.8) 105 K, respectively, in collisional ionization equilibrium weaker ions towards different types of interstellar regions, which is (CIE; Sutherland× & Dopita 1993). They are, however, unlikely to useful for differentiating local from global effects. The organization be in equilibrium since these temperatures correspond to the peak of this paper is as follows. After describing the observations, data of the interstellar cooling curve, and gas at those temperatures is reduction and analysis of the data (measurements of the kinemat- likely to cool faster than it recombines. Instead, these ions may ics, column densities and column density ratios) in Section 2, we trace interfaces between very hot gas (T 106 K) and warm or cool present an overview of the kinematics in Section 3. In Section 4 (T 104 K) material and serve as a probe of the interaction between we discuss the origin of the highly ionized plasma in the LMC and the phases of the ISM having the most mass (warm/cool gas) and the implications of our results. A summary of the main results is the most direct connection to feedback processes (hot gas). presented in Section 5. Observational searches for a hot corona about the LMC using the highly ionized species started with IUE (International Ultra- 2 OBSERVATIONS AND ANALYSIS violet Explorer) spectra of C IV,SiIV and N V towards the hot star Sk 67 104 (de Boer & Savage 1980). However, the crude spectral ◦ 2.1 Data base resolution− of IUE and the fact that the hot star could be partly re- sponsible for producing C IV and Si IV brought Chu et al. (1994) to From the data archives of FUSE and HST/STIS E140M, we selected conclude these observations were not sufficient to prove the exis- four LMC targets. The selection criteria were to have the four critical tence of a hot LMC halo (N V was only marginally detected at best). highly ionized species (Si IV,CIV,NV and O VI) observable in the These highly ionized species could be either produced by photoion- far-ultraviolet (FUV) and ultraviolet (UV) and to be able to model ization from the star itself or in the superbubble via shocks. Wakker these ions without too much uncertainties (i.e. with a continuum et al. (1998) found C IV absorption in the spectra of cooler stars near the relevant ions that can be modelled without too much un- (O9.7 B1) using modest resolution Hubble Space Telescope (HST) certainty). This resulted in the sample of the four stars presented in − spectroscopy. This was the first evidence of C IV not related directly Table 1. Fortuitously, these stars are also located in different inter- to local effects, as these stars were deemed unable to produce sig- stellar environments (from Chu et al. 1994, and references therein). nificant high-ion absorption via photoionization. (i) Sk 65 22 is projected within the supergiant shell LMC 1, More recently, Far Ultraviolet Spectroscopic Explorer (FUSE) ◦ which is−about 1 kpc across (Meaburn 1980). It is located in a faint has contributed to the effort of examining the hot gas in the LMC H II region DEM 48 at the southeast rim. This supergiant shell con- by probing diffuse O VI in both Magellanic Clouds (Danforth et al. tains the OB association LH 15. 2002; Hoopes et al. 2002; Howk et al. 2002; Danforth & Blair (ii) Sk 67 211 is in the H II region DEM 241 that contains the 2006). Howk et al. (2002) used FUSE observations of sight lines to ◦ OB association− LH 82. The bright UV continuum and the early the LMC to study the O VI content and kinematics of the LMC. Their spectral type (O2 III(f ); Walborn et al. 2002) imply the star can survey of 12 sight lines through the near side of the LMC probed ∗ likely produce strong C IV and Si IV absorption associated with its collisionally ionized gas at T 3 105 K in the LMC and shows stellar environment. in particular that the LMC contains∼ ×a significant amount of highly (iii) Sk 69◦246 is a WR star situated in the X-ray bright super- ionized gas, with O VI column densities equal or greater than those bubble 30−Dor, and more precisely is in the south end of Shell 5, found along extended paths through the MW; and much of the O VI in which is the X-ray-bright ‘chimney’ to the north of the LH 100 OB the LMC must reside in an extended ‘halo’ or thick disc distribution, association (Y.-H.
Recommended publications
  • A Fuse Survey of the Rotation Rates of Very Massive Stars in the Small and Large Magellanic Clouds
    The Astrophysical Journal, 700:844–858, 2009 July 20 doi:10.1088/0004-637X/700/1/844 C 2009. The American Astronomical Society. All rights reserved. Printed in the U.S.A. A FUSE SURVEY OF THE ROTATION RATES OF VERY MASSIVE STARS IN THE SMALL AND LARGE MAGELLANIC CLOUDS Laura R. Penny1 and Douglas R. Gies2 1 Department of Physics and Astronomy, The College of Charleston, Charleston, SC 29424, USA; [email protected] 2 Center for High Angular Resolution Astronomy and Department of Physics and Astronomy, Georgia State University, P.O. Box 4106, Atlanta, GA 30302-4106, USA; [email protected] Received 2009 February 3; accepted 2009 May 26; published 2009 July 6 ABSTRACT We present projected rotational velocity values for 97 Galactic, 55 SMC, and 106 LMC O-B type stars from archival FUSE observations. The evolved and unevolved samples from each environment are compared through the Kolmogorov–Smirnov test to determine if the distribution of equatorial rotational velocities is metallicity dependent for these massive objects. Stellar interior models predict that massive stars with SMC metallicity will have significantly reduced angular momentum loss on the main sequence compared to their Galactic counterparts. Our results find some support for this prediction but also show that even at Galactic metallicity, evolved and unevolved massive stars have fairly similar fractions of stars with large V sin i values. Macroturbulent broadening that is present in the spectral features of Galactic evolved massive stars is lower in the LMC and SMC samples. This suggests the processes that lead to macroturbulence are dependent upon metallicity.
    [Show full text]
  • A FUSE Survey of Interstellar Molecular Hydrogen in the Small
    DRAFT VERSION OCTOBER 25, 2018 Preprint typeset using LATEX style emulateapj v. 04/03/99 A FUSE SURVEY OF INTERSTELLAR MOLECULAR HYDROGEN IN THE SMALL AND LARGE MAGELLANIC CLOUDS1 JASON TUMLINSON 2, J. MICHAEL SHULL2,3, BRIAN L. RACHFORD2, MATTHEW K. BROWNING2, THEODORE P. SNOW2, ALEX W. FULLERTON4,5, EDWARD B. JENKINS6, BLAIR D. SAVAGE7, PAUL A. CROWTHER8, H. WARREN MOOS5, KENNETH R. SEMBACH5, GEORGE SONNEBORN9, & DONALD G. YORK10 Draft version October 25, 2018 ABSTRACT We describe a moderate-resolution FUSE survey of H2 along 70 sight lines to the Small and Large Magellanic Clouds, using hot stars as background sources. FUSE spectra of 67% of observed Magellanic Cloud sources (52% of LMC and 92% of SMC) exhibit absorption lines from the H2 Lyman and Werner bands between 912 and 14 −2 1120 Å. Our survey is sensitive to N(H2) ≥ 10 cm ; the highest column densities are log N(H2) = 19.9 in the LMC and 20.6 in the SMC. We find reduced H2 abundances in the Magellanic Clouds relative to the Milky Way, +0.005 +0.006 with average molecular fractions h fH2i =0.010−0.002 for the SMC and h fH2i =0.012−0.003 for the LMC, compared with h fH2i =0.095 for the Galactic disk over a similar range of reddening. The dominant uncertainty in this measurement results from the systematic differences between 21 cm radio emission and Lyα in pencil-beam sight 6 lines as measures of N(H I). These results imply that the diffuse H2 masses of the LMC and SMC are 8 × 10 M⊙ 6 and 2 × 10 M⊙, respectively, 2% and 0.5% of the H I masses derived from 21 cm emission measurements.
    [Show full text]
  • The R136 Star Cluster Dissected with Hubble Space Telescope/STIS
    MNRAS 000, 1–39 (2015) Preprint 29 January 2016 Compiled using MNRAS LATEXstylefilev3.0 The R136 star cluster dissected with Hubble Space Telescope/STIS. I. Far-ultraviolet spectroscopic census and the origin of He ii λ1640 in young star clusters Paul A. Crowther1⋆, S.M. Caballero-Nieves1, K.A. Bostroem2,3,J.Ma´ız Apell´aniz4, F.R.N. Schneider5,6,N.R.Walborn2,C.R.Angus1,7,I.Brott8,A.Bonanos9, A. de Koter10,11,S.E.deMink10,C.J.Evans12,G.Gr¨afener13,A.Herrero14,15, I.D. Howarth16, N. Langer6,D.J.Lennon17,J.Puls18,H.Sana2,11,J.S.Vink13 1Department of Physics and Astronomy, University of Sheffield, Sheffield S3 7RH, UK 2Space Telescope Science Institute, 3700 San Martin Drive, Baltimore MD 21218, USA 3Department of Physics, University of California, Davis, 1 Shields Ave, Davis CA 95616, USA 4Centro de Astrobiologi´a, CSIC/INTA, Campus ESAC, Apartado Postal 78, E-28 691 Villanueva de la Ca˜nada, Madrid, Spain 5 Department of Physics, University of Oxford, Denys Wilkinson Building, Keble Road, Oxford, OX1 3RH, UK 6 Argelanger-Institut fur¨ Astronomie der Universit¨at Bonn, Auf dem Hugel¨ 71, D-53121 Bonn, Germany 7 Department of Physics, University of Warwick, Gibbet Hill Rd, Coventry CV4 7AL, UK 8 Institute for Astrophysics, Tuerkenschanzstr. 17, AT-1180 Vienna, Austria 9 Institute of Astronomy & Astrophysics, National Observatory of Athens, I. Metaxa & Vas. Pavlou St, P. Penteli 15236, Greece 10 Astronomical Institute Anton Pannekoek, University of Amsterdam, Kruislaan 403, 1098 SJ, Amsterdam, Netherlands 11 Institute of Astronomy, KU Leuven, Celestijnenlaan
    [Show full text]
  • The Global Content, Distribution, and Kinematics of Interstellar O VI in the Large Magellanic Cloud
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by CERN Document Server The Global Content, Distribution, and Kinematics of Interstellar O VI in the Large Magellanic Cloud J. Christopher Howk1, Kenneth R. Sembach1;2, Blair D. Savage3, Derck Massa4, Scott D. Friedman1,& Alex W. Fullerton1;5 ABSTRACT We present Far Ultraviolet Spectroscopic Explorer (FUSE) observations of interstellar O VI absorption towards 12 early-type stars in the Large Magellanic Cloud (LMC). The observations 1 ˚ have a velocity resolution of . 20 km s− (FWHM) and clearly show O VI 1031.926 A absorption at LMC velocities towards all 12 stars. From these observations we derive column densities of interstellar O VI in this nearby galaxy; the observed columns are in the range log N(O VI)=13:9 +0:14 to 14.6, with a mean of 14.37 and a standard deviation of 38% ( 0:21 dex). The observations ± − probe several sight lines projected onto known superbubbles in the LMC, but these show relatively little (if any) enhancement in O VI column density compared to sight lines towards relatively quiescent regions of the LMC. The observed LMC O VI absorption is broad, with Gaussian 1 6 dispersions σ 30 to 50 km s− . This implies temperatures T (2 5) 10 K, indicating ≈ . − × that much of the broadening is non-thermal because O VI has a very low abundance at such high 1 temperatures. The O VI absorption is typically displaced 30 km s− from the corresponding ∼− low-ionization absorption associated with the bulk of the LMC gas.
    [Show full text]
  • R144 Revealed As a Double-Lined Spectroscopic Binary?
    Mon. Not. R. Astron. Soc. 000, 1{6 (2002) Printed 4 October 2018 (MN LATEX style file v2.2) R144 revealed as a double-lined spectroscopic binary? H. Sana,1y T. van Boeckel,1 F. Tramper,1 L.E. Ellerbroek,1 A. de Koter,1;2;3 L. Kaper,1 A.F.J. Moffat,4 O. Schnurr,5 F.R.N. Schneider,6 D.R. Gies7 1 Astronomical Institute Anton Pannekoek, Amsterdam University, Science Park 904, 1098 XH, Amsterdam, The Netherlands 2 Utrecht University, Princetonplein 5, 3584CC, Utrecht, The Netherlands 3 Instituut voor Sterrenkunde, Universiteit Leuven, Celestijnenlaan 200 D, 3001, Leuven, Belgium 4 D´epartment de Physique, Universit´ede Montr´ealand Centre de Recherche en Astrophysique du Qu´ebec, C. P. 6128, succ. centre-ville, Montr´eal(Qc) H3C 3J7, Canada 5 Leibniz Institut f¨urAstrophysik Potsdam (AIP), An der Sternwarte 16, 14482 Potsdam, Germany 6 Argelander-Institut f¨urAstronomie, Universit¨atBonn, Auf dem H¨ugel71, 53121 Bonn, Germany 7 Center for High Angular Resolution Astronomy and Department of Physics and Astronomy, Georgia State University, P.O. Box 4106, Atlanta, GA 30302-4106, USA Accepted 1988 December 15. Received 1988 December 14; in original form 1988 October 11 ABSTRACT R144 is a WN6h star in the 30 Doradus region. It is suspected to be a binary because of its high luminosity and its strong X-ray flux, but no periodicity could be established so far. Here, we present new X-shooter multi-epoch spectroscopy of R144 obtained at the ESO Very Large Telescope (VLT). We detect variability in position and/or shape of all the spectral lines.
    [Show full text]
  • A Wind-Eclipsing Binary with a Total Mass 140 M
    Open Research Online The Open University’s repository of research publications and other research outputs The Tarantula Massive Binary Monitoring. V. R144: a wind-eclipsing binary with a total mass 140 M Journal Item How to cite: Shenar, T.; Sana, H.; Marchant, P.; Pablo, B.; Richardson, N.; Moffat, A. F. J.; Van Reeth, T.; Barbá, R. H.; Bowman, D. M.; Broos, P.; Crowther, P. A.; Clark, J. S.; de Koter, A.; de Mink, S. E.; Dsilva, K.; Gräfener, G.; Howarth, I. D.; Langer, N.; Mahy, L.; Maíz Apellániz, J.; Pollock, A. M. T.; Schneider, F. R. N.; Townsley, L. and Vink, J. S. (2021). The Tarantula Massive Binary Monitoring. V. R144: a wind-eclipsing binary with a total mass 140 M. Astronomy & Astrophysics, 650, article no. A147. For guidance on citations see FAQs. c 2021 ESO Version: Version of Record Link(s) to article on publisher’s website: http://dx.doi.org/doi:10.1051/0004-6361/202140693 Copyright and Moral Rights for the articles on this site are retained by the individual authors and/or other copyright owners. For more information on Open Research Online’s data policy on reuse of materials please consult the policies page. oro.open.ac.uk A&A 650, A147 (2021) Astronomy https://doi.org/10.1051/0004-6361/202140693 & © ESO 2021 Astrophysics The Tarantula Massive Binary Monitoring ? V. R 144: a wind-eclipsing binary with a total mass &140 M T. Shenar1, H. Sana1, P. Marchant1, B. Pablo2, N. Richardson3, A. F. J. Moffat4, T. Van Reeth1, R. H. Barbá5, D. M. Bowman1, P.
    [Show full text]
  • Supernova O Buco Nero?
    UNIVERSITÀ DEGLI STUDI DI PADOVA DIPARTIMENTO DI FISICA E ASTRONOMIA G. GALILEI Corso di laurea in Astronomia Tesi di Laurea Triennale DESTINO FINALE DELLE STELLE MOLTO MASSICCE: SUPERNOVA O BUCO NERO? Relatore: Prof.ssa Paola Marigo Correlatore: Alessandra Slemer Laureanda: Francesca Gerardi Matricola: 1072531 Anno Accademico 2015/2016 2 Indice Abstract 5 1 Cenni di evoluzione stellare 7 1.1 Classicazione stellare . 7 1.2 Stelle molto massicce (VMOs) . 11 1.2.1 Proprietà evolutive . 11 1.2.2 VMOs osservati . 15 2 PCSNe: pair creation supernovae 17 2.0.1 Considerazioni energetiche . 19 2.1 Arricchimento del mezzo interstellare . 20 2.2 Osservabilità a bassi redshift . 24 2.2.1 Curve di luce . 24 3 Conclusioni 29 3 4 Abstract Denendo la stella come un oggetto che irradia energia da una sorgente interna e che co- stituisce un sistema legato dalla sua stessa gravità , di norma si considerano stelle quelle la cui massa è inclusa tra le 0:08M , limite inferiore dettato dalla minima temperatura necessaria a innescare il bruciamento dell'idrogeno, e le 100M , limite superiore per la stabilità dinamica. La recente osservazione di stelle di massa superiore ha stimolato la ricerca verso le cosid- dette stelle molto massicce, ovvero stelle con massa iniziale maggiore di 100M ; sulla base della più recente letteratura se ne discutono le principali proprietà evolutive, il contribu- to all'arricchimento chimico del mezzo interstellare e il destino nale. L'esito nale sarà l'esplosione di supernova di tipo pair creation (PCSN) o il collasso diretto in buco nero, secondo un criterio dettato dalla massa del nucleo di elio MHe.
    [Show full text]
  • 198 3MNRAS.205.1191M Mon. Not. R. Astr. Soc. (1983) 205
    Mon. Not. R. astr. Soc. (1983) 205,1191-1205 3MNRAS.205.1191M Neutral hydrogen in the haloes of the Galaxy and 198 the LMC R. X. McGee and Lynette M. Newton Division of Radiophysics, CSIRO, PO Box 76, Epping, NSW 2121, Australia Donald C. Morton Anglo-Australian Observatory, PO Box 296, Epping, NSW 2121, Australia Received 1983 April 26; in original form 1982 November 19 Summary. A new low-noise 21-cm line receiver installed on the Parkes 64-m telescope has led to the detection of the Hi counterpart of ionized and neutral elements in the galactic halo. The observations show that very low- intensity Hi exists in three regions at average LSR radial velocities of —40, + 59 and + ISlkms"1 which, if the halo is corotating with the disc, can be interpreted as components of the galactic halo at considerable distances below the galactic plane. Two additional groups of low-intensity Hi features at heliocentric velocities of + 197 and +360kms_1 possibly indicate a similar halo around the Large Magellanic Cloud. Comparison of the column densities obtained by the ultraviolet observa- tions with the International Ultraviolet Explorer and the present H i observa- tion show that Oi in the halo is depleted by a factor between 2 and 10 compared to solar abundance. Of the elements which should be dominant in H i regions A1 and Si are depleted by a factor of < 2 and Fe is close to the solar abundance. Ground-based data on Can show that it is depleted by factors of 4 to 3000, with the greater values occurring at velocities associated with the galactic disc and the Magellanic Clouds.
    [Show full text]
  • Effects of Rotation Arund the Axis on the Stars, Galaxy and Rotation of Universe* Weitter Duckss1
    Effects of Rotation Arund the Axis on the Stars, Galaxy and Rotation of Universe* Weitter Duckss1 1Independent Researcher, Zadar, Croatia *Project: https://www.svemir-ipaksevrti.com/Universe-and-rotation.html; (https://www.svemir-ipaksevrti.com/) Abstract: The article analyzes the blueshift of the objects, through realized measurements of galaxies, mergers and collisions of galaxies and clusters of galaxies and measurements of different galactic speeds, where the closer galaxies move faster than the significantly more distant ones. The clusters of galaxies are analyzed through their non-zero value rotations and gravitational connection of objects inside a cluster, supercluster or a group of galaxies. The constant growth of objects and systems is visible through the constant influx of space material to Earth and other objects inside our system, through percussive craters, scattered around the system, collisions and mergers of objects, galaxies and clusters of galaxies. Atom and its formation, joining into pairs, growth and disintegration are analyzed through atoms of the same values of structure, different aggregate states and contiguous atoms of different aggregate states. The disintegration of complex atoms is followed with the temperature increase above the boiling point of atoms and compounds. The effects of rotation around an axis are analyzed from the small objects through stars, galaxies, superclusters and to the rotation of Universe. The objects' speeds of rotation and their effects are analyzed through the formation and appearance of a system (the formation of orbits, the asteroid belt, gas disk, the appearance of galaxies), its influence on temperature, surface gravity, the force of a magnetic field, the size of a radius.
    [Show full text]
  • Revealing the Nebular Properties and Wolf-Rayet Population of IC10 with Gemini/GMOS
    This is a repository copy of Revealing the nebular properties and Wolf-Rayet population of IC10 with Gemini/GMOS. White Rose Research Online URL for this paper: http://eprints.whiterose.ac.uk/120559/ Version: Accepted Version Article: Tehrani, K., Crowther, P.A. and Archer, I. (2017) Revealing the nebular properties and Wolf-Rayet population of IC10 with Gemini/GMOS. Monthly Notices of the Royal Astronomical Society. ISSN 0035-8711 https://doi.org/10.1093/mnras/stx2124 This is a pre-copyedited, author-produced PDF of an article accepted for publication in Monthly Notices of the Royal Astronomical Society following peer review. The version of record is available online at: https://doi.org/10.1093/mnras/stx2124. Reuse Unless indicated otherwise, fulltext items are protected by copyright with all rights reserved. The copyright exception in section 29 of the Copyright, Designs and Patents Act 1988 allows the making of a single copy solely for the purpose of non-commercial research or private study within the limits of fair dealing. The publisher or other rights-holder may allow further reproduction and re-use of this version - refer to the White Rose Research Online record for this item. Where records identify the publisher as the copyright holder, users can verify any specific terms of use on the publisher’s website. Takedown If you consider content in White Rose Research Online to be in breach of UK law, please notify us by emailing [email protected] including the URL of the record and the reason for the withdrawal request. [email protected] https://eprints.whiterose.ac.uk/ MNRAS 000, 1–17 (2016) Preprint15August2017 CompiledusingMNRASLATEX style file v3.0 Revealing the nebular properties and Wolf-Rayet population of IC10 with Gemini/GMOS Katie Tehrani,1⋆ Paul A.
    [Show full text]
  • Spectral Classification of O2–3.5 If
    Mon. Not. R. Astron. Soc. 416, 1311–1323 (2011) doi:10.1111/j.1365-2966.2011.19129.x ∗ Spectral classification of O2–3.5 If /WN5–7 stars Paul A. Crowther1 and Nolan R. Walborn2 1Department of Physics and Astronomy, Hounsfield Road, University of Sheffield, Sheffield S3 7RH 2Space Telescope Science Institute, 3700 San Martin Drive, Baltimore, MD 21218, USA Accepted 2011 May 24. Received 2011 May 24; in original form 2011 April 28 ABSTRACT An updated classification scheme for transition O2–3.5 If∗/WN5–7 stars is presented, fol- lowing recent revisions to the spectral classifications for O and WN stars. We propose that O2–3.5 If∗, O2–3.5 If∗/WN5–7 and WN5–7 stars may be discriminated using the morphology of Hβ to trace increasing wind density as follows: purely in absorption for O2–3.5 If∗ stars in addition to the usual diagnostics from Walborn et al.; P Cygni for O2–3.5 If∗/WN5–7 stars; purely in emission for WN stars in addition to the usual diagnostics from Smith et al. We also discuss approximate criteria to discriminate between these subtypes from near-infrared spec- troscopy. The physical and wind properties of such stars are qualitatively discussed together with their evolutionary significance. We suggest that the majority of O2–3.5 If∗/WN5–7 stars are young, very massive hydrogen-burning stars, genuinely intermediate between O2–3.5 If∗ and WN5–7 subtypes, although a minority are apparently core helium-burning stars evolving blueward towards the classical WN sequence. Finally, we reassess classifications for stars exhibiting lower ionization spectral features plus Hβ emission.
    [Show full text]
  • Vlt Uves Observations of Interstellar Molecules and Diffuse Bands in the Magellanic Clouds1 D
    The Astrophysical Journal Supplement Series, 165:138–172, 2006 July # 2006. The American Astronomical Society. All rights reserved. Printed in U.S.A. VLT UVES OBSERVATIONS OF INTERSTELLAR MOLECULES AND DIFFUSE BANDS IN THE MAGELLANIC CLOUDS1 D. E. Welty,2 S. R. Federman,3 R. Gredel,4 J. A. Thorburn,5 and D. L. Lambert6 Received 2006 January 11; accepted 2006 March 10 ABSTRACT We discuss the abundances of interstellar CH, CH+, and CN in the Magellanic Clouds, derived from spectra of seven SMC and 13 LMC stars obtained (mostly) with the VLT UVES. CH and/or CH+ have now been detected toward three SMC and nine LMC stars; CN is detected toward Sk 143 (SMC) and Sk À67 2 (LMC). These data represent nearly all the optical detections of these molecular species in interstellar media beyond the Milky Way. In the LMC, the CH/H2 ratio is comparable to that found for diffuse Galactic molecular clouds in four sight lines but is lower by factors of 2.5–4.0 in two others. In the SMC, the CH/H2 ratio is comparable to the local Galactic value in one sight line but is lower by factors of 10–15 in two others. The abundance of CH in the Magellanic Clouds thus appears to depend on local physical conditions and not just on metallicity. In both the SMC and the LMC, the observed relationships between the column density of CH and those of CN, CH+,Nai, and K i are generally consis- tent with the trends observed in our Galaxy.
    [Show full text]