Manufacturing Methods for (U-Zr)N-Fuels
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Transition-Metal-Bridged Bimetallic Clusters with Multiple Uranium–Metal Bonds
ARTICLES https://doi.org/10.1038/s41557-018-0195-4 Transition-metal-bridged bimetallic clusters with multiple uranium–metal bonds Genfeng Feng1, Mingxing Zhang1, Dong Shao 1, Xinyi Wang1, Shuao Wang2, Laurent Maron 3* and Congqing Zhu 1* Heterometallic clusters are important in catalysis and small-molecule activation because of the multimetallic synergistic effects from different metals. However, multimetallic species that contain uranium–metal bonds remain very scarce due to the difficulties in their synthesis. Here we present a straightforward strategy to construct a series of heterometallic clusters with multiple uranium–metal bonds. These complexes were created by facile reactions of a uranium precursor with Ni(COD)2 (COD, cyclooctadiene). The multimetallic clusters’ cores are supported by a heptadentate N4P3 scaffold. Theoretical investigations indicate the formation of uranium–nickel bonds in a U2Ni2 and a U2Ni3 species, but also show that they exhibit a uranium–ura- nium interaction; thus, the electronic configuration of uranium in these species is U(III)-5f26d1. This study provides further understanding of the bonding between f-block elements and transition metals, which may allow the construction of d–f hetero- metallic clusters and the investigation of their potential applications. ultimetallic molecules are of great interest because of This study offers a new opportunity to investigate d− f heteromul- their fascinating structures and multimetallic synergistic timetallic clusters with multiple uranium–metal bonds for small- Meffects for catalysis and small molecule activation1–7. Both molecule activation and catalysis. biological nitrogen fixation and industrial Haber–Bosch ammonia syntheses, for example, are thought to utilize multimetallic cata- Results and discussion lytic sites8,9. -
THE KINETICS OP the REDUCTION of URANIUM TETRAFLUORIDE by MAGNESIUM in the Jose T. I. Domingues London, May, 1964
THE KINETICS OP THE REDUCTION OF URANIUM TETRAFLUORIDE BY MAGNESIUM A thesis presented for the degree of Doctor of Philosophy in the University of London by Jose T. I. Domingues London, May, 1964 ABSTRACT The kinetics of the reduction of sintered UF4 pellets by Mg vapour was investigated at 620° and 69000, using a transportation technique and highly purified argon as the carrier gas. The products of the reaction were identified by microscopic observation of cross sections and by X-ray powder diffraction, electron probe and chemical analyses. Two coherent product layers (UF and MgF2) are formed on the UF the uranium metal 3 4' being interspersed in the outer layer (MgF2) as fine globules or thin lamellae. Marker experiments showed 2+ that the MgF2 layer grows by inward migration of Mg ions and the UF layer grows inwards probably by outward 3 migration of fluorine ions. The rate of both reactions follows a parabolic rate law, after an initial period for which a different law applies, probably a direct logarithmic relationship. A discussion is given of the possible mechanisms in the two cases. From reduction experiments with UF3 pellets it was demonstrated that migration through the MgF2 layer is the rate determining step of the overall reaction. The parabolic rate constants for the overall reaction are 1.8 x 10-11 and 4.75 x 10-10 g2cm-4min-1 at 620° and 690°C respectively. The parabolic rate constants for the partial reaction yielding UF3 are 6.7 x 10-13 and 1.1 x 10-1° g2cni4min-1.- The industrial process of bomb production of uranium was reviewed and discussed, and suggestions are made for the interpretation of the mechanism of ignition of the reaction by a simple theory of self heating. -
A44 24 -2/ 124-Ea L-E
March 6, 1951 A. S. NEWTON ETAL 2,544,277 PREPARATION OF URANIUM NITRIDE Filed June 12, 1945 %22%2 SC22222222222222222SSaccaccounccc. 5 V. N 2&383i;3. &4 SSSSSSSSSSSSS Awar areakawazaarawawaramaranaergamawaramarasaaaaaaaaara SSSSSS sys SSSSSSSS & S is SSS S S. S. S. wavvavusavus Avavas Awar. us 2/22ZZzesses. s -aas/2za/2Zzao 2.1222/a2zz Yrs: %24427 6222227? 72/2Zasto Zz A44 24 -2/ 124-ea-222//zesz. l-e- Patented Mar. 6, 1951 2,544,277 UNITED STATES PATENT OFFICE 2,544,277 PREPARATION OF URANIUMNITRIDE Amos S. Newton and Oliver Johnson, Annes, Iowa, assignors to the United States of Arinerica, as represented by the United States Atomic En ergy Commission Application June 12, 1945, Seria No. 599,067 2 Claims. (CI. 23-14.5) 2 The invention relates to the preparation of a tion 8 and casing 9. Inlet tubes 9 and uranium nitride. are attached to a Source of ammonia, hydrogen, It is an object of the invention to provide a or other gaseous reactant to be used in the proc uranium nitride by the reaction of uranium either ess. Exhaust tube 8 leads to any suitable means in compound form or as a metal with ammonia. for disposing of waste products exhausted dur or nitrogen. ing the process. The apparatus is formed of a It is a more specific object of the invention material which is resistant to the high tempera to provide a process for obtaining a pure product tures and corrosion resulting from the process. in which the uranium is prepared in reactable Heat resistant glass is suitable for this purpose. -
PVD Material Listing
P. O. Box 639 NL - 5550 AP Valkenswaard Tel: +31 (0)40 204 69 31 Fergutec Fax: +31 (0)40 201 39 81 E - mail: [email protected] PVD Material Listing Pure Metals Aluminum, Al Antimony, Sb Beryllium, Be Bismuth, Bi Boron, B Cadmium, Cd Calcium, Ca Carbon, C Cerium, Ce Chromium, Cr Cobalt, Co Copper, Cu Erbium, Er Gadolinium, Gd Gallium, Ga Germanium, Ge Gold, Au Hafnium, Hf Indium, In Iridium, Ir Iron, Fe Lanthanum, La Lead, Pb Magnesium, Mg Manganese, Mn Molybdenum, Mo Neodymium, Nd Nickel, Ni Niobium, Nb Osmium, Os Palladium, Pd Platinum, Pt Praseodymium, Pr Rhenium, Re Rhodium, Rh Ruthenium, Ru Samarium, Sm Selenium, Se Silicon, Si Silver, Ag Tantalum, Ta Fergutec b.v. P.O. Box 639, NL - 5550 AP Valkenswaard Heistraat 64, NL - 5554 ER Valkenswaard Bankaccount 45.80.36.714 ABN - AMRO Valkenswaard C.o.C. Eindhoven no. 17098554 VAT - ID NL8095.60.185.B01 The Standard Terms and Conditions, lodged at the Chamber of Commerce in Eindhoven, are applicable to all transactions. Tellurium, Te Terbium, Tb Tin, Sn Titanium, Ti Tungsten, W Vanadium, V Ytterbium, Yb Yttrium, Y Zinc, Zn Zirconium, Zr Precious Metals Gold Antimony, Au/Sb Gold Arsenic, Au/As Gold Boron, Au/B Gold Copper, Au/Cu Gold Germanium, Au/Ge Gold Nickel, Au/Ni Gold Nickel Indium, Au/Ni/In Gold Palladium, Au/Pd Gold Phosphorus, Au/P Gold Silicon, Au/Si Gold Silver Platinum, Au/Ag/Pt Gold Tantalum, Au/Ta Gold Tin, Au/Sn Gold Zinc, Au/Zn Palladium Lithium, Pd/Li Palladium Manganese, Pd/Mn Palladium Nickel, Pd/Ni Platinum Palladium, Pt/Pd Palladium Rhenium, Pd/Re Platinum Rhodium, -
Sop Pyrophoric 2 12/16/2019
Owner DOC. NO. REV. DATE C.H.O SOP PYROPHORIC 2 12/16/2019 DOC. TITLE SOP FOR PYROPHORIC CHEMICALS Environmental Health & Safety STANDARD OPERATING PROCEDURES (SOP) FOR WORKING WITH PYROPHORIC CHEMICALS AT AMHERST COLLEGE ___________________________________________________________________ General Information Pyrophoric Chemicals are solid, liquid, or gas compounds that, when exposed to air or moisture at or below 54°C (130°F), can spontaneously ignite. Examples of Pyrophoric chemicals used at Amherst College Laboratories include: sodium hydride, zinc powder, and Grignard reagents. See the “Appendix” page below for a full list of Pyrophoric Chemicals. Pyrophoric chemicals are often used as catalysts in chemical reactions or as reducing and deprotonating agents in organic chemistry. Note that Pyrophoric chemicals may also be characterized by other hazards, hence, users of these chemicals may also need to refer to other SOPs that cover other hazards. In addition, each individual chemical’s Safety Data Sheet (SDS) should be consulted before they are used. _____________________________________________________________________________________ Personal Protective Equipment When working with Pyrophoric Chemicals, the following personal protective equipment (PPE) must be worn, at a minimum. Depending on the specific chemical, other forms of protection might be required. Consult the SDS for each chemical before use: Splash goggles Lab coat (Fire resistant lab coat highly recommended) Long pants Close toed shoes Gloves – Nitrile gloves adequate for accidental contact with small quantities. However, the use of fire resistant Nomex/ Leather Pilot’s gloves is highly recommended _____________________________________________________________________________________ Safety Devices All work with Pyrophoric chemicals must be done in a glove box, vacuum manifold, or any enclosed inert environment. If work must be done in a fume hood, ensure that the hood sash is in the lowest feasible position. -
The Role of Zirconium in Microalloyed Steels
The Role of Zirconium in Microalloyed Steels T N Baker Department of Mechanical and Aerospace Engineering The University of Strathclyde, Glasgow G1 1XJ, UK. E-mail:[email protected]. Abstract Recently there has been a renewed interest in the addition of zirconium to microalloyed steels. It has been used since the early 1920’s, but has never been universally employed, as have niobium, titanium or vanadium. The functions of zirconium in steelmaking are associated with a strong chemical affinity, in decreasing order, for oxygen, nitrogen, sulphur and carbon. Historically, the main use of additions of zirconium to steel was for combination preferentially with sulphur and so avoid the formation of manganese sulphide, known to have a deleterious influence of the impact toughness of wrought and welded steel. Modern steelmaking techniques have also raised the possibility that zirconium additions can reduce the austenite grain size and increase dispersion strengthening, due to precipitation of zirconium carbonitrides, or in high nitrogen vanadium-zirconium steels, vanadium nitride. This review gathers information on the compounds of zirconium identified in steels together with crystallographic data and solubility equations. Also brief accounts of the role of sulphides and particles in general on austenite grain size control and toughness are included. Keywords: Zirconium compounds, mechanical properties, impact, microstructure 1 1 Introduction The term microalloying, as applied to steels, is generally accepted as emanating from the paper by Beiser1 published in 1959, which reported the results of small additions of niobium to commercial heats of a carbon steel. However, it has not been recognized that microalloying as such, first occurred some 35 years earlier, when small additions of zirconium were added to plain carbon steels, and the effects reported by Feild2 and by Beckett3. -
Carbides and Nitrides of Zirconium and Hafnium
materials Review Carbides and Nitrides of Zirconium and Hafnium Sergey V. Ushakov 1,* , Alexandra Navrotsky 1,* , Qi-Jun Hong 2,* and Axel van de Walle 2,* 1 Peter A. Rock Thermochemistry Laboratory and NEAT ORU, University of California at Davis, Davis, CA 95616, USA 2 School of Engineering, Brown University, Providence, RI 02912, USA * Correspondence: [email protected] (S.V.U.); [email protected] (A.N.); [email protected] (Q.-J.H.); [email protected] (A.v.d.W.) Received: 6 August 2019; Accepted: 22 August 2019; Published: 26 August 2019 Abstract: Among transition metal carbides and nitrides, zirconium, and hafnium compounds are the most stable and have the highest melting temperatures. Here we review published data on phases and phase equilibria in Hf-Zr-C-N-O system, from experiment and ab initio computations with focus on rocksalt Zr and Hf carbides and nitrides, their solid solutions and oxygen solubility limits. The systematic experimental studies on phase equilibria and thermodynamics were performed mainly 40–60 years ago, mostly for binary systems of Zr and Hf with C and N. Since then, synthesis of several oxynitrides was reported in the fluorite-derivative type of structures, of orthorhombic and cubic higher nitrides Zr3N4 and Hf3N4. An ever-increasing stream of data is provided by ab initio computations, and one of the testable predictions is that the rocksalt HfC0.75N0.22 phase would have the highest known melting temperature. Experimental data on melting temperatures of hafnium carbonitrides are absent, but minimum in heat capacity and maximum in hardness were reported for Hf(C,N) solid solutions. -
Primer on Spontaneous Heating and Pyrophoricity
NOT MEASUREMENT SENSITIVE DOE‐HDBK‐1081‐2014 Supersedes DOE‐HDBK‐1081‐94 DOE HANDBOOK PRIMER ON SPONTANEOUS HEATING AND PYROPHORICITY U.S. Department of Energy FSC‐6910 Washington, D.C. 20585 DISTRIBUTION STATEMENT: Approved for public release; distribution is unlimited. This document is available on the Department of Energy Technical Standards Program Web page at: http://www.hss.doe.gov/nuclearsafety/ns/techstds/ Key words: Alkali Metals , Aluminum, Arsine, Calcium, Class D Extinguishing Agents, Coal Storage, Combustible Metals, Diborane, Fire, Hafnium, Heating, Hydrazine, Hydrocarbons, Hypergolic, Hypergolic Reaction, Iron, Lithium, Magnesium, Metals, Microbial Heating, NaK, Organic, Oxidizer, Phosphine, Phosphorus, Plutonium, Potassium, Pyrophoric, Pyrophoricity, Pyrophoric Gases, Pyrophoric Reagents, Silane Specific Area, Sodium, Sodium‐Potassium, Specific Surface Area, Spontaneous, Spontaneous Combustion, Steel, Super Oxides, Thorium, Titanium, Uranium, Water Reactive Metals, Zinc, Zirconium FOREWORD The Primer on Spontaneous Heating and Pyrophoricity is approved for use by all DOE Components. It was developed to help Department of Energy (DOE) facility contractors prevent fires caused by spontaneous ignition. Spontaneously ignitable materials include those that ignite because of a slow buildup of heat (spontaneous heating) and those that ignite in air (pyrophoricity). The scientific principles of combustion and how they affect materials known to be spontaneously combustible are explained. The fire hazards of specific spontaneously heating and pyrophoric materials are discussed as well as techniques to prevent their ignition. Suitable fire extinguishing agents are included for most materials as well as safety precautions for storage and handling. The DOE Primers are fundamental handbooks on safety‐related topics of interest in the DOE Complex and are intended as an educational aid for operations and maintenance personnel and others who may have an interest in this topic. -
Process for the Production of Uranium Trifluoride
United States Patent im [in 3,964,965 Tagawa [45] June 24, 1976 [54] PROCESS FOR THE PRODUCTION OF URANIUM TRIFLUORIDE [56] References Cited [75] Inventor: Hiroaki Tagawa, Tokaimura, Japan UNITED STATES PATENTS [73] Assignee: Japan Atomic Energy Research 3,034,855 5/1962 Jenkins et al 423/258 Institute, Tokyo, Japan [22] Filed: Dec. 20, 1973 Primary Examiner—Stephen J. Lechert, Jr. Attorney, Agent, or Firm—Stevens, Davis, Miller & [21] Appl. No.: 426,593 Mosher [30] Foreign Application Priority Data [57] ABSTRACT Dec. 26, 1972 Japan 47-129560 A novel method is disclosed for producing a pure ura- nium trifluoride efficiently. Said method is character- [52] U.S. CI 423/258; 423/259; ized by heating a mixture of uranium tetrafluoride and 252/301.1 R uranium nitride in an inert gas stream or under [51] Int. CI.2. C01G 43/06 vacuum. [58] Field of Search 423/258, 259; 252/301.1 R 2 Claims, No Drawings 3,976, 1 2 PROCESS FOR THE PRODUCTION OF URANIUM DETAILED DESCRIPTION OF INVENTION TRIFLUORIDE According to the present invention, uranium trifluo- ride is produced by heating a mixture of uranium tetra- BACKGROUND OF THE INVENTION 5 fluoride and uranium nitride in the form of powder or 1. Field of the Invention molding in a stream of inert gas or under vacuum. In The present invention relates to a method for pro- this invention, uranium sesquinitride (U2N3) or ura- duction of pure uranium trifluoride characterized by nium mononitride (UN) can be used for the starting heating a mixture of uranium tetrafluoride and uranium material. -
Impact of the Synthesis Process on Structure Properties for AFCI Fuel Candidates
Fuels Campaign (TRP) Transmutation Research Program Projects 2007 Impact of the Synthesis Process on Structure Properties for AFCI Fuel Candidates Kenneth Czerwinski University of Nevada, Las Vegas, [email protected] Follow this and additional works at: https://digitalscholarship.unlv.edu/hrc_trp_fuels Part of the Nuclear Commons, Nuclear Engineering Commons, and the Oil, Gas, and Energy Commons Repository Citation Czerwinski, K. (2007). Impact of the Synthesis Process on Structure Properties for AFCI Fuel Candidates. 60-61. Available at: https://digitalscholarship.unlv.edu/hrc_trp_fuels/72 This Annual Report is protected by copyright and/or related rights. It has been brought to you by Digital Scholarship@UNLV with permission from the rights-holder(s). You are free to use this Annual Report in any way that is permitted by the copyright and related rights legislation that applies to your use. For other uses you need to obtain permission from the rights-holder(s) directly, unless additional rights are indicated by a Creative Commons license in the record and/or on the work itself. This Annual Report has been accepted for inclusion in Fuels Campaign (TRP) by an authorized administrator of Digital Scholarship@UNLV. For more information, please contact [email protected]. Task 28 Impact of the Synthesis Process on Structure Properties for AFCI Fuel Candidates K. Czerwinski BACKGROUND actinide nitrides. x To characterize actinide nitrides structurally and thermally. Synthesis of actinium mononitrides using carbothermic reduction x To use high resolution TEM techniques to explore the micro- of the corresponding oxides has a few outstanding issues, includ- structure of the radioactive samples. ing the formation of secondary phases such as oxides and carbides and low densities of the final product. -
Impact of the Synthesis Process on Structure Properties for AFCI Fuel Candidates
Fuels Campaign (TRP) Transmutation Research Program Projects 2008 Impact of the Synthesis Process on Structure Properties for AFCI Fuel Candidates Kenneth Czerwinski University of Nevada, Las Vegas, [email protected] Follow this and additional works at: https://digitalscholarship.unlv.edu/hrc_trp_fuels Part of the Nuclear Commons, Nuclear Engineering Commons, Oil, Gas, and Energy Commons, and the Radiochemistry Commons Repository Citation Czerwinski, K. (2008). Impact of the Synthesis Process on Structure Properties for AFCI Fuel Candidates. 60-61. Available at: https://digitalscholarship.unlv.edu/hrc_trp_fuels/73 This Annual Report is protected by copyright and/or related rights. It has been brought to you by Digital Scholarship@UNLV with permission from the rights-holder(s). You are free to use this Annual Report in any way that is permitted by the copyright and related rights legislation that applies to your use. For other uses you need to obtain permission from the rights-holder(s) directly, unless additional rights are indicated by a Creative Commons license in the record and/or on the work itself. This Annual Report has been accepted for inclusion in Fuels Campaign (TRP) by an authorized administrator of Digital Scholarship@UNLV. For more information, please contact [email protected]. Task 28 Impact of the Synthesis Process on Structure Properties for AFCI Fuel Candidates K. Czerwinski BACKGROUND • To use high resolution TEM techniques to explore the micro- structure of the radioactive samples. Synthesis of actinium mononitrides using carbothermic reduction of the corresponding oxides has a few outstanding issues, includ- RESEARCH ACCOMPLISHMENTS ing the formation of secondary phases such as oxides and carbides and low densities of the final product. -
Solid State Metathesis Preparations of Hard Refractory Ceramics
S o u p S t a t e M e t a t h e s is P reparations OF H a r d R e f r a c t o r y C e r a m i c s A thesis presented by: Artur Marek Nartowski BSc in partial fulfilment for the award of Ph. D. U n iv e r s it y C o l l e g e Lo n d o n D e p t , o f C h e m is t r y ProQuest Number: 10014877 All rights reserved INFORMATION TO ALL USERS The quality of this reproduction is dependent upon the quality of the copy submitted. In the unlikely event that the author did not send a complete manuscript and there are missing pages, these will be noted. Also, if material had to be removed, a note will indicate the deletion. uest. ProQuest 10014877 Published by ProQuest LLC(2016). Copyright of the Dissertation is held by the Author. All rights reserved. This work is protected against unauthorized copying under Title 17, United States Code. Microform Edition © ProQuest LLC. ProQuest LLC 789 East Eisenhower Parkway P.O. Box 1346 Ann Arbor, Ml 48106-1346 Acknowledgements This work was supported by EPSRC and was completed under very helpfiil and encouraging supervision of Dr. I. P. Parkin. Grateful acknowledgement is due to members of staff, especially Dr. C. Carmalt, Prof. A. J. Craven, Dr. M. MacKenzie and the departmental microanalyst. I am also indebted to my fellow students, in particular, L.