The Influence of Archaeometallurgical Copper Alloy Castings Microstructure Towards Corrosion Evolution in Various Corrosive Medi
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Washington State Minerals Checklist
Division of Geology and Earth Resources MS 47007; Olympia, WA 98504-7007 Washington State 360-902-1450; 360-902-1785 fax E-mail: [email protected] Website: http://www.dnr.wa.gov/geology Minerals Checklist Note: Mineral names in parentheses are the preferred species names. Compiled by Raymond Lasmanis o Acanthite o Arsenopalladinite o Bustamite o Clinohumite o Enstatite o Harmotome o Actinolite o Arsenopyrite o Bytownite o Clinoptilolite o Epidesmine (Stilbite) o Hastingsite o Adularia o Arsenosulvanite (Plagioclase) o Clinozoisite o Epidote o Hausmannite (Orthoclase) o Arsenpolybasite o Cairngorm (Quartz) o Cobaltite o Epistilbite o Hedenbergite o Aegirine o Astrophyllite o Calamine o Cochromite o Epsomite o Hedleyite o Aenigmatite o Atacamite (Hemimorphite) o Coffinite o Erionite o Hematite o Aeschynite o Atokite o Calaverite o Columbite o Erythrite o Hemimorphite o Agardite-Y o Augite o Calciohilairite (Ferrocolumbite) o Euchroite o Hercynite o Agate (Quartz) o Aurostibite o Calcite, see also o Conichalcite o Euxenite o Hessite o Aguilarite o Austinite Manganocalcite o Connellite o Euxenite-Y o Heulandite o Aktashite o Onyx o Copiapite o o Autunite o Fairchildite Hexahydrite o Alabandite o Caledonite o Copper o o Awaruite o Famatinite Hibschite o Albite o Cancrinite o Copper-zinc o o Axinite group o Fayalite Hillebrandite o Algodonite o Carnelian (Quartz) o Coquandite o o Azurite o Feldspar group Hisingerite o Allanite o Cassiterite o Cordierite o o Barite o Ferberite Hongshiite o Allanite-Ce o Catapleiite o Corrensite o o Bastnäsite -
3, Isostructural with Botallackite
American Mineralogist, Volume 101, pages 986–990, 2016 Crystal structure of a new compound, CuZnCl(OH)3, isostructural with botallackite HEXING YANG1,*, ISABEL F. BARTON2, MARCELO B. ANDRADE1, AND ROBERT T. DOWNS1 1Department of Geosciences, University of Arizona, 1040 E. 4th Street, Tucson, Arizona 85721, U.S.A. 2Lowell Institute for Mineral Resources, University of Arizona, Tucson, Arizona 85721, U.S.A. ABSTRACT A new compound, ideally CuZnCl(OH)3, was found on a metallic mining artifact of copper composition at the Rowley mine, Maricopa County, Arizona, U.S.A., and studied with electron microprobe analysis, single-crystal X-ray diffraction, and Raman spectroscopy. It is isostructural with botallackite [Cu2Cl(OH)3] with space group P21/m and unit-cell parameters a = 5.6883(5), b = 3 6.3908(6), c = 5.5248(5) Å, β = 90.832(2)°, V = 200.82(3) Å . The crystal structure of CuZnCl(OH)3, refined to R1 = 0.018, is characterized by brucite-type octahedral sheets made of two distinct and considerably distorted octahedra, M1 and M2, which are coordinated by (5OH + 1Cl) and (4OH + 2Cl), respectively. The octahedral sheets are parallel to (100) and connected by O–H∙∙∙Cl hydrogen bonding. The major structural difference between CuZnCl(OH)3 and botallackite is the complete replacement of Cu2+ in the highly angle-distorted M1 site by non-Jahn-Teller distorting Zn2+. The CuZnCl(OH)3 compound represents the highest Zn content ever documented for the atacamite group of minerals, in conflict with all previous reports that botallackite (like atacamite) is the most 2+ resistant, of all copper hydroxylchloride Cu2Cl(OH)3 polymorphs, to the substitution of Zn for Cu2+, even in the presence of large excess of Zn2+. -
How to Apply Statuary and Patina Finishes
Working With Copper Soldering / Welding / Brazing How to Apply Statuary and Patina Finishes Copper and copper alloys are widely used in architectural applications to take ad- vantage of their inherent range of colors. While these metals may be used in their natural color, as fabricated, it is sometimes desirable to chemically color pure copper (C11000*), commercial bronze (C22000), architectural bronze (C38500) or other alloys referred to as “bronze” in architectural parlance. The most common colors to be produced are referred to as brown or statu- ary fi nishes for bronze and green or patina fi nishes for copper. This data sheet outlines procedures and formulations for producing both. While the chemical solu- tions described are those generally accepted in the metal fi nishing trade, many variations exist. The wide range of colors and shades which may be achieved are largely a matter of craftsmanship and experience. Chemical coloring techniques depend upon time, temperature, surface, preparation, mineral content of the water, humidity and other variables which infl uence the ultimate result. This data sheet presents the technology which underlies the craftsmanship and art involved in producing these colored fi nishes. Brown Statuary Finishes Statuary fi nishes are conversion coatings. In conversion coatings, the metal surface is either converted into a protective fi lm, usually an oxide or sulfi de of the metal involved, or a compound is precipitated which forms a surface fi lm. The use of chemical solutions is generally termed “oxidizing,” although the oldest method and the one which produces the widest range of brown to black stages on copper alloys actually produces not an oxide but a metal sulfi de fi nish by the use of alkaline sulfi de solutions. -
Patination with Non-Toxic Solutions
Area Research Paper PATINATION WITH NON-TOXIC SOLUTIONS Submitted by: Julie Jerman-Melka Department of Visual Art Colorado State University Fort Collins, Colorado Fall 1996 Presented to: Professor Nilda Getty In partial fulfillment of the requirements for the degree of Master of Fine Arts. PATINATION WITH NON-TOXIC SOLUTIONS A Patina is a thin layer of corrosion, usually brown or green, that appears on copper or copper alloys as a result of natural or artificial oxidation. The purpose of coloring metal is to produce a change in its appearance in a short time. This could take place naturally but would take much longer and would require controlled conditions. The natural discoloration of metal surfaces after exposure to air, moisture, and gases is actually a combination of corrosion and oxidation which alters the composition of the metal's surface. Coloring is the final process, after all soldering and polishing have been completed. Coloring will not conceal any surface defects. In some cases, the defects will actually be more exposed. Good ventilation is important for any chemical coloring process. The coloring should be done near an exhaust fan, or even outside. Many of the solutions and chemicals used for patinas are extremely toxic and corrosive and are difficult to dispose of after they are used. Some of the chemicals are difficult to find and the solutions have complicated procedures. In this paper I researched simple, fairly non-toxic solutions for use on copper, brass, and sterling silver. Each piece of metal has been slightly formed with a hammered texture, a high polish, and sandblasted finish to show the different effects that a patina can have on various surfaces. -
Care of Outdoor Bronze Sculptures
CARE OF OUTDOOR BRONZE SCULPTURES Bronze sculpture is meant to be used and enjoyed in the outdoor environment and can maintain the original appearance as long as it is periodically cared for. The maintenance of bronze is easy and basic. This set of care instructions is meant to make the owner of fine bronze more knowledgeable and thus better able to enjoy their bronze to their full satisfaction. A brief introduction on the nature of patinas will start our discussion on the care of fine outdoor bronze. Nature of Patina Patination is the name for the process of coloring metals. These colors arise from chemical interaction between elements in the metals and various chemicals. A patina on bronze is the equivalent to rust on iron, only bronze is much more interesting than iron because the copper in the bronze reacts with different colors. The important thing to note is that the patina is not a paint but a very thin conversion coat on the surface of the bronze. Accordingly, as different chemicals are brought into contact with the surface of the metal, the color is liable to change. When leaving the foundry, the sculptures have a coating of paste wax. This paste wax helps prevent oxygen from getting to the bronze and oxidizing the surface. Over time, this barrier is worn off and water and oxygen work together to oxidize the surface, aging the patina. The best method for caring for patinas always includes regular cleaning and waxing, which is important to both the appearance and longevity of the bronze. -
Electrochemical Evaluation of the Patina of the Weathering Steel Sculpture Once Módulo
Ge-conservación Conservação | Conservation Electrochemical evaluation of the patina of the weathering steel sculpture Once Módulo A. Crespo, B. Ramírez-Barat, I. Díaz, E. Cano Abstract: Weathering steels (WS) have been widely used due to the protective rust formed on the surface of the bare metal exposed to the atmosphere. They have been studied attending to specifications and characteristics in engineering, but in cultural heritage the use of this material does not follow the same criteria and has different needs which must be addressed. Among them, the design and the location of the sculpture may have an impact on the rust formed and may not be as protective as it was supposed to be. This work presents the study of the weathering steel sculpture Once Módulo which shows areas with different exposure to rainwater and different surface heterogeneities. The results obtained by Electrochemical Impedance Spectroscopy (EIS) have shown that the protective ability of the rust depends on the previous differences and that design and location of the artwork play an important role for its conservation. Keywords: weathering Steel, sculpture, electrochemical impedance spectroscopy, atmospheric corrosion, conservation, contemporary art. Evaluación electroquímica de la pátina de la escultura en acero patinable Once Módulo Resumen: Los aceros patinables han sido ampliamente utilizados debido a la habilidad protectora de la herrumbre que se forma en la superficie del metal al exponerlo a la atmosfera. Su estudio se ha enfocado en las especificaciones y características desde un punto de vista ingenieril, sin embargo, en patrimonio cultural el uso de este material no sigue los mismos criterios y tiene distintas necesidades que han de atenderse. -
Clinoailacamite, a NEW POLYMORPH of Gur(Ohl3cl, and ITS Relaflonship to PARATACAMITE and 'ANARAKITE"*
61. Tlrc Catwdian M ineral ogi st Vol. 34, pp.6lJ2 (1996) CLINOAilACAMITE,A NEW POLYMORPHOF Gur(OHl3Cl, AND ITS RELAflONSHIPTO PARATACAMITEAND 'ANARAKITE"* JOHNL. JAMBOR Department of Earth Sciences, University of Waterlao, Waterloo, Ontario N2L 3GI JOHNE. DUTRZAC CANMET,Deparnnent of Naaral ResourcesCananq 555 Booth Street, Ottawa, Ontaria KIA OGj ANDREW C. ROBERTS GeologicalSurvey of Cananq601 Booth Street, Otawa" Owaria KIA 088 JOELD. GRICE ResearchDivisiou CatadianMuseurn of Naure, Ottatva,Ontaria KIP 6P4 JANT. SZYMA(SKI CANMET,Depamnent of NaturalResources Canad4 555 Booth Street, Ottawo" Ontario KIA 0GI ABSTRA T The new mineral clinoatacamiteis a polmorph of Cu2(OII)3C| othen are botallackite (monoclinic), atacamite(ortho- rhornbic),an{ possiblyparatacamite (rhombohedral). Clinoatacanite is monoclinic, spacegroup P21ln,a 6.157(2),b 6.814Q), c 9.104(5) A, p 99.65(4)", which is transformableto a pseudorhombohedralcell approximating that of paxatacamite. Clinoatacamitehas been found in specimensfrom severallocalities, aad coexistswith paratacamitein the holotype specimenof p,aralacamite.The two minerals are not readily distinguishedexcept by optical and X-ray methods:paratacamite is uniaxial negative, whereasclinoatacamite is biaxht negative, 2V@75(5f . Strongestlines of the X-ray powder paltern of clino- aracamireld n A(D@k[)]are 5.47(100)(T0l,0Ll),2.887(40X121J03),2.767(60)81.1),2.742Q0)(0r3,202),2.266(@)Q20), 2.243(50)(004),and L.7M(5Q82a,040). Clinoatacamiteis readily synthesizedand a seriesof experimentswas conductedto promotethe uptakeof Zn and duplicatethe formula of the dubiousmineral "anarakite" (CuZn)2(OI{)3C1.Generally, products with more than about6 mol%o"7iproved to be hexagonal,i.e., nrcranpaatacamite, as did specimensof "anarakite"fron fhe type locality. -
Crystal Structure of a New Compound, Cuzncl(OH)3, Isostructural with Botallackite
American Mineralogist, Volume 101, pages 986–990, 2016 Crystal structure of a new compound, CuZnCl(OH)3, isostructural with botallackite HEXING YANG1,*, ISABEL F. BARTON2, MARCELO B. ANDRADE1, AND ROBERT T. DOWNS1 1Department of Geosciences, University of Arizona, 1040 E. 4th Street, Tucson, Arizona 85721, U.S.A. 2Lowell Institute for Mineral Resources, University of Arizona, Tucson, Arizona 85721, U.S.A. ABSTRACT A new compound, ideally CuZnCl(OH)3, was found on a metallic mining artifact of copper composition at the Rowley mine, Maricopa County, Arizona, U.S.A., and studied with electron microprobe analysis, single-crystal X-ray diffraction, and Raman spectroscopy. It is isostructural with botallackite [Cu2Cl(OH)3] with space group P21/m and unit-cell parameters a = 5.6883(5), b = 3 6.3908(6), c = 5.5248(5) Å, β = 90.832(2)°, V = 200.82(3) Å . The crystal structure of CuZnCl(OH)3, refined to R1 = 0.018, is characterized by brucite-type octahedral sheets made of two distinct and considerably distorted octahedra, M1 and M2, which are coordinated by (5OH + 1Cl) and (4OH + 2Cl), respectively. The octahedral sheets are parallel to (100) and connected by O–H∙∙∙Cl hydrogen bonding. The major structural difference between CuZnCl(OH)3 and botallackite is the complete replacement of Cu2+ in the highly angle-distorted M1 site by non-Jahn-Teller distorting Zn2+. The CuZnCl(OH)3 compound represents the highest Zn content ever documented for the atacamite group of minerals, in conflict with all previous reports that botallackite (like atacamite) is the most 2+ resistant, of all copper hydroxylchloride Cu2Cl(OH)3 polymorphs, to the substitution of Zn for Cu2+, even in the presence of large excess of Zn2+. -
Copper Reactivity: Patination
CHEMISTRY Copper Reactivity: 16 - 18 YEARS Patination Reactivity Metals can be listed according to their reactivity. Some, like sodium, are so reactive that they explode on contact with water. Some, like gold, are so unreactive that they appear to be unchanged after being buried for thousands of years. Copper is low on this scale. It will react, but slowly. This low reactivity, combined with its malleability makes it ideal for use in architecture. It can be cut and hammered into ornate shapes The restored domes show new copper that and it will protect itself with a pale green coating of copper salts will take many decades to develop the called a patina. Note this is not to be confused with verdigris, patina of the original copper. the name given to the green finish obtained by treatment with (Courtesy of Royal Observatory acetic acid to form copper acetate. Verdigris is soluble and not Edinburgh.) as durable as natural patinas. This view inside the dome shows how thin These are the two telescope domes of the Royal Observatory the structure is. (Courtesy of Eric Begbie.) Edinburgh. The picture was taken before the restoration in 2010. The copper cladding has a layer of green “patina”, that has built up since the domes were built in 1894. The patina is 1 a combination of copper salts that are unreactive and protect the copper from further corrosion. The domes are quite lightweight structures that rotate on a circular rail to allow the telescopes to point in any direction through a panel that slides open. They are also exposed to high winds. -
Journal of the Russell Society, Vol 4 No 2
JOURNAL OF THE RUSSELL SOCIETY The journal of British Isles topographical mineralogy EDITOR: George Ryba.:k. 42 Bell Road. Sitlingbourn.:. Kent ME 10 4EB. L.K. JOURNAL MANAGER: Rex Cook. '13 Halifax Road . Nelson, Lancashire BB9 OEQ , U.K. EDITORrAL BOARD: F.B. Atkins. Oxford, U. K. R.J. King, Tewkesbury. U.K. R.E. Bevins. Cardiff, U. K. A. Livingstone, Edinburgh, U.K. R.S.W. Brai thwaite. Manchester. U.K. I.R. Plimer, Parkvill.:. Australia T.F. Bridges. Ovington. U.K. R.E. Starkey, Brom,grove, U.K S.c. Chamberlain. Syracuse. U. S.A. R.F. Symes. London, U.K. N.J. Forley. Keyworth. U.K. P.A. Williams. Kingswood. Australia R.A. Howie. Matlock. U.K. B. Young. Newcastle, U.K. Aims and Scope: The lournal publishes articles and reviews by both amateur and profe,sional mineralogists dealing with all a,pecI, of mineralogy. Contributions concerning the topographical mineralogy of the British Isles arc particularly welcome. Not~s for contributors can be found at the back of the Journal. Subscription rates: The Journal is free to members of the Russell Society. Subsc ription rates for two issues tiS. Enquiries should be made to the Journal Manager at the above address. Back copies of the Journal may also be ordered through the Journal Ma nager. Advertising: Details of advertising rates may be obtained from the Journal Manager. Published by The Russell Society. Registered charity No. 803308. Copyright The Russell Society 1993 . ISSN 0263 7839 FRONT COVER: Strontianite, Strontian mines, Highland Region, Scotland. 100 mm x 55 mm. -
TECU® Patina Pre-Patinated Copper for Roofing and Façade Cladding
TECU® Patina Pre-patinated copper for Roofing and Façade Cladding [GB] Patina ® TECU KME Germany AG & Co. KG AG KME Germany Member of the KME Group Quality 2 The Surface 4 Processing and Installation 6 Copper and Sustainability 8 TECU® System Products 10 TECU® Sizes and Availability 14 TECU® Project Consulting 16 TECU® References 18 TECU_Patina_f5.indd 2 28.12.2006 14:20:43 Uhr Green copper for immediate creative application – all natural, no limits. Often the shortest path takes you directly to your goal. When the design demands the power and expressiveness of the patina green typical for copper, then it should be implemented just as required – without waiting for the gradual changes caused by natural weathering. The solution is TECU ® Patina – patinated copper for immediate use to satisfy the highest aesthetic demands in building design. Using a specially developed industrial process, TECU ® copper sheets are patinated green on one side. This process causes an oxidised layer to form on the surface of the copper – a process similar to the natural patination that occurs over a long period of time when copper is exposed to atmospheric conditions. TECU ® Patina is always extremely varied, just as you would expect from a natural surface. The many different colour tones and shades eventually blend together, but only gradually. The unique developments occurring in TECU ® Patina are exciting – just as modern architecture should be. TECU_Patina_f5.indd 3 28.12.2006 14:20:50 Uhr TECU® Patina sheets are manufactured in state-of-the-art production facilities according to DIN EN 1172 and KME’s own strict guidelines. -
Essays on Colour
Essays on Colour ESSAYS ON COLOUR A collection of columns from Cabinet Magazine Eleanor Maclure Introduction For every issue the editors of Cabinet Magazine, an American quarterly arts and culture journal, ask one of their regular contributors to write about a specific colour. The essays are printed as Cabinet’s regular Colours Column. To date, forty-two different colours have been the subject of discussion, beginning with Bice in their first ever issue. I first encountered Cabinet magazine when I stumbled upon Darren Wershler-Henry’s piece about Ruby, on the internet. I have since been able to collect all of the published columns and they have provided a wealth of knowledge, information and invaluable research about colour and colour names. Collectively, the writings represent a varied and engaging body of work, with approaches ranging from the highly factual to the deeply personal. From the birth of his niece in Matthew Klam’s Purple, to a timeline of the history of Lapis Lazuli mining in Ultramarine by Matthew Buckingham, the essays have provided fascinating insights into a whole range of colours, from basic terms such as black and red, to the more obscure: porphyry and puce. While some focus very much on the colour in question, others diverge into intricate tales of history, chemistry or geopolitics. There are personal anecdotes, legends and conspiracies, but more than that, the essays demonstrate the sheer diversity of ways we can talk about colour. The essays gathered here have become far more than just the background reading they began as. The aim of this book is to bring together the works, as a unique representation of the different ways we relate to, experience and interpret colours.