Cross-Talk Between Phospho-STAT3 and Plcg1 Plays a Critical Role in Colorectal Tumorigenesis

Total Page:16

File Type:pdf, Size:1020Kb

Cross-Talk Between Phospho-STAT3 and Plcg1 Plays a Critical Role in Colorectal Tumorigenesis Published OnlineFirst August 12, 2011; DOI: 10.1158/1541-7786.MCR-11-0147 Molecular Cancer Signaling and Regulation Research Cross-talk between Phospho-STAT3 and PLCg1 Plays a Critical Role in Colorectal Tumorigenesis Peng Zhang1, Yiqing Zhao1,5, Xiaofeng Zhu2, David Sedwick3, Xiaodong Zhang6, and Zhenghe Wang1,4 Abstract Hyperphosphorylation at the Y705 residue of signal transducer and activator of transcription 3 (STAT3) is implicated in tumorigenesis of leukemia and some solid tumors. However, its role in the development of colorectal cancer is not well defined. To rigorously test the impact of this phosphorylation on colorectal tumorigenesis, we engineered a STAT3 Y705F knock-in to interrupt STAT3 activity in HCT116 and RKO colorectal cancer cells. These STAT3 Y705F mutant cells fail to respond to cytokine stimulation and grow slower than parental cells. These mutant cells are also greatly diminished in their abilities to form colonies in culture, to exhibit anchorage- independent growth in soft agar, and to grow as xenografts in nude mice. These observations strongly support the premise that STAT3 Y705 phosphorylation is crucial in colorectal tumorigenesis. Although it is generally believed that STAT3 functions as a transcription factor, recent studies indicate that transcription-independent functions of STAT3 also play an important role in tumorigenesis. We show here that wild-type STAT3, but not STAT3 Y705F mutant protein, associates with phospholipase Cg1 (PLCg1). PLCg1 is a central signal transducer of growth factor and cytokine signaling pathways that are involved in tumorigenesis. In STAT3 Y705F mutant colorectal cancer cells, PLCg1 activity is reduced. Moreover, overexpression of a constitutively active form of PLCg1 rescues the transformation defect of STAT3 Y705F mutant cells. In aggregate, our study identifies previously unknown cross- talk between STAT3 and the PLCg signaling pathways that may play a critical role in colorectal tumorigenesis. Mol Cancer Res; 9(10); 1418–28. Ó2011 AACR. Introduction tumorigenesis, because its mitochondrial activity appears to be required for Ras-mediated tumor transformation Signal transducer and activator of transcription 3 (5, 6). Third, transgenic mice with keratinocytes expressing (STAT3) is thought to be an oncogene (1). Several lines constitutively active STAT3 develop hyperproliferative of evidence support such a premise. First, persistent STAT3 dermatologic disorders in vivo (7). Fourth, targeted deletion activation has been detected in leukemia and in a variety of of STAT3 in skin cells prevents epithelial cancers in mice solid tumors including breast, brain, pancreas, ovarian, and (8), and targeting STAT3 specifically in B and T cells squamous cell carcinomas of head and neck (SCCHN) prevents development of lymphomas and myelomas (9). cancers, and melanomas (2). Second, constitutively active Latent cytoplasmic STAT3 becomes activated through STAT3 transforms rat and mouse cells and dominant phosphorylation of Y705 by cytoplasmic nonreceptor negative STAT3 blocks Src-induced transformation in vitro tyrosine kinases including Janus-activated kinase (JAK) (3, 4). Interestingly, recent studies show that the mitochon- and Src (10). Phosphorylated STAT3 dimerizes through drial functions of STAT3 may be important factors in reciprocal Src Homology 2 (SH2)-phosphotyrosine inter- action and accumulates in the nucleus (2). Therefore, STAT3 activates the transcription of a wide array of genes Authors' Affiliations: Departments of 1Genetics and Case Comprehen- 2 3 Bcl-XL sive Cancer Center, Epidemiology and Biostatistics, Medicine, School of including B-cell lymphoma-extra large ( ) and sup- Medicine, Case Western Reserve University; 4Genomic Medicine Institute, pressor of cytokine signaling 3 (SOCS3; ref. 2). Although Cleveland Clinic Foundation, Cleveland, Ohio; 5The Second Huaxi Hos- pital, Sichuan University, Chengdu; and 6College of Life Sciences, Wuhan the kinases that phosphorylate the Y705 residue of STAT3 University, Wuhan, China are well defined in epithelial and hematopoietic cells, the Note: Supplementary data for this article are available at Molecular Cancer phosphatases that specifically dephosphorylate pY705 have Research Online (http://mcr.aacrjournals.org/). received little attention. Corresponding Authors : Zhenghe Wang, Case Western Reserve Univer- We previously identified STAT3 as a direct substrate of sity, 10900 Euclid Avenue, WRB 3120, Cleveland, OH 44106-7285. Phone: protein tyrosine phosphatase receptor T (PTPRT; ref. 11). 216-368-0446; Fax: 216-368-8919; E-mail: [email protected] or Xiaodong Zhang, College of Life Sciences, Wuhan University, Luojia Hill, PTPRT is mutated in colon, lung, stomach, and skin Wuhan, P. R. China 430072. Phone/Fax: 86-27-68756606; E-mail: (melanoma) cancers (12). Moreover, PTPRT knockout mice [email protected] are highly susceptible to azoxymethane-induced colon doi: 10.1158/1541-7786.MCR-11-0147 tumors (13), indicating that PTPRT normally functions Ó2011 American Association for Cancer Research. as a tumor suppressor. Our finding that PTPRT specifically 1418 Mol Cancer Res; 9(10) October 2011 Downloaded from mcr.aacrjournals.org on September 28, 2021. © 2011 American Association for Cancer Research. Published OnlineFirst August 12, 2011; DOI: 10.1158/1541-7786.MCR-11-0147 Cross-talk between STAT3 and PLCg1 dephosphorylates STAT3 at the Y705 residue supports a days. The geneticin resistant clones were then screened for critical role for regulation of STAT3 Y705 phosphorylation homologous recombination by 35 cycles of genomic PCR in colorectal tumorigenesis. Although STAT3 is implicated with primers derived from the neomycin resistance gene in oncogenesis of leukemia, skin, and head and neck cancers 50-GTTGTGCCCAGTCATAGCCG-30 and the up- (1), the impact of STAT3 Y705 phosphorylation in colo- stream region of the left homologous arm 50-TCA- rectal tumorigenesis has not heretofore been well defined. GTTTCTTGGCCCAAAGT-30. Confirmatory genomic Here we show that successful knock-in (KI) of the STAT3 PCR was also carried out with positive clones identified by Y705F mutant allele into 2 different colorectal cancer cell primers derived from the neomycin resistant gene (50- lines results in mutant colorectal cancer cells that are less TCTGGATTCATCGACTGTGG-30) and the down- tumorigenic both in vitro and in vivo. The results of this stream region of the right homologous arm (50-TA- study further suggest that modulation of tumorigenicity is at GGCGCCTCAGTCGTATCT-30). The DNA fragments least partially dependent on STAT3 cross-talk with phos- from the confirmatory PCRs were then sequenced to pholipase Cg1 (PLCg1) through effects on S1248 phos- ensure the presence of the mutant Y705F alleles. To phorylation. PLCg1 is a key signaling molecule that target the second allele with the same targeting virus, hydrolyzes phosphatidylinositol-4,5-biophosphate to gener- correctly targeted clones were infected with adenoviruses ate inositol-1,4,5-triophosphate (IP3) and 1,2-diacylglycerol expressing the Cre-recombinase to delete the drug selec- þ (DAG), which, in turn, activate intracellular Ca2 and tion marker. To select clones with successful deletion of protein kinase C (PKC) signaling pathways that are impli- the drug selection marker, 30 cycles of genomic PCR were cated in tumorigenesis (14). In support, we show that carried out to amplify an approximately 200-bp genomic colorectal cancer cells carrying STAT3 mutated inY705 also fragment in which the Lox P site was inserted (using exhibit reduced PKC activities. primers 50-GCAGATGGAGCTTTCCAGAC-30 and 50- CGCCTGGGAAGAAGAAAAC-30). The heterozygous Materials and Methods KI clones were infected with the same targeting virus to target the second allele and the neomycin resistance gene Cell culture was excised as described earlier. HCT116, RKO, and HEK 293T cells were obtained from the American Type Culture Collection. HCT116 and Plasmid transfection RKO colorectal cancer cells were maintained in McCoy 5A Cells were plated 1 day prior to transfection to achieve a media plus 10% FBS. HEK 293T cells were maintained in 70% confluence at the time of transfection. Plasmids were Dulbecco's modified Eagle's medium media plus 10% FBS. transfected with the Lipofectamine Transfection Reagent (Invitrogen; catalogue no. 18324-020) according to the Somatic cell gene targeting manufacturer's instructions. To transfect a T75 flask of Somatic cell gene targeting was conducted as described HEK 293 cells, 9 mg of plasmids were mixed with 54 mLof (15, 16). Briefly, a 1.3-kb fragment from intron 21 to intron Lipofectamine Transfection Reagent and 1.5 mL of Opti- 22 of the STAT3 locus containing the exon 22 sequences MEM (Invitrogen; catalogue no. 31985070). The trans- was amplified 25 cycles from genomic DNA, using primers fection mixture was then incubated with cells at 37C for 4 50-TGACCAACTAGTCTGCTTACTGAATGCGAAG- hours. Cells were subsequently cultured in normal medium TCACAG-30 and 50-TGACCACCGCGGAGGGTCCT- after washing once with Hank's balanced buffer. TTCTCATTCCCACCTTA-30. The coding sequences for Y705 were then mutated from TAC (Tyr) to TTC Western blot (Phe) by site-directed mutagenesis, using primers 50-TC- Cells were lysed in radioimmunoprecipitation assay CCAGGCGCTGCCCCATTCCTGAAGACCAAGTT- (RIPA) buffer with complete protease inhibitor mixture TATC-30 and 50-AATGGGGCAGCGCCTGGGA-30. and phosphatase inhibitors [50 mmol/L Tris-HCl (pH 8.0), This mutated fragment was used as the right homologous 0.5% triton
Recommended publications
  • Genetic Studies of Bipolar Disorder in Patients Selectedby Their Treatment
    medigraphic Artemisaen línea Salud Mental 2008;31:431-440 Genetic studies of bipolar disorder Genetic studies of bipolar disorder in patients selected by their treatment response* Abigail Ortiz-Domínguez,1 Martin Alda1 Conferencia magistral SUMMARY rapid cycling and non-episodic course in the lamotrigine group) and co-morbidity, with the lamotrigine-responder group showing a higher Bipolar disorder (BD) is a major mood disorder with several genes frequency of panic attacks and substance abuse. of moderate or small effect contributing to the genetic susceptibility. In conclusion, pharmacogenetic studies may provide important It is also likely heterogeneous, which stimulated efforts to refine its clues to the nature of bipolar disorder and the response to long term clinical phenotype, studies investigating the link between BD treatment. susceptibility and response to a specific mood stabilizer appear to be one of the promising directions. Key words: Lithium response, pharmacogenetic, probands. In particular, excellent response to lithium prophylaxis has been described as a clinical marker of a more homogeneous subgroup of BD, characterized by an episodic course, low rates of co-morbid RESUMEN conditions, absence of rapid cycling, and a strong genetic loading. These results also suggest that lithium response clusters in families El trastorno bipolar (TB) es un trastorno afectivo con varios genes, de (independent of the increased familial loading for affective disorders), efecto leve o moderado, que contribuyen a su susceptibilidad. Es likely on a genetic basis. asimismo un trastorno heterogéneo, lo que ha estimulado diversas For almost 40 years, clinical studies have pointed to differences iniciativas para refinar el fenotipo de los pacientes con este trastor- between lithium responders (LR) and non-responders (LNR).
    [Show full text]
  • Essential Role of the Tyrosine Kinase Substrate Phospholipase C-␥1 in Mammalian Growth and Development
    Proc. Natl. Acad. Sci. USA Vol. 94, pp. 2999–3003, April 1997 Cell Biology Essential role of the tyrosine kinase substrate phospholipase C-g1 in mammalian growth and development QUN-SHENG JI*, GLENN E. WINNIER†,KEVIN D. NISWENDER‡,DEBRA HORSTMAN*, RON WISDOM*§, MARK A. MAGNUSON‡, AND GRAHAM CARPENTER*§¶ Departments of *Biochemistry, †Cell Biology, ‡Molecular Physiology and Biophysics, and §Medicine, Vanderbilt University School of Medicine, Nashville, TN 37232 Communicated by Stanley Cohen, Vanderbilt University School of Medicine, Nashville, TN, January 6, 1997 (received for review November 14, 1996) ABSTRACT The activation of many tyrosine kinases METHODS AND MATERIALS leads to the phosphorylation and activation of phospholipase C-g1 (PLC-g1). To examine the biological function of this PLC-g1 Genomic DNA and Construction of Targeting protein, homologous recombination has been used to selec- Vectors. A 129ySvJ mouse genomic DNA library (Stratagene) tively disrupt the Plcg1 gene in mice. Homozygous disruption was screened using a l-kb mouse cDNA fragment that encodes both SH2 domains of PLC-g1 (11) as a probe (a gift from B. of Plcg1 results in embryonic lethality at approximately 6 embryonic day (E) 9.0. Histological analysis indicates that Margolis, University of Michigan). Of '1 3 10 phage plaques screened, two overlapping clones encompassing 26.6 kb of Plcg1 (2y2) embryos appear normal at E 8.5 but fail to continue normal development and growth beyond E 8.5–E9.0. Plcg1 genomic DNA were obtained. Sequencing of BamHI– These results clearly demonstrate that PLC-g1 with, by in- BamHI subclones identified a 2.9-kb fragment containing ference, its capacity to mobilize second messenger molecules exons corresponding to the X domain and both SH2 domains is an essential signal transducing molecule whose absence is of rat PLC-g1.
    [Show full text]
  • Author's Personal Copy
    Author's personal copy Provided for non-commercial research and educational use only. Not for reproduction, distribution or commercial use. This article was originally published in the book Encyclopedia of Immunobiology, published by Elsevier, and the attached copy is provided by Elsevier for the author's benefit and for the benefit of the author's institution, for non-commercial research and educational use including without limitation use in instruction at your institution, sending it to specific colleagues who you know, and providing a copy to your institution's administrator. All other uses, reproduction and distribution, including without limitation commercial reprints, selling or licensing copies or access, or posting on open internet sites, your personal or institution’s website or repository, are prohibited. For exceptions, permission may be sought for such use through Elsevier’s permissions site at: http://www.elsevier.com/locate/permissionusematerial From Myers, D.R., Roose, J.P., 2016. Kinase and Phosphatase Effector Pathways in T Cells. In: Ratcliffe, M.J.H. (Editor in Chief), Encyclopedia of Immunobiology, Vol. 3, pp. 25–37. Oxford: Academic Press. Copyright © 2016 Elsevier Ltd. unless otherwise stated. All rights reserved. Academic Press Author's personal copy Kinase and Phosphatase Effector Pathways in T Cells Darienne R Myers and Jeroen P Roose, University of California, San Francisco (UCSF), San Francisco, CA, USA Ó 2016 Elsevier Ltd. All rights reserved. Abstract Multiple interconnected effector pathways mediate the activation of T cells following recognition of cognate antigen. These kinase and phosphatase pathways link proximal T cell receptor (TCR) signaling to changes in gene expression and cell physiology.
    [Show full text]
  • 1H HR-MAS and Genomic Analysis of Human Tumor Biopsies Discriminate Between High and Low Grade Astrocytomas Valeria Righi A,B,C, Jose M
    Research Article Received: 16 April 2008, Revised: 22 January 2009, Accepted: 22 January 2009, Published online in Wiley InterScience: 2009 (www.interscience.wiley.com) DOI:10.1002/nbm.1377 1H HR-MAS and genomic analysis of human tumor biopsies discriminate between high and low grade astrocytomas Valeria Righi a,b,c, Jose M. Rodad, Jose´ Pazd, Adele Muccib, Vitaliano Tugnolic, Gemma Rodriguez-Tarduchya, Laura Barriose, Luisa Schenettib, Sebastia´n Cerda´na* and Marı´a L. Garcı´a-Martı´na,y We investigate the profile of choline metabolites and the expression of the genes of the Kennedy pathway in biopsies of human gliomas (n ¼ 23) using 1H High Resolution Magic Angle Spinning (HR-MAS, 11.7 Tesla, 277 K, 4000 Hz) and individual genetic assays. 1H HR-MAS spectra allowed the resolution and relative quantification by the LCModel of the resonances from choline (Cho), phosphocholine (PC) and glycerophosphorylcholine (GPC), the three main components of the combined tCho peak observed in gliomas by in vivo 1H NMR spectroscopy. All glioma biopsies depicted a prominent tCho peak. However, the relative contributions of Cho, PC, and GPC to tCho were different for low and high grade gliomas. Whereas GPC is the main component in low grade gliomas, the high grade gliomas show a dominant contribution of PC. This circumstance allowed the discrimination of high and low grade gliomas by 1H HR-MAS, a result that could not be obtained using the tCho/Cr ratio commonly used by in vivo 1H NMR spectroscopy. The expression of the genes involved in choline metabolism has been investigated in the same biopsies.
    [Show full text]
  • A New Rnase Sheds Light on the Rnase/Angiogenin Subfamily from Zebrafish
    A new RNase sheds light on the RNase/angiogenin subfamily from zebrafish Pizzo Elio, Antonello Merlino, Mimmo Turano, Irene Russo Krauss, Francesca Coscia, Anna Zanfardino, Mario Varcamonti, Adriana Furia, Concetta Giancola, Lelio Mazzarella, et al. To cite this version: Pizzo Elio, Antonello Merlino, Mimmo Turano, Irene Russo Krauss, Francesca Coscia, et al.. A new RNase sheds light on the RNase/angiogenin subfamily from zebrafish. Biochemical Journal, Portland Press, 2010, 433 (2), pp.345-355. 10.1042/BJ20100892. hal-00549894 HAL Id: hal-00549894 https://hal.archives-ouvertes.fr/hal-00549894 Submitted on 23 Dec 2010 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Biochemical Journal Immediate Publication. Published on 04 Nov 2010 as manuscript BJ20100892 TITLE: A new RNase sheds light on the RNase/angiogenin subfamily from zebrafish Authors: Elio PIZZO*, Antonello Merlino†,‡, Mimmo Turano*, Irene Russo Krauss†, Francesca Coscia†, Anna Zanfardino*, Mario Varcamonti*, Adriana Furia*, Concetta Giancola†, Lelio Mazzarella†, ‡, Filomena Sica†, ‡, Giuseppe
    [Show full text]
  • Development and Validation of a Protein-Based Risk Score for Cardiovascular Outcomes Among Patients with Stable Coronary Heart Disease
    Supplementary Online Content Ganz P, Heidecker B, Hveem K, et al. Development and validation of a protein-based risk score for cardiovascular outcomes among patients with stable coronary heart disease. JAMA. doi: 10.1001/jama.2016.5951 eTable 1. List of 1130 Proteins Measured by Somalogic’s Modified Aptamer-Based Proteomic Assay eTable 2. Coefficients for Weibull Recalibration Model Applied to 9-Protein Model eFigure 1. Median Protein Levels in Derivation and Validation Cohort eTable 3. Coefficients for the Recalibration Model Applied to Refit Framingham eFigure 2. Calibration Plots for the Refit Framingham Model eTable 4. List of 200 Proteins Associated With the Risk of MI, Stroke, Heart Failure, and Death eFigure 3. Hazard Ratios of Lasso Selected Proteins for Primary End Point of MI, Stroke, Heart Failure, and Death eFigure 4. 9-Protein Prognostic Model Hazard Ratios Adjusted for Framingham Variables eFigure 5. 9-Protein Risk Scores by Event Type This supplementary material has been provided by the authors to give readers additional information about their work. Downloaded From: https://jamanetwork.com/ on 10/02/2021 Supplemental Material Table of Contents 1 Study Design and Data Processing ......................................................................................................... 3 2 Table of 1130 Proteins Measured .......................................................................................................... 4 3 Variable Selection and Statistical Modeling ........................................................................................
    [Show full text]
  • S41598-021-81940-Y.Pdf
    www.nature.com/scientificreports OPEN Understanding the genetic architecture of the metabolically unhealthy normal weight and metabolically healthy obese phenotypes in a Korean population Jae‑Min Park1,2,5, Da‑Hyun Park3,5, Youhyun Song1, Jung Oh Kim3, Ja‑Eun Choi3, Yu‑Jin Kwon4, Seong‑Jin Kim3, Ji‑Won Lee1* & Kyung‑Won Hong3* Understanding the mechanisms underlying the metabolically unhealthy normal weight (MUHNW) and metabolically healthy obese (MHO) phenotypes is important for developing strategies to prevent cardiometabolic diseases. Here, we conducted genome‑wide association studies (GWASs) to identify the MUHNW and MHO genetic indices. The study dataset comprised genome‑wide single‑nucleotide polymorphism genotypes and epidemiological data from 49,915 subjects categorised into four phenotypes—metabolically healthy normal weight (MHNW), MUHNW, MHO, and metabolically unhealthy obese (MUHO). We conducted two GWASs using logistic regression analyses and adjustments for confounding variables (model 1: MHNW versus MUHNW and model 2: MHO versus MUHO). GCKR, ABCB11, CDKAL1, LPL, CDKN2B, NT5C2, APOA5, CETP, and APOC1 were associated with metabolically unhealthy phenotypes among normal weight individuals (model 1). LPL, APOA5, and CETP were associated with metabolically unhealthy phenotypes among obese individuals (model 2). The genes common to both models are related to lipid metabolism (LPL, APOA5, and CETP), and those associated with model 1 are related to insulin or glucose metabolism (GCKR, CDKAL1, and CDKN2B). This study reveals the genetic architecture of the MUHNW and MHO phenotypes in a Korean population‑based cohort. These fndings could help identify individuals at a high metabolic risk in normal weight and obese populations and provide potential novel targets for the management of metabolically unhealthy phenotypes.
    [Show full text]
  • Potent Lipolytic Activity of Lactoferrin in Mature Adipocytes
    Biosci. Biotechnol. Biochem., 77 (3), 566–571, 2013 Potent Lipolytic Activity of Lactoferrin in Mature Adipocytes y Tomoji ONO,1;2; Chikako FUJISAKI,1 Yasuharu ISHIHARA,1 Keiko IKOMA,1;2 Satoru MORISHITA,1;3 Michiaki MURAKOSHI,1;4 Keikichi SUGIYAMA,1;5 Hisanori KATO,3 Kazuo MIYASHITA,6 Toshihide YOSHIDA,4;7 and Hoyoku NISHINO4;5 1Research and Development Headquarters, Lion Corporation, 100 Tajima, Odawara, Kanagawa 256-0811, Japan 2Department of Supramolecular Biology, Graduate School of Nanobioscience, Yokohama City University, 3-9 Fukuura, Kanazawa-ku, Yokohama, Kanagawa 236-0004, Japan 3Food for Life, Organization for Interdisciplinary Research Projects, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan 4Kyoto Prefectural University of Medicine, Kawaramachi-Hirokoji, Kamigyou-ku, Kyoto 602-8566, Japan 5Research Organization of Science and Engineering, Ritsumeikan University, 1-1-1 Nojihigashi, Kusatsu, Shiga 525-8577, Japan 6Department of Marine Bioresources Chemistry, Faculty of Fisheries Sciences, Hokkaido University, 3-1-1 Minatocho, Hakodate, Hokkaido 041-8611, Japan 7Kyoto City Hospital, 1-2 Higashi-takada-cho, Mibu, Nakagyou-ku, Kyoto 604-8845, Japan Received October 22, 2012; Accepted November 26, 2012; Online Publication, March 7, 2013 [doi:10.1271/bbb.120817] Lactoferrin (LF) is a multifunctional glycoprotein resistance, high blood pressure, and dyslipidemia. To found in mammalian milk. We have shown in a previous prevent progression of metabolic syndrome, lifestyle clinical study that enteric-coated bovine LF tablets habits must be improved to achieve a balance between decreased visceral fat accumulation. To address the energy intake and consumption. In addition, the use of underlying mechanism, we conducted in vitro studies specific food factors as helpful supplements is attracting and revealed the anti-adipogenic action of LF in pre- increasing attention.
    [Show full text]
  • Evidence for a Role of Phospholipase C- 1 in the Pathogenesis of Bipolar
    Molecular Psychiatry (1998) 3, 534–538 1998 Stockton Press All rights reserved 1359–4184/98 $12.00 cated in the pathogenesis of BD or in the mechanism of ORIGINAL RESEARCH ARTICLE lithium response remains to be determined. Bipolar disorder (BD) is a major psychiatric con- Evidence for a role of dition characterized by episodes of mania and ␥ depression, affecting up to 1% of the general popu- phospholipase C- 1 in the lation.1 Lithium has been used in the prophylaxis and treatment of BD for almost half a century, and remains pathogenesis of bipolar the first-choice therapy for preventing recurrences.2 disorder Although lithium is considered specific for the treat- ment of BD, with no comparable effect in other psychi- G Turecki1, P Grof2, P Cavazzoni2, A Duffy2, atric disorders, its effectiveness varies widely. There is E Grof2, B Ahrens3, A Bergho¨fer3,BMu¨ller- compelling evidence that lithium is more effective in 3 4 4 forms of BD characterized by typical symptomatology Oerlinghausen , M Dvora´kova´ , E Libigerova´ , 3–5 M Vojtechovsky´4, P Zvolsky´4, R Joober1, and the absence of comorbidity. There is also evi- A Nilsson5, H Prochazka5, RW Licht6, dence that responders and nonresponders to lithium 6 6 6 treatment differ in certain neuroendocrine responses NA Rasmussen , M Schou , P Vestergaard , 6 7 7 7 involving the serotonergic and endorphin systems. In A Holzinger , C Schumann , K Thau , addition, family studies indicate a higher recurrence 1 2 GA Rouleau and M Alda risk for bipolar disorder among relatives of patients who respond well to lithium treatment.5,7,8 Taken 1Centre for Research in Neuroscience, The Montreal together, these findings suggest that response to lith- General Hospital, McGill University, Canada; 2Department ium prophylaxis may help define a distinct bipolar of Psychiatry, University of Ottawa, Canada; 3Department phenotype with less genetic heterogeneity.
    [Show full text]
  • Phospholipase C;1 Is Required for Metastasis Development and Progression
    Research Article Phospholipase C;1 Is Required for Metastasis Development and Progression Gianluca Sala,1 Francesco Dituri,1 Claudio Raimondi,1 Sara Previdi,2 Tania Maffucci,1 Marco Mazzoletti,2 Cosmo Rossi,3 Manuela Iezzi,3 Rossano Lattanzio,3 Mauro Piantelli,3 Stefano Iacobelli,3 Massimo Broggini,2 and Marco Falasca1 1Inositide Signalling Group, Centre for Diabetes and Metabolic Medicine, Institute of Cell and Molecular Science, Barts and The London School of Medicine and Dentistry, Queen Mary, University of London, London, United Kingdom; 2Laboratory of Molecular Pharmacology, Department of Oncology, Istituto di Ricerche Farmacologiche Mario Negri, Milan, Italy; and 3Center of Excellence on Aging, G. d’Annunzio University Foundation, Chieti, Italy Abstract critical role in both cytoskeletal changes and migration associated g Cell motility and invasion play an essential role in the with the metastatic process (5, 6). Activation of PLC 1 can occur in development of metastasis. Evidence suggests that the enzyme response to either growth factors or integrin receptors–dependent phospholipase C;1(PLC;1) may be involved in tumor pathways and induces hydrolysis of phosphatidylinositol-4,5- progression and possibly development of metastasis. In this bisphosphate (PtdIns-4,5-P2) to form the second messengers study, we show that down-regulation of PLC;1 expression diacylglycerol and inositol-1,4,5-trisphosphate, which in turn g severely impairs activation of the small GTP-binding protein activate a number of signaling molecules (7, 8). PLC 1 has been Rac and cell invasion in breast cancer cell lines and U87 shown to play a critical role in cell migration, invasion, and g in vitro.
    [Show full text]
  • Acetylcholine Induces Yeast to Hyphal Form Transition in Candida Albicans
    mic eno s & G B l i a o g l o n g u y F Ali and Karuppayil, Fungal Genom Biol 2018, 8:1 Fungal Genomics & Biology DOI: 10.4172/2165-8056.1000154 ISSN: 2165-8056 Research Open Access Acetylcholine Induces Yeast to Hyphal Form Transition in Candida Albicans Ali A and Karuppayil SM* Former Director, School of Life Sciences, Swami Ramanand Teerth Marathwada University, India *Corresponding author:: Sankunny Mohan Karuppayil, Former Director, School of Life Sciences Swami Ramanand Teerth Marathwada University, India, Tel: +919764386253; E-mail:[email protected] Received date: March 12, 2018; Accepted date: March 28, 2018; Published date: April 04, 2018 Copyright: © 2018 Ali A, et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Abstract Background: In Candida Albicans, yeast to hyphal form transition can be induced by serum, proline, glucose, and N-acetyl glucosamine. Acetylcholine is a neuromodulator which can stimulate both muscarinic and nicotinic acetylcholine receptors in humans. In this study, we are reporting that acetylcholine can induce yeast to hyphal form transition in C. Albicans. The adenylyl cyclase inhibitor, MDL 12, 330A inhibited this transition indicating the role of cAMP. Muscarinic receptors in C. Albicans did not report yet. We have reported that C. Albicans Rrp9 exhibits identity and similarity with the human muscarinic receptor M1. In humans, activation of muscarinic M1 receptor can produce cAMP through inositol phosphate pathway. The inositol phosphate pathway in C.
    [Show full text]
  • Mechanistic Insight Into the Regulation of Tec Family Kinase Activity - Substrate Selection and Conformational Preferences Qian Xie Iowa State University
    Iowa State University Capstones, Theses and Graduate Theses and Dissertations Dissertations 2014 Mechanistic insight into the regulation of Tec family kinase activity - substrate selection and conformational preferences Qian Xie Iowa State University Follow this and additional works at: https://lib.dr.iastate.edu/etd Part of the Biochemistry Commons, and the Biophysics Commons Recommended Citation Xie, Qian, "Mechanistic insight into the regulation of Tec family kinase activity - substrate selection and conformational preferences" (2014). Graduate Theses and Dissertations. 13715. https://lib.dr.iastate.edu/etd/13715 This Dissertation is brought to you for free and open access by the Iowa State University Capstones, Theses and Dissertations at Iowa State University Digital Repository. It has been accepted for inclusion in Graduate Theses and Dissertations by an authorized administrator of Iowa State University Digital Repository. For more information, please contact [email protected]. Mechanistic insight into the regulation of Tec family kinase activity − substrate selection and conformational preferences by Qian Xie A dissertation submitted to the graduate faculty in partial fulfillment of the requirements for the degree of DOCTOR OF PHILOSOPHY Major: Biochemistry Program of Study Committee: Amy Andreotti, Major Professor Mark Hargrove Richard Honzatko Michael Shogren-Knaak Edward Yu Iowa State University Ames, Iowa 2014 Copyright © Qian Xie, 2014. All rights reserved. ii TABLE OF CONTENTS CHAPTER 1. GENERAL INTRODUCTION Literature Review 1 Thesis Organization 11 Motivation 12 References 12 CHAPTER 2. SUBSTRATE RECOGNITION OF PLCγ1 VIA A SPECIFIC DOCKING SURFACE ON ITK Abstract 15 Introduction 16 Results 19 Discussion 27 Materials and Methods 31 Acknowledgements 35 References 35 Figure Captions 38 Figures 44 CHAPTER 3.
    [Show full text]