Chemical Evaluation of Mucuna Species for L-Dopa Content - an Anti-Parkinson’S Drug Yielding Medicinal Plant from India

Total Page:16

File Type:pdf, Size:1020Kb

Chemical Evaluation of Mucuna Species for L-Dopa Content - an Anti-Parkinson’S Drug Yielding Medicinal Plant from India Indian Journal of Traditional Knowledge Vol. 17(1), January 2018, pp. 148-154 Chemical evaluation of Mucuna species for L-dopa content - an anti-Parkinson’s drug yielding medicinal plant from India Archana P Raina1* & RC Misra2 1Division of Germplasm Evaluation, ICAR - National Bureau of Plant Genetic Resources, New Delhi-110 012, India; 2ICAR - National Bureau of Plant Genetic Resources, Regional Station, Cuttack-753 006, Odisha, India E-mail: [email protected] Received 23 November 2016, revised 2 June 2017 Mucuna species is an important medicinal plant of India which is the best known natural source of bioactive compound L-dopa (L-3,4-dihydroxy phenylalanine) used as potential drug for the treatment of Parkinson’s disease. The present study was undertaken for the chemical evaluation of four species of Mucuna, viz.; M. pruriens var. pruriens, M. pruriens var. utilis (Wall. ex Wight) L. H. Bailey, M. monosperma Wight, M. nigricans (Lour.) Steud., M. gigantea (Willd.) DC., collected from wild habitats of Odisha state of eastern India for pharmaceutically valued compound L-dopa. Results indicated a wide range of germplasm variability in seed size, color and L-dopa content. Among the four Mucuna species, highest L-dopa content was found in M. pruriens var. pruriens germplasm varying between 4.91 % - 7.09 %. Other Mucuna species having high L-dopa were M. gigantea (6.76 %), M. nigricans (6.16 %) and M. monosperma (4.61 %); while M. pruriens var. utilis showed least L-dopa content of 1.22 %. Promising accessions with high L-dopa content (> 6 %) were IC599290, IC599342, IC599336, IC599361 and IC599350. Superior accessions along with other rarely occurring Mucuna species can be exploited for large-scale cultivation of this drug plant for pharmaceutical use. Keywords: Mucuna species, Germplasm, HPTLC, L-Dopa, Mucuna pruriens, Parkinson’s disease IPC Int. Cl.8: A61K 36/00, A61K 38/00, A01D 8/46, A01D 8/00 Mucuna is a well-known medicinal and underutilised popularly known as Velvet bean, cowhage, kewanch legume plant which is widely exploited for its seed and atmagupta. All parts of Mucuna plant are pods. The genus Mucuna belongs to the family reported to possess useful phytochemicals of high Fabaceae and has approximately 150 species reported medicinal value for human and veterinary importance from worldwide1. The plant is widely distributed and also constitute an important raw material in throughout the India and in other parts of the tropics Ayurvedic and folk medicines. It is a constituent of including Central and South America. In India, 14 more than 200 indigenous drug formulations. This species of Mucuna are found in the foothills of the plant is pharmacologically important for various Himalayas, the plains of West Bengal, Madhya activities reported like antidiabetic, aphrodisiac, Pradesh, Karnataka, Kerala, Andra Pradesh, Uttar antineoplastic, antiepileptic, antimicrobial activities, Pradesh and the Andaman and Nicobar islands2. etc4. Mucuna is an unconventional plant species Out of these, M. pruriens, M. monosperma and having promising nutritional, pharmaceutical and M. gigantea are widely distributed all over; while bioactive constituents. Mucuna seeds are the best M. nigricans is distributed mainly in the North- nutritional source due to high content of protein, Eastern parts of India. Mucuna pruriens (L.) DC. is carbohydrate, lipids, fiber and minerals5. Researchers widely used in traditional Ayurvedic system of Indian from various countries have also identified Mucuna as medicine for the management of male fertility, a good nutritional supplement in livestock feed, as a nervous disorders and as an aphrodisiac3. It is fodder crop. The wild species of M. pruriens var. —————— pruriens and M. pruriens var. hirsuta are being *Corresponding author cultivated in India and Brazil as a cover and green RAINA & MISRA: CHEMICAL EVALUATION OF MUCUNA SPECIES FOR L-DOPA CONTENT FROM INDIA 149 manure crop. The demand for Mucuna is increasing in raw seed where it ranges from 4.47 % - 5.39 %12. day by day due to its pharmaceutical potency6. A wide range of variation in L-dopa content of Mucuna species have been known to have M. pruriens seeds have been reported by earlier bioactive compound L-dopa (L-3,4-dihydroxy phenyl workers6,7,11,13. However, little is known about alanine), a non-protein amino acid which is a the production of L-dopa in other species of precursor of the neurotransmitter dopamine7. It is Mucuna except for few reports on M. monosperma14,15, being used in the treatment of Parkinson’s disease, M. gigantea16, M. sanjappae17 and M. utilis18,20. a degenerative disease of the nervous system Keeping in view the increasing demand for herbal characterized by muscular rigidity, difficulty with drugs, importance of this genus and vast diversity of balance and walking, depressions and dementia. Mucuna germplasm available in Indian continent, L-Dopa, a dopamine precursor, either alone or efforts were made to collect diverse germplasm of in combination with aromatic amino acid Mucuna species from wild habitats of the state of decarboxylase inhibitor is the most effective drug for Odisha, India. These accessions have been conserved the treatment of Parkinson’s disease, since dopamine in the National Seed Genebank at ICAR-NBPGR, fails to pass through the blood brain barrier8. Use of New Delhi, India. The role of genetic resource biological sources for production of L-dopa, is always characterization in plant breeding endeavours is well desirable and advantageous because the chemical recognized. However, despite presence of rich synthesis results in racemic DL-mixture, which is genepool, such options are explored to minimal in inactive and furthermore separation of enantio- Mucuna species, problably due to lack of data on merically pure L-dopa from this mixture, is very germplasm attributes. Therefore, there is a need to difficult and cumbersome. In addition, D-dopa undertake detailed characterization of Mucuna genetic interferes with the activity of dopa decarboxylase, the resources in India to reinforce the local crop enzyme involved in the production of dopamine in the impovement program. In view of this, the present brain. L-dopa isolated from Mucuna was found to be study was undertaken with the main objective to more effective than the synthetic product9. The plant screen Mucuna species germplasm collected from sources have several advantages over the microbial different regions of Odisha state of India for L-dopa and chemically synthesized L-dopa, viz. it is natural, content and to identify high L-dopa yielding lines inexpensive source and provides additional benefits which can be used in future breeding programs and like antioxidant properties to reduce oxidative stress for pharmaceutical utilization. Four species of produced during Parkinson’s disease9,10. In a Mucuna namely, M. monosperma, M. nigricans, M. screening survey of more than 1000 species in 135 gigantea, M. pruriens var. pruriens and M. pruriens plant families, Mucuna was found as the only species var. utilis collected from wild habitats of Odisha from with sufficient L-dopa to suggest a possible use for its eastern India were analyzed for the presence of L- commercial production11. Various L-dopa yielding dopa. These plant species will be a potential candidate plant species such as M. holtonii, M. monosperma, M. for extraction of L-dopa and will be a good addition utilis, M. gigantea and M. pruriens were found to be a to the existing natural sources of anti-Parkinson’s promising source of L-dopa7. Demand for Mucuna drug since demand for L-dopa is continuously seeds for L-dopa is constantly increasing in the escalating. international drug market. M. pruriens has been Materials and methods profitably exploited for the extraction of this drug since long time12. Large-scale extraction of L-dopa Plant material from the wild populations of this plant has led to its Thirty accessions belonging to four species of limited availability in natural conditions. There is an Mucuna were collected by selective sampling urgent need for collection of diverse germplasm of method from wild regions of 10 districts of Odisha in Mucuna species from wild sources to identify superior India through explorations. Authentication and types and other species of Mucuna for exploitation for identification of collected Mucuna species was done anti-Parkinson’s drug. This will also ease the burden by Dr. R.C. Misra, Taxonomist at ICAR-NBPGR, on M. pruriens for L-dopa extraction. Distribution of Cuttack and voucher samples were preserved in the L-dopa in the species showed wide variation in herberaium. These germplasm collections comprised different parts of the plant with highest concentration of 26 accessions of M. pruriens var. pruriens (Kewanch) 150 INDIAN J TRADIT KNOWLE, VOL. 17, NO. 1, JANUARY 2018 and one accession each of M. pruriens var. utilis (20 cm × 20 cm) were purchased from E. Merck (Wall. Ex Wight) L. H. Bailey, M. monosperma (Darmstadt, Germany). A stock solution of L-dopa Wight (Negro bean), M. nigricans (Lour.) Steud. (1mg/mL) was prepared by dissolving an accurately (Black Jade vine) and M. gigantea (Willd.) DC. (Sea weighed 10 mg of L-dopa standard in 10 mL of 0.1N bean or Elephant Cowitch). The details of NBPGR HCl in a volumetric flask. Standard working solution accessions along with place of collection are given in was prepared by diluting it with 0.1 N HCl to make Table 1. These germplasm accessions were grown final concentration of 0.1 µg/µL. under uniform environmental conditions at NBPGR Regional Station, Cuttack, Odisha for evaluation Sample preparation during the years 2013-14 and 2014-15. Superior Matured seeds were harvested and dried at 60 °C. accessions were further evaluated and validated for Seeds were powdered to a mesh size of 60 after high L-dopa content in subsequent years. removing seed coats. Seed extract was prepared by refluxing 0.5 g of seed powder with 50 mL 0.1N HCl Chemicals on a boiling water bath for 30 min.
Recommended publications
  • Ctz78-02 (02) Lee Et Al.Indd 51 14 08 2009 13:12 52 Lee Et Al
    Contributions to Zoology, 78 (2) 51-64 (2009) Variation in the nocturnal foraging distribution of and resource use by endangered Ryukyu flying foxes(Pteropus dasymallus) on Iriomotejima Island, Japan Ya-Fu Lee1, 4, Tokushiro Takaso2, 5, Tzen-Yuh Chiang1, 6, Yen-Min Kuo1, 7, Nozomi Nakanishi2, 8, Hsy-Yu Tzeng3, 9, Keiko Yasuda2 1 Department of Life Sciences and Institute of Biodiversity, National Cheng Kung University, Tainan 701, Taiwan 2 The Iriomote Project, Research Institute for Humanity and Nature, 671 Iriomote, Takatomi-cho, Okinawa 907- 1542, Japan 3 Hengchun Research Center, Taiwan Forestry Research Institute, Pingtung 946, Taiwan 4 E-mail: [email protected] 5 E-mail: [email protected] 6 E-mail: [email protected] 7 E-mail: [email protected] 8 E-mail: [email protected] 9 E-mail: [email protected] Key words: abundance, bats, Chiroptera, diet, figs, frugivores, habitat Abstract Contents The nocturnal distribution and resource use by Ryukyu flying foxes Introduction ........................................................................................ 51 was studied along 28 transects, covering five types of habitats, on Material and methods ........................................................................ 53 Iriomote Island, Japan, from early June to late September, 2005. Study sites ..................................................................................... 53 Bats were mostly encountered solitarily (66.8%) or in pairs (16.8%), Bat and habitat census ................................................................
    [Show full text]
  • Medicinal Practices of Sacred Natural Sites: a Socio-Religious Approach for Successful Implementation of Primary
    Medicinal practices of sacred natural sites: a socio-religious approach for successful implementation of primary healthcare services Rajasri Ray and Avik Ray Review Correspondence Abstract Rajasri Ray*, Avik Ray Centre for studies in Ethnobiology, Biodiversity and Background: Sacred groves are model systems that Sustainability (CEiBa), Malda - 732103, West have the potential to contribute to rural healthcare Bengal, India owing to their medicinal floral diversity and strong social acceptance. *Corresponding Author: Rajasri Ray; [email protected] Methods: We examined this idea employing ethnomedicinal plants and their application Ethnobotany Research & Applications documented from sacred groves across India. A total 20:34 (2020) of 65 published documents were shortlisted for the Key words: AYUSH; Ethnomedicine; Medicinal plant; preparation of database and statistical analysis. Sacred grove; Spatial fidelity; Tropical diseases Standard ethnobotanical indices and mapping were used to capture the current trend. Background Results: A total of 1247 species from 152 families Human-nature interaction has been long entwined in has been documented for use against eighteen the history of humanity. Apart from deriving natural categories of diseases common in tropical and sub- resources, humans have a deep rooted tradition of tropical landscapes. Though the reported species venerating nature which is extensively observed are clustered around a few widely distributed across continents (Verschuuren 2010). The tradition families, 71% of them are uniquely represented from has attracted attention of researchers and policy- any single biogeographic region. The use of multiple makers for its impact on local ecological and socio- species in treating an ailment, high use value of the economic dynamics. Ethnomedicine that emanated popular plants, and cross-community similarity in from this tradition, deals health issues with nature- disease treatment reflects rich community wisdom to derived resources.
    [Show full text]
  • Agrobotanical, Nutritional and Bioactive Potential of Unconve___
    Agrobotanical, nutritional and bioactive potential of unconventional l... http://www.cipav.org.co/lrrd/lrrd19/9/srid19126.htm Guide for Livestock Research for Rural Development 19 (9) Citation of preparation of LRRD News 2007 this paper papers Agrobotanical, nutritional and bioactive potential of unconventional legume - Mucuna K R Sridhar and Rajeev Bhat Microbiology and Biotechnology, Department of Biosciences, Mangalore University, Mangalagangotri 574 199, Karnataka, India [email protected] Abstract Unconventional legumes are promising in terms of nutrition, providing food security, agricultural development and in crop rotation in developing countries. The wild legume, Mucuna consists of about 100 varieties/accessions and are in great demand as food, livestock feed and pharmaceutically valued products. Mucuna seeds consist of high protein, high carbohydrates, high fiber, low lipids, adequate minerals and meet the requirement of essential aminoacids. The seeds also possess good functional properties and in vitro protein digestibility. Hydrothermal treatments, fermentation and germination have been shown to be most effective in reducing the antinutrients of Mucuna seeds. Several antinutritional compounds of Mucuna seeds serve in health care and considerable interest has been drawn towards their antioxidant properties and potential health benefits. All parts of Mucuna plant are reported to possess useful phytochemicals of high medicinal value of human and veterinary importance and also constitute as an important raw material in Ayurvedic and folk medicines. Mucuna seeds constitute as a good source of several alkaloids, antioxidants, antitumor and antibacterial compounds. Seeds are the major source of L-DOPA, which serve as a potential drug in providing symptomatic relief for Parkinson's disease. As cultivar differences in Mucuna influences the quantity of L-DOPA and lectin in seeds, future investigations should direct towards the selection of germplasm with low L-DOPA and lectin for human and animal consumption, while high L-DOPA for pharmaceutical purposes.
    [Show full text]
  • Proximate Composition and Mineral Analysis of Mucuna Utilis (Velvet Bean)
    IOSR Journal of Applied Chemistry (IOSR-JAC) e-ISSN: 2278-5736.Volume 8, Issue 10 Ver. I (Oct. 2015), PP 42-45 www.iosrjournals.org Proximate Composition and Mineral Analysis of Mucuna utilis (Velvet Bean) Ezeokonkwo Mercy A.*1, Okafor Sunday N.2 1. Department of Pure and Industrial Chemistry, University of Nigeria, Nsukka,410001, Enugu State, Nigeria 2. Department of Pharmaceutical and Medicinal Chemistry, University of Nigeria, Nsukka, 410001, Enugu State, Nigeria Abstract: The standard procedures were followed to analyze the proximate composition and mineral analysis of Mucuna utilis. The caloric value was calculated from crude protein, crude fat, crude fiber, carbohydrate, moisture and ash content. The iron (Fe), zinc (Zn), calcium (Ca), manganese (Mn) and magnesium (Mg), sodium (Na), potassium (K) and phosphorus (P) were determined by Atomic Absorption Spectrophotometer. The results showed that Mucuna utilis contained ash (6.0%), crude protein (22.94%), crude fat (2.94%), crude fiber (12.50%), moisture (12.50%) and carbohydrate (43.11%). The energy calculated gave 290.75Kcal/100g. The mineral determination gave the data that Mucuna utilis contained calcium (5.25 mg/g), phosphorus (0.02 mg/g), magnesium (1.63 mg/g), manganese (0.0mg/g), iron (0.95 mg/g), sodium (1.17 mg/g), potassium (0.13 mg/g) and zinc (0.21 mg/g). This study concluded that the tested Mucuna utilis contained highest amount of carbohydrate and lowest amount of crude fibre. Similarly, among minerals tested, Mucuna utilis contained highest amount of calcium and no manganese at all. Keywords: carbohydrate, mineral analysis, Mucuna utilis, protein, proximate composition I.
    [Show full text]
  • Effects of Aqueous Seed Extracts of Mucuna Sloanei (Fabaceae) on Body Weight and Some Biochemical Parameters of Rattus Novergicus
    Vol. 17(28), pp. 885-891, 11 July, 2018 DOI: 10.5897/AJB2017.16112 Article Number: DEEF4BC57771 ISSN: 1684-5315 Copyright ©2018 Author(s) retain the copyright of this article African Journal of Biotechnology http://www.academicjournals.org/AJB Full Length Research Paper Effects of aqueous seed extracts of Mucuna sloanei (Fabaceae) on body weight and some biochemical parameters of Rattus novergicus Ugwu, Godwin C.1*, Ejere, Vincent C.1, Okanya, Chinagorom L.1, Omeje, Joy N.2, Egbuji, Jude 1 3 1 V. , Onu, Martina C. and Chukwuka, Christian O. 1Department of Zoology and Environmental Biology, University of Nigeria, Nsukka, Enugu State, Nigeria. 2Department of Pharmacognosy and Environmental Medicine, University of Nigeria, Nsukka, Enugu State, Nigeria. 3Department of Veterinary Physiology and Pharmacology, University of Nigeria, Nsukka, Enugu State, Nigeria. Received 14 June, 2017; Accepted 14 December, 2017 Mucuna sloanei is an annual leguminous plant widely used among the various ethnic groups in Nigeria. The effects of aqueous M. sloanei seed extract on the body weight and some biochemical parameters of 48 normal male Rattus novergicus (albino rats) were investigated for 28 days. The rats were divided into control group (A) which received distilled water and treatment groups (B, C and D) that received oral administration of 100, 200 and 400 mg/kg body weight of the seed extract, respectively. Each group was further divided into three replicates of four rats each. Blood samples were collected before the experiment started (week 0) and at weekly interval from one rat per replicate. The biochemical profiles were determined using bioassay. The lethal dose (LD50) of the aqueous seed extracts of M.
    [Show full text]
  • Antidiabetic Properties of Mucuna Pruriens L. (D.C.)
    ANTIDIABETIC PROPERTIES OF MUCUNA PRURIENS L. (D.C.) SEED EXTRACT AND ITS TABLET FORMULATIONS BY MAJEKODUNMI, STEPHEN OLARIBIGBE B. Pharm. (Ife); M.Sc. Pharmaceutics & Industrial Pharmacy (Ibadan) A thesis in the Department of PHARMACEUTICS AND INDUSTRIAL PHARMACY Submitted to the Faculty of Pharmacy in partial fulfillment of the requirements for the Degree of DOCTOR OF PHILOSOPHY of the UNIVERSITY OF IBADAN SEPTEMBER, 2012 ii UNIVERSITY OF IBADAN CERTIFICATION I certify that this work was carried out by Mr. Stephen Olaribigbe Majekodunmi in the Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, University of Ibadan, Ibadan, Nigeria. ------------------------------------------------------------------- (Supervisor) Prof. Oluwatoyin A. Odeku B.Pharm. (Ife); M.Sc., PhD. (Ibadan) Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, University of Ibadan, Ibadan, Nigeria iii UNIVERSITY OF IBADAN DEDICATION This piece of work is dedicated to my redeemer God Almighty for giving me the will, strength and courage to attain this height, renewing my days; and in remembrance of my late parents, Chief James Olawale Majekodunmi, Sakotun of Ikopa and Chief (Mrs.) Marian Omotayo Majekodunmi, Lika of Ikopa, Abeokuta, Ogun State, Nigeria, who bequeathed in me an enduring legacy vital for the realization and completion of this project. To God be the glory. iv UNIVERSITY OF IBADAN ACKNOWLEDGEMENT I am what I am today by the will of God who in His infinite mercies chose to renew my days. I express my heart felt appreciation to God Almighty for the grace to complete this work. My wholehearted, sincere and profound gratitude goes to my supervisor Professor Oluwatoyin A. Odeku for her holistic support, guidance, encouragement and particularly for her consolidated mentoring right from my M.Sc.
    [Show full text]
  • Fruits and Seeds of Genera in the Subfamily Faboideae (Fabaceae)
    Fruits and Seeds of United States Department of Genera in the Subfamily Agriculture Agricultural Faboideae (Fabaceae) Research Service Technical Bulletin Number 1890 Volume I December 2003 United States Department of Agriculture Fruits and Seeds of Agricultural Research Genera in the Subfamily Service Technical Bulletin Faboideae (Fabaceae) Number 1890 Volume I Joseph H. Kirkbride, Jr., Charles R. Gunn, and Anna L. Weitzman Fruits of A, Centrolobium paraense E.L.R. Tulasne. B, Laburnum anagyroides F.K. Medikus. C, Adesmia boronoides J.D. Hooker. D, Hippocrepis comosa, C. Linnaeus. E, Campylotropis macrocarpa (A.A. von Bunge) A. Rehder. F, Mucuna urens (C. Linnaeus) F.K. Medikus. G, Phaseolus polystachios (C. Linnaeus) N.L. Britton, E.E. Stern, & F. Poggenburg. H, Medicago orbicularis (C. Linnaeus) B. Bartalini. I, Riedeliella graciliflora H.A.T. Harms. J, Medicago arabica (C. Linnaeus) W. Hudson. Kirkbride is a research botanist, U.S. Department of Agriculture, Agricultural Research Service, Systematic Botany and Mycology Laboratory, BARC West Room 304, Building 011A, Beltsville, MD, 20705-2350 (email = [email protected]). Gunn is a botanist (retired) from Brevard, NC (email = [email protected]). Weitzman is a botanist with the Smithsonian Institution, Department of Botany, Washington, DC. Abstract Kirkbride, Joseph H., Jr., Charles R. Gunn, and Anna L radicle junction, Crotalarieae, cuticle, Cytiseae, Weitzman. 2003. Fruits and seeds of genera in the subfamily Dalbergieae, Daleeae, dehiscence, DELTA, Desmodieae, Faboideae (Fabaceae). U. S. Department of Agriculture, Dipteryxeae, distribution, embryo, embryonic axis, en- Technical Bulletin No. 1890, 1,212 pp. docarp, endosperm, epicarp, epicotyl, Euchresteae, Fabeae, fracture line, follicle, funiculus, Galegeae, Genisteae, Technical identification of fruits and seeds of the economi- gynophore, halo, Hedysareae, hilar groove, hilar groove cally important legume plant family (Fabaceae or lips, hilum, Hypocalypteae, hypocotyl, indehiscent, Leguminosae) is often required of U.S.
    [Show full text]
  • Dietary Neurotransmitters: a Narrative Review on Current Knowledge
    nutrients Review Dietary Neurotransmitters: A Narrative Review on Current Knowledge Matteo Briguglio 1,* ID , Bernardo Dell’Osso 2,3, Giancarlo Panzica 4 ID , Antonio Malgaroli 5, Giuseppe Banfi 6, Carlotta Zanaboni Dina 1, Roberta Galentino 1 and Mauro Porta 1 1 Tourette’s Syndrome and Movement Disorders Centre, I.R.C.C.S. Galeazzi Hospital, 20161 Milan, Italy; [email protected] (C.Z.D.); [email protected] (R.G.); [email protected] (M.P.) 2 Department of Pathophysiology and Transplantation, I.R.C.C.S. Ca’ Granda Foundation, Ospedale Maggiore Policlinico, 20122 Milan, Italy; [email protected] 3 Department of Psychiatry and Behavioral Sciences, School of Medicine, Stanford University, Stanford, CA 94305, USA 4 Department of Neuroscience, Rita Levi Montalcini, University of Turin, 10126 Turin, Italy; [email protected] 5 Neurobiology of Learning Unit, Division of Neuroscience, Vita-Salute San Raffaele University, 20132 Milan, Italy; [email protected] 6 Scientific Direction, I.R.C.C.S. Galeazzi Hospital, 20161 Milan, Italy; banfi[email protected] * Correspondence: [email protected]; Tel.: +39-338-608-7042 Received: 13 April 2018; Accepted: 8 May 2018; Published: 13 May 2018 Abstract: Foods are natural sources of substances that may exert crucial effects on the nervous system in humans. Some of these substances are the neurotransmitters (NTs) acetylcholine (ACh), the modified amino acids glutamate and γ-aminobutyric acid (GABA), and the biogenic amines dopamine, serotonin (5-HT), and histamine. In neuropsychiatry, progressive integration of dietary approaches in clinical routine made it necessary to discern the more about some of these dietary NTs.
    [Show full text]
  • 88. MUCUNA Adanson, Fam. Pl. 2: 325, 579. 1763, Nom. Cons
    Flora of China 10: 207–218. 2010. 88. MUCUNA Adanson, Fam. Pl. 2: 325, 579. 1763, nom. cons. 黧豆属 li dou shu Sa Ren (萨仁); C. Melanie Wilmot-Dear Stizolobium P. Browne; Zoophthalmum P. Browne. Vines, perennial or annual, woody or herbaceous. Leaves pinnately 3-foliolate; stipules usually caducous; stipels sometimes caducous; leaflets large. Inflorescences axillary or on old stems, condensed panicles or often compound pseudoracemes through reduction of ultimate peduncles to small knobs, usually with 3 flowers. Flowers large and beautiful; bracts small or caducous. Calyx campanulate, 5-lobed, upper 2 lobes connate into a broad lip. Corolla dark purple, red, light green, or almost white, usually dark when dry, longer than calyx; standard usually shorter than wings and keel, with stipe, with 2 auricles at base; wings oblong or ovate, inflexed, usually attached to keel; keel petals partially connate along lower margin, slightly longer than or equal to wings, apex in- flexed with horny, often hooked, apical beak. Vexillary stamen free; anthers dimorphic, usually with beard, longer 5 almost basifixed, shorter 5 dorsifixed. Ovary 1- to many ovuled; style filiform, inflexed, sometimes hairy, without beard; stigma small, capitate. Leg- ume ovoid, oblong, or linear, swollen around seeds or laterally flattened, margin often winged, surface often ribbed or ornamented with winglike lamellae sometimes simple or divided into 2 wings along their distal margins (T-shaped in cross section), often clothed with red-brown irritant bristles, dehiscent; valves thick. Seeds reniform, orbicular, or elliptic; hilum linear; strophiole absent. About 100 species: worldwide; 18 species (nine endemic) in China, including two incompletely known taxa and one possibly extinct species (Mucuna championii).
    [Show full text]
  • Toxicity of Mucuna Pruriens Seed Extract on the Kidney of Adult Sprague-Dawley Rats
    Gbotolorun et al, Afr. J. Pharmacol. Ther. 2018. 7(1): 27-33 African Journal of Pharmacology and Therapeutics Vol. 7 No. 1 Pages 27-33, 2018 Open Access to full text available at http://www.uonbi.ac.ke/journals/kesobap/ Research Article Toxicity of Mucuna pruriens seed extract on the kidney of adult Sprague-Dawley rats Stella C. Gbotolorun a,*, Perpetual K. Isah a, and Oluwaseye A. Adebajo a a Department of Anatomy, Faculty of Basic Medical Sciences, College of Medicine, University of Lagos, Nigeria _____________ * Corresponding author: Department of Anatomy, Faculty of Basic Medical Sciences, College of Medicine, University of Lagos, P.M.B. 12003, Lagos, Nigeria; Tel: +234-803-8098631; E-mail: [email protected] Background: The commonly acceptable knowledge that herbal medications have little or no toxicity and are absolutely safe makes people consume them indiscriminately. All parts of Mucuna pruriens have been reported to possess valuable medicinal properties, but its potential toxicity on vital organs remains unexplored. Objective: To determine the deleterious effect of Mucuna pruriens on the Kidney of Adult Sprague-Dawley Rats. Methodology: Twenty Sprague-Dawley rats were used and divided into four groups of five rats per group. Group I served as control and received distilled water and groups II-IV received 50, 100 and 200 mg/kg of the extract respectively for 2 weeks. The animals were sacrificed, blood was collected for kidney function test and the kidneys were excised via ventral laparatomy. The right kidney was fixed for histological studies while the left kidney was analysed for biochemical markers of oxidative stress Results: Lipid peroxidation increased significantly while superoxide dismutase and glutathione recorded a significant decrease in activities when the treated groups were compared to control.
    [Show full text]
  • September, 2006 Vol. 12, No. 2 for Newsletter Subscription Information, Submissions, Donations, Or Seed Identification
    September, 2006 Vol. 12, No. 2 THE DRIFTING SEED A triannual newsletter covering seeds and fruits dispersed by tropical currents and the people who collect and study them. Distributed to more than 20 countries. Ed Perry, Editor and Publisher Dr. Charles (Bob) Gunn, Advisor Patricia Frazier, Production Editor John Beerensson, Columnist Stephanie Bernstein, Columnist Tim Flynn, Columnist Murray Gregory, Columnist Dr. Charles Nelson, Columnist Carol Sullivan, Columnist Dr. Gerald Sullivan, Columnist Paul Mikkelsen, Web Site Manager for www.seabean.com The 11th Annual International Sea Bean Symposium will be held at the Cocoa Beach Public Library, October 13th-14th, 2006. Details are inside this issue on pages 16-17! Pages 2-5 How Far in America?, E. C. Nelson Pages 11-12 New Zealand, M. Gregory Page 6 The Snake Charmer, S. Bernstein Page 13 Yellow Nickar in Texas, G. Sullivan Pages 7-9 Kauai Beaches, Sullivans/Flynn Pages 14-15 News and Notes Page 10 The Quarter-Pounder, J. Beerensson Pages 16-17 Symposium Schedule and Info For Newsletter Subscription Information, Submissions, Donations, or Seed Identification: contact: Ed Perry P.O. Box 510366 Melbourne Beach, FL 32951—USA E-mail: [email protected] (Paul Mikkelsen) or [email protected] (Ed Perry) How Far North Can Drift Seeds be Found in Eastern North America? by E. Charles Nelson, [email protected] Serendipity is one of the nicest words in the English language. It has remarkable origins being composed from Serendip, a former name of the island of Ceylon (Sri Lanka), and -ity. Horace Walpole formed it after reading a tale about the three princes of Serendip, who “were always making discoveries by accident and sagacity, of things they were not in quest of” – note that the Oxford English dictionary misquoted Walpole.1 Sea-beans and nickar nuts are often found in this way, by accident and sagacity, by serendipity.
    [Show full text]
  • In Vitro Evaluation of Mucuna Pruriens (L.) DC
    Brazilian Journal of Pharmaceutical Sciences vol. 47, n. 3, jul./sep., 2011 Article In vitro evaluation of Mucuna pruriens (L.) DC. antioxidant activity Joy Ganem Longhi1, Elisa Perez2, Jair José de Lima3, Lys Mary Bileski Cândido1,4,* 1Pharmacy Department (PPGCF), Federal University of Paraná, 2Chemistry Department , Federal University of Paraná, 3Nutrition Department, Federal University of Paraná, 4Food Coordination, Technological Federal University of Paraná Mucuna pruriens (L). Dc is a plant of the Fabaceae family, commonly known as velvet bean, itchy bean, chiporro bean, mucuna, among others. This plant has several medicinal properties, including its potential to treat Parkinson’s disease (PD). International studies have shown that this plant surpasses the benefits of the substance levodopa in the treatment of PD. Taking into account that nerve cells are highly sensitive to oxidative substances, this study evaluated the antioxidant activity of mucuna and compared it to that of levodopa. The plant seeds’ phenolic concentration was quantified by using the Folin-Denis reagent and the antioxidant activity assays were performed by using three different methods: the reduction of the phosphomolybdenium complex, the reduction of radical 1,1-diphenyl-2-picrylhydrazyl (DPPH•) and the formation of radical monocation ABTS•+, from the acid [2-2’-azinobis (3-ethylbenzothiazoline-6- sulfonate)]. Results showed that M. pruriens presents high antioxidant capacity, although not superior to isolated levodopa antioxidant capacity. Therefore, further studies should be performed to elucidate the activity of this plant in humans. Uniterms: Mucuna pruriens. Antioxidant. Phenolic compounds A Mucuna pruriens (L). Dc é uma planta da família Fabaceae, conhecida popularmente como feijão- veludo, fava-coceira, feijão chiporro, mucuna, entre outros.
    [Show full text]