Año 2, N° 8 Agosto 2016 TEMA : MACA Año 6, N° 11 Noviembre 2020

Total Page:16

File Type:pdf, Size:1020Kb

Año 2, N° 8 Agosto 2016 TEMA : MACA Año 6, N° 11 Noviembre 2020 Año 6, N° 11 Noviembre 2020 Año 2, N° 8 Agosto 2016 Fuente: PROMPERÚ TEMA : MACA Lepidium meyenii TABLA DE CONTENIDOS I INTRODUCCIÓN 01-02 II CARACTERÍSTICAS Y USOS 03-14 ANÁLISIS DE SOLICITUDES DE III 15-19 PATENTES RELACIONADAS ANÁLISIS DE LITERATURA NO IV 20-21 PATENTE RELACIONADAS V PUBLICACIONES CIENTÍFICAS 22-190 VI TECNOLOGÍA ASOCIADA 191-202 VII ACTUALIDAD 203-207 VIII BIBLIOGRAFÍA 208-209 Foto: PROMPERÚ I. INTRODUCCIÓN Lepidium meyenii Walp, conocida en quechua como maca, maka, maino, ayak chichira, ayak willku, en español como maca, en inglés como maca, Peruvian ginseng; crece principalmente en la zona central del Perú, a una altura de 3500 a 4500 msnm (Gonzales GF, 2006) [Suarez S, 2009] La maca ha sido encontrada en muchos sitios arqueológicos preincaicos. En sus crónicas, el padre Cobo cuenta que “la maca crece en los sitios más agrestes y fríos de la puna, donde no hay Reino:Plantae División: Magnoliophyta Clase: Magnolipsida Taxonomía de Lepidium meyenii Orden: Brassicales Familia: Brassicaceae Género : Lepidium Especie: Lepidium meyenii W. Página 1 posibilidades de cultivar ninguna otra planta alimenticia”. Tiene diversos usos, además del alimentario; los pobladores andinos desde la antigüedad la utilizaban, entre otros, para mejorar sus capacidades físicas y mentales. [Suarez S, 2009] Las exportaciones de maca (harina cruda, harina gelatinizada, cápsulas y extractos) siguen incrementándose, el 2017 se exportaron 3,122 toneladas, siendo los principales mercados: Estados Unidos, Hong Kong, Reino Unido, China, Alemania y Japón, las exportaciones de harina de maca superaron los 26,8 millones de dólares (Comisión de Promoción del Perú para la Exportación y el Turismo [PROMPERÚ], 2017). La maca en el mercado internacional, está basado en la iniciativa BioTrade (Conferencia de las Naciones Unidas sobre Comercio y Desarrollo [UNCTAD], 2007:4), que tienen como objetivo fundamental el respeto a la biodiversidad, a sus protagonistas y al medio ambiente. En China, la maca es comercializado como remedio natural, para mejorar el rendimiento sexual y como terapia post-menopaúsica, todo ello indica que el conocimiento tradicional de los pobladores de la Meseta de Bombón-Junín-Perú sobre los beneficios de la maca como alimento y para la salud fueron sacados de contexto para satisfacer la demanda de remedios naturales, además una forma de contribuir a la soberanía y seguridad alimentaria (Beharry & Heinrich, 2018; Zapana, Mamani, Escobar-Mamani, & Zapana, 2017). En el ámbito científico, la maca es considerada por muchos como un alimento nutricional, funcional y nutraceútico e incluso como candidato a adaptógeno (Gonzales, 2012). [Villanueva y Reyes; 2019] Página 2 II. CARACTERÍSTICAS Y USOS A.- COMPOSICIÓN QUÍMICA Flavonolignano Macapirrolina C Lepidilina A Lepidilina B Lepidilina C Lepidilina D Página 3 Macapirrolina A Macapirrolina B 5-oxo-6E,8E ácido octadecadienoico 1,2-dihidro-N-derivado de hidroxipiridina (macaridina) Página 4 N-bencil-9-oxo-12Z-octadecenamida N-bencil-9-oxo-12Z,15Z-octadecadienamida N-bencil-13-oxooctadeca-9Z,11Z-dienamida Página 5 1,2-dihidro-N- derivado de et al., N-bencil-15Z-tetracosenamida 2002) N-(m-Metoxibencil) hexadecanamida N-Bencil-5-oxo-6E,8E-octadecadienamida Página 6 N-Bencilhexadecanamida Página 7 B.- DESCRIPCIÓN BOTÁNICA DE LA MACA Lepidium meyenii, conocido popularmente como maca peruana, se encuentra originalmente en los Andes peruanos. Esta región posee condiciones climáticas y ambientales muy singula- res, que incluyen grandes altitudes, bajas temperaturas y humedad, vientos intensos, lluvia y luz solar, baja presión, alta radiación ultravioleta y cósmica (Gonzales, Gonzales y Gonzales- Castañeda, 2009). Es una planta bienal que presenta diferentes fenotipos basados principalmente en el color del hipocótilo. De hecho, hasta ahora se han descrito trece colores distintos, pero el rojo, el amarillo y el negro son los colores más hipocótilos encontrados (Inoue, Farfan y Gonzales, 2016; Qiu, Zhu, Lan, Zeng y Du, 2016). [Carvhalo, 2020] Hipocótilos de maca (Lepidium meyenii) Fuente: PROMPERÚ Página 8 La coloración del hipocótilo depende del contenido de carotenoides y antocianinas en la piel exterior (Clement et al., 2010a, León, 1964). La maca amarilla es la variedad preferida por su sabor aparentemente más dulce (Quirós y Cárdenas, 1992). La maca es bienal en su hábitat natural pero se ha observado que es anual en condiciones mejoradas de temperaturas más cáli- das y bajo el uso de fertilizantes (Quirós y Cárdenas, 1992, Hermann y Bernet, 2009). [Beharry, 2017] La maca tiene una roseta de hojas con volantes y crece en el duro clima de los Andes centrales en Perú, donde hay fuertes vientos y la temperatura más alta es de 12°C (Balick y Lee, 2002, Hermann y Heller, 1997). La maca es la única Brassicaceae domesticada que se cultiva como alimento en los Andes. La parte comestible, descrita más comúnmente en la literatura como hipocótilo o raíz, está formada por la raíz principal y la base de los hipocótilos (León, 1964). La especie es un octoploide autopolinizado (2n = 8x = 64) (León, 1964) y se propaga a través de semillas producidas sexualmente. [Beharry, 2017] El hipocótilo de la maca tiene diferentes colores que se encargan de influir positivamente en su acción farmacológica y biológica. La maca amarilla corresponde a aproximadamente el 60% de todos los hipocótilos de maca cosechados en Perú. La maca roja representa aproximada- mente el 25% de la cosecha anual. La maca negra es el más raro de todos los colores y repre- senta alrededor del 15% de la cosecha anual. Las condiciones de cultivo y los tipos de color pueden afectar sus metabolitos, influyendo también en las actividades biológicas. (Clément et al.11 ) [Da Silva, 2020] Página 9 C. VALOR NUTRICIONAL DE LA MACA La maca peruana tiene un alto valor nutricional similar a los granos de cereales y una mejor composición en comparación con otros hipocótilos, como la papa, la zanahoria y el nabo. Un estudio de la materia seca revela que esta raíz es rica en proteínas (8.87-11.6%), con una pequeña porción de lípidos (1.09-2.22%), además de 8.23-9.08% de fibra, 4.9-5.0% de ceniza, y 54,61 a 60,00% de carbohidratos, donde 23,41% es sacarosa, 1,55% glucosa, 4,56% de oligosacáridos y 30,42% de polisacáridos. Además, la raíz también presenta una gran cantidad de aminoácidos esenciales, ácidos grasos y contenido de minerales, en particular, hierro, calcio y cobre. [Da Silva et al, 2020] D.– ACTIVIDAD FARMACOLÓGICA En los Andes peruanos, la tradición oral menciona muchas bondades de la maca, se han documentado, efectos aparentes sobre el rendimiento reproductivo y sexual en ratas y seres humanos (Gonzales, Ruiz, Gonzales, Villegas & Córdova, 2001; Gonzales et al., 2001; Gonzales et al., 2004). Ratas tratadas por vía oral con maca roja, mostraron efectos beneficiosos en el tratamiento de la hiperplasia prostática benigna (HBP) inducida experimentalmente con enantato de testosterona (Gonzales et al., 2005; Gonzales et al., 2006; Gasco, Villegas, Yucra, Rubio & Gonzales, 2007). La presencia de glucosinolatos y derivados, alcaloides y esteroles en la maca estarían relacionados con su actividad anticancerígena, los fitoesteroles y otros metabolitos secundarios en la osteoporosis post menopáusica (Fahey, Zalcmann & Talalay, 2001; Wang et al, 2007). Varias pruebas experimentales y ensayos clínicos mostraron sus propiedades nutricionales, funcionales y nutraceúticas, promoviendo a la maca como un adaptógeno o regulador metabólico (Gonzales, 2012). La maca negra muestra mejores resultados sobre la la espermatogénesis, la memoria y contra la fatiga, mientras que la maca Página 10 roja es la que mejor revierte la HPB y la osteoporosis (Gonzales et al., 2014). La actividad antioxidante de un extracto acuoso de maca, evaluada por varios métodos, demostró su capacidad de eliminar radicales libres y proteger a las células contra el estrés oxidativo, acción anti-proliferativa y citoprotectora, estiman un consumo aproximado de 75 g día-1 (Sandoval et al., 2002; Lee, Dabrowski, Sandoval & Miller, 2005). Los extractos acuoso y etanólico de maca negra administrados a ratones machos por 35 días, mejoraron significativamente el deterioro de la memoria inducida por escopolamina, presumen que el efecto neuroprotector en el aprendizaje y la memoria se deben a los compuestos polifenólicos (Rubio et al., 2007). Utilizando células renales caninas de Madin-Darby (MDCK), el extracto metanólico de maca inhibió significativamente el efecto citopático inducido por la influenza y mostró propiedades inhibitorias contra los virus de la influenza A y B (Del Valle, Pumarola, Alzamora & Del Valle, 2014). [Yabar, 2019] Fuente: PROMPERÚ Página 11 E.- USOS ALIMENTICIOS La raíz de maca se puede hornear o comer después de la decocción o el secado (Toledo et al., 1998). Los representantes de los productos de maca disponibles comercialmente son la harina (seca y molida), la harina gelatinizada (seca, extruida y molida), los extractos puros o encapsulados e hidroalcohólicos. Las partes aéreas de la maca, como las hojas, pueden ser vegetales comestibles (Jin et al., 2018). Los ingredientes de la maca se pueden introducir en los productos alimenticios para llevar a cabo funciones tecnológicas específicas (por ejemplo, colorante, aromatizante, texturizante, antioxidante y conservación). La maca contiene varios compuestos bioactivos, como fibras dietéticas, que pueden fortificar productos alimenticios como cereales o productos para hornear para mejorar la calidad nutricional. [Sunan Wang,
Recommended publications
  • Activity of Selected Group of Monoterpenes in Alzheimer's
    International Journal of Molecular Sciences Review Activity of Selected Group of Monoterpenes in Alzheimer’s Disease Symptoms in Experimental Model Studies—A Non-Systematic Review Karolina Wojtunik-Kulesza 1,*, Monika Rudkowska 2, Kamila Kasprzak-Drozd 1,* , Anna Oniszczuk 1 and Kinga Borowicz-Reutt 2 1 Department of Inorganic Chemistry, Medical University of Lublin, Chod´zki4a, 20-093 Lublin, Poland; [email protected] 2 Independent Experimental Neuropathophysiology Unit, Medical University of Lublin, Jaczewskiego 8b, 20-090 Lublin, Poland; [email protected] (M.R.); [email protected] (K.B.-R.) * Correspondence: [email protected] (K.W.-K.); [email protected] (K.K.-D.) Abstract: Alzheimer’s disease (AD) is the leading cause of dementia and cognitive function im- pairment. The multi-faced character of AD requires new drug solutions based on substances that incorporate a wide range of activities. Antioxidants, AChE/BChE inhibitors, BACE1, or anti-amyloid platelet aggregation substances are most desirable because they improve cognition with minimal side effects. Plant secondary metabolites, used in traditional medicine and pharmacy, are promising. Among these are the monoterpenes—low-molecular compounds with anti-inflammatory, antioxidant, Citation: Wojtunik-Kulesza, K.; enzyme inhibitory, analgesic, sedative, as well as other biological properties. The presented review Rudkowska, M.; Kasprzak-Drozd, K.; focuses on the pathophysiology of AD and a selected group of anti-neurodegenerative monoterpenes Oniszczuk, A.; Borowicz-Reutt, K. and monoterpenoids for which possible mechanisms of action have been explained. The main body Activity of Selected Group of of the article focuses on monoterpenes that have shown improved memory and learning, anxiolytic Monoterpenes in Alzheimer’s and sleep-regulating effects as determined by in vitro and in silico tests—followed by validation in Disease Symptoms in Experimental in vivo models.
    [Show full text]
  • List of Union Reference Dates A
    Active substance name (INN) EU DLP BfArM / BAH DLP yearly PSUR 6-month-PSUR yearly PSUR bis DLP (List of Union PSUR Submission Reference Dates and Frequency (List of Union Frequency of Reference Dates and submission of Periodic Frequency of submission of Safety Update Reports, Periodic Safety Update 30 Nov. 2012) Reports, 30 Nov.
    [Show full text]
  • Download Supplementary
    Supplementary Materials: High throughput virtual screening to discover inhibitors of the main protease of the coronavirus SARS-CoV-2 Olujide O. Olubiyi1,2*, Maryam Olagunju1, Monika Keutmann1, Jennifer Loschwitz1,3, and Birgit Strodel1,3* 1 Institute of Biological Information Processing: Structural Biochemistry, Forschungszentrum Jülich, Jülich, Germany 2 Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Obafemi Awolowo University, Ile-Ife, Nigeria 3 Institute of Theoretical and Computational Chemistry, Heinrich Heine University Düsseldorf, 40225 Düsseldorf, Germany * Corresponding authors: [email protected], [email protected] List of Figures S1 Chemical fragments majorly featured in the top performing 9,515 synthetic com- pounds obtained from screening against the crystal structure of the SARS-CoV-2 main protease 3CLpro. .................................. 2 S2 Chemical fragments majorly featured in the top 2,102 synthetic compounds obtained from ensemble docking and application of cutoff values of ∆G ≤ −7.0 kcal/mol and ddyad ≤ 3.5 Å. ............................ 2 S3 The poses and 3CLpro–compound interactions of phthalocyanine and hypericin. 3 S4 The poses and 3CLpro–compound interactions of the four best non-FDA-approved and investigational drugs. ............................... 4 S5 The poses and 3CLpro–compound interactions of zeylanone and glabrolide. 5 List of Tables S1 Names and properties of the compounds binding best to the active site of 3CLpro. 6 1 Supporting Material: High throughput virtual screening for 3CLpro inhibitors Figure S1: Chemical fragments majorly featured in the top performing 9,515 synthetic com- pounds obtained from screening against the crystal structure of the SARS-CoV-2 main pro- tease 3CLpro. The numbers represent the occurrence in absolute numbers.
    [Show full text]
  • Horizon Scanning Status Report June 2019
    Statement of Funding and Purpose This report incorporates data collected during implementation of the Patient-Centered Outcomes Research Institute (PCORI) Health Care Horizon Scanning System, operated by ECRI Institute under contract to PCORI, Washington, DC (Contract No. MSA-HORIZSCAN-ECRI-ENG- 2018.7.12). The findings and conclusions in this document are those of the authors, who are responsible for its content. No statement in this report should be construed as an official position of PCORI. An intervention that potentially meets inclusion criteria might not appear in this report simply because the horizon scanning system has not yet detected it or it does not yet meet inclusion criteria outlined in the PCORI Health Care Horizon Scanning System: Horizon Scanning Protocol and Operations Manual. Inclusion or absence of interventions in the horizon scanning reports will change over time as new information is collected; therefore, inclusion or absence should not be construed as either an endorsement or rejection of specific interventions. A representative from PCORI served as a contracting officer’s technical representative and provided input during the implementation of the horizon scanning system. PCORI does not directly participate in horizon scanning or assessing leads or topics and did not provide opinions regarding potential impact of interventions. Financial Disclosure Statement None of the individuals compiling this information have any affiliations or financial involvement that conflicts with the material presented in this report. Public Domain Notice This document is in the public domain and may be used and reprinted without special permission. Citation of the source is appreciated. All statements, findings, and conclusions in this publication are solely those of the authors and do not necessarily represent the views of the Patient-Centered Outcomes Research Institute (PCORI) or its Board of Governors.
    [Show full text]
  • Crixivan® (Indinavir Sulfate) Capsules
    CRIXIVAN® (INDINAVIR SULFATE) CAPSULES DESCRIPTION CRIXIVAN* (indinavir sulfate) is an inhibitor of the human immunodeficiency virus (HIV) protease. CRIXIVAN Capsules are formulated as a sulfate salt and are available for oral administration in strengths of 100, 200, 333, and 400 mg of indinavir (corresponding to 125, 250, 416.3, and 500 mg indinavir sulfate, respectively). Each capsule also contains the inactive ingredients anhydrous lactose and magnesium stearate. The capsule shell has the following inactive ingredients and dyes: gelatin, titanium dioxide, silicon dioxide and sodium lauryl sulfate. The chemical name for indinavir sulfate is [1(1S,2R),5(S)]-2,3,5-trideoxy-N-(2,3-dihydro-2- hydroxy-1H-inden-1-yl)-5-[2-[[(1,1-dimethylethyl)amino]carbonyl]-4-(3-pyridinylmethyl)-1- piperazinyl]-2-(phenylmethyl)-D-erythro-pentonamide sulfate (1:1) salt. Indinavir sulfate has the following structural formula: Indinavir sulfate is a white to off-white, hygroscopic, crystalline powder with the molecular formula C36H47N5O4 • H2SO4 and a molecular weight of 711.88. It is very soluble in water and in methanol. MICROBIOLOGY Mechanism of Action: HIV-1 protease is an enzyme required for the proteolytic cleavage of the viral polyprotein precursors into the individual functional proteins found in infectious HIV-1. Indinavir binds to the protease active site and inhibits the activity of the enzyme. This inhibition prevents cleavage of the viral polyproteins resulting in the formation of immature non-infectious viral particles. Antiretroviral Activity In Vitro: The in vitro activity of indinavir was assessed in cell lines of lymphoblastic and monocytic origin and in peripheral blood lymphocytes.
    [Show full text]
  • Physiological Responses of Lepidium Meyenii Plants to Ultraviolet-B
    Huarancca Reyes et al. BMC Plant Biology (2019) 19:186 https://doi.org/10.1186/s12870-019-1755-5 RESEARCH ARTICLE Open Access Physiological responses of Lepidium meyenii plants to ultraviolet-B radiation challenge Thais Huarancca Reyes1* , Andrea Scartazza2, Antonio Pompeiano3 and Lorenzo Guglielminetti1,4 Abstract Background: Ultraviolet-B (UV-B) radiation can affect several aspects ranging from plant growth to metabolic regulation. Maca is a Brassicaceae crop native to the Andes growing in above 3500 m of altitude. Although maca has been the focus mainly due to its nutraceutical properties, it remains unknown how maca plants tolerate to harsh environments, such as strong UV-B. Here, we present the first study that reports the physiological responses of maca plants to counteract and recover to repeated acute UV-B irradiation. Results: In detail, plants were daily exposed to acute UV-B irradiation followed by a recovery period under controlled conditions. The results showed that repeated acute UV-B exposures reduced biomass and photosynthetic parameters, with gradual senescence induction in exposed leaves, reduction of young leaves expansion and root growth inhibition. Negative correlation between increased UV-B and recovery was observed, with marked production of new biomass in plants treated one week or more. Conclusions: A differential UV-B response was observed: stress response was mainly controlled by a coordinated source-sink carbon allocation, while acclimation process may require UV-B-specific systemic defense response reflected on the phenotypic plasticity of maca plants. Moreover, these differential UV-B responses were also suggested by multifactorial analysis based on biometric and physiological data.
    [Show full text]
  • Patent Application Publication ( 10 ) Pub . No . : US 2019 / 0192440 A1
    US 20190192440A1 (19 ) United States (12 ) Patent Application Publication ( 10) Pub . No. : US 2019 /0192440 A1 LI (43 ) Pub . Date : Jun . 27 , 2019 ( 54 ) ORAL DRUG DOSAGE FORM COMPRISING Publication Classification DRUG IN THE FORM OF NANOPARTICLES (51 ) Int . CI. A61K 9 / 20 (2006 .01 ) ( 71 ) Applicant: Triastek , Inc. , Nanjing ( CN ) A61K 9 /00 ( 2006 . 01) A61K 31/ 192 ( 2006 .01 ) (72 ) Inventor : Xiaoling LI , Dublin , CA (US ) A61K 9 / 24 ( 2006 .01 ) ( 52 ) U . S . CI. ( 21 ) Appl. No. : 16 /289 ,499 CPC . .. .. A61K 9 /2031 (2013 . 01 ) ; A61K 9 /0065 ( 22 ) Filed : Feb . 28 , 2019 (2013 .01 ) ; A61K 9 / 209 ( 2013 .01 ) ; A61K 9 /2027 ( 2013 .01 ) ; A61K 31/ 192 ( 2013. 01 ) ; Related U . S . Application Data A61K 9 /2072 ( 2013 .01 ) (63 ) Continuation of application No. 16 /028 ,305 , filed on Jul. 5 , 2018 , now Pat . No . 10 , 258 ,575 , which is a (57 ) ABSTRACT continuation of application No . 15 / 173 ,596 , filed on The present disclosure provides a stable solid pharmaceuti Jun . 3 , 2016 . cal dosage form for oral administration . The dosage form (60 ) Provisional application No . 62 /313 ,092 , filed on Mar. includes a substrate that forms at least one compartment and 24 , 2016 , provisional application No . 62 / 296 , 087 , a drug content loaded into the compartment. The dosage filed on Feb . 17 , 2016 , provisional application No . form is so designed that the active pharmaceutical ingredient 62 / 170, 645 , filed on Jun . 3 , 2015 . of the drug content is released in a controlled manner. Patent Application Publication Jun . 27 , 2019 Sheet 1 of 20 US 2019 /0192440 A1 FIG .
    [Show full text]
  • Chinese Herbal Medicine for the Treatment of Depression: Effects on the Neuroendocrine-Immune Network
    pharmaceuticals Review Chinese Herbal Medicine for the Treatment of Depression: Effects on the Neuroendocrine-Immune Network Chan Li 1,2, Bishan Huang 1 and Yuan-Wei Zhang 1,3,* 1 School of Life Sciences, Guangzhou University, Guangzhou 510006, China; [email protected] (C.L.); [email protected] (B.H.) 2 Department of Psychiatry, School of Medicine Yale University, New Haven, CT 06511, USA 3 Department of Pharmacology, School of Medicine Yale University, New Haven, CT 06511, USA * Correspondence: [email protected] Abstract: The neuroimmune and neuroendocrine systems are two critical biological systems in the pathogenesis of depression. Clinical and preclinical studies have demonstrated that the activation of the neuroinflammatory response of the immune system and hyperactivity of the hypothalamus– pituitary–adrenal (HPA) axis of the neuroendocrine system commonly coexist in patients with depression and that these two systems bidirectionally regulate one another through neural, im- munological, and humoral intersystem interactions. The neuroendocrine-immune network poses difficulties associated with the development of antidepressant agents directed toward these biological systems for the effective treatment of depression. On the other hand, multidrug and multitarget Chinese Herbal Medicine (CHM) has great potential to assist in the development of novel medica- tions for the systematic pharmacotherapy of depression. In this narrative essay, we conclusively analyze the mechanisms of action of CHM antidepressant constituents and formulas, specifically through the modulation of the neuroendocrine-immune network, by reviewing recent preclinical studies conducted using depressive animal models. Some CHM herbal constituents and formulas are highlighted as examples, and their mechanisms of action at both the molecular and systems levels are discussed.
    [Show full text]
  • Crixivan® (Indinavir Sulfate) Capsules
    CRIXIVAN® (INDINAVIR SULFATE) CAPSULES DESCRIPTION CRIXIVAN® (indinavir sulfate) is an inhibitor of the human immunodeficiency virus (HIV) protease. CRIXIVAN Capsules are formulated as a sulfate salt and are available for oral administration in strengths of 200 and 400 mg of indinavir (corresponding to 250 and 500 mg indinavir sulfate, respectively). Each capsule also contains the inactive ingredients anhydrous lactose and magnesium stearate. The capsule shell has the following inactive ingredients and dyes: gelatin and titanium dioxide. The chemical name for indinavir sulfate is [1(1S,2R),5(S)]-2,3,5-trideoxy-N-(2,3-dihydro-2-hydroxy-1H- inden-1-yl)-5-[2-[[(1,1-dimethylethyl)amino]carbonyl]-4-(3-pyridinylmethyl)-1-piperazinyl]-2-(phenylmethyl)- D-erythro-pentonamide sulfate (1:1) salt. Indinavir sulfate has the following structural formula: Indinavir sulfate is a white to off-white, hygroscopic, crystalline powder with the molecular formula C36H47N5O4 • H2SO4 and a molecular weight of 711.88. It is very soluble in water and in methanol. MICROBIOLOGY Mechanism of Action: HIV-1 protease is an enzyme required for the proteolytic cleavage of the viral polyprotein precursors into the individual functional proteins found in infectious HIV-1. Indinavir binds to the protease active site and inhibits the activity of the enzyme. This inhibition prevents cleavage of the viral polyproteins resulting in the formation of immature non-infectious viral particles. Antiretroviral Activity In Vitro: The in vitro activity of indinavir was assessed in cell lines of lymphoblastic and monocytic origin and in peripheral blood lymphocytes. HIV-1 variants used to infect the different cell types include laboratory-adapted variants, primary clinical isolates and clinical isolates resistant to nucleoside analogue and nonnucleoside inhibitors of the HIV-1 reverse transcriptase.
    [Show full text]
  • Original Paper Hypoxia Tolerance and Fatigue Relief Produced By
    _ Food Science and Technology Research, 22 (5), 611 621, 2016 Copyright © 2016, Japanese Society for Food Science and Technology doi: 10.3136/fstr.22.611 http://www.jsfst.or.jp Original paper Hypoxia Tolerance and Fatigue Relief Produced by Lepidium meyenii and its Water-soluble Polysaccharide in Mice 1 2 1 1 1 1 Xiao-Feng CHEN , Yan-Yun LIU , Min-Jie CAO , Ling-Jing ZHANG , Le-Chang SUN , Wen-Jin SU and 1* Guang-Ming LIU 1College of Food and Biological Engineering, Xiamen Key Laboratory of Marine Functional Food, Fujian Provincial, Engineering Technology Research Center of Marine Functional Food, Fujian Collaborative Innovation Center for Exploitation and Utilization of Marine Biological Resources, Jimei University, 43 Yindou Road, Xiamen, Fujian, 361021, China 2Xiamen Everbright Biotechnology Ltd, 68 Hubinbei Road, Xiamen, Fujian, 361001, China Received November 14, 2015 ; Accepted January 24, 2016 The aim of the present study was to investigate the effects of Lepidium meyenii (maca) on hypoxia tolerance and fatigue relief, and to determine its active constituents. The results showed that, in the mouse model, maca powder could significantly prolong hypoxia time (HT) and forced swim time (FST) and optimize blood sugar ratio (BSR), liver glycogen (LG), muscle glycogen (MG), blood lactic acid, and lactic dehydrogenase. Based on these results, aqueous extracts and maca water-soluble polysaccharide (MWP) were isolated. The total sugar content of MWP is 90.41 ± 2.55%, and the main monosaccharide component is glucose (79.88%). In the mouse model, HT (40.76 ± 7.97 min), FST (48.32 ± 10.76 min), BSR (4.49 ± 4.04%), LG (11.27 ± 0.61 mg/g), and MG (1.45 ± 0.17 mg/g) were all significantly enhanced in groups given maca powder compared to the control group (p < 0.05).
    [Show full text]
  • Chemical Analysis of Lepidium Meyenii (Maca) and Its Effects On
    molecules Article Chemical Analysis of Lepidium meyenii (Maca) and Its Effects on Redox Status and on Reproductive Biology y in Stallions 1, 1, , 2 3 Simona Tafuri z, Natascia Cocchia * z, Domenico Carotenuto , Anastasia Vassetti , Alessia Staropoli 3,4, Vincenzo Mastellone 1, Vincenzo Peretti 1, Francesca Ciotola 1, Sara Albarella 1 , Chiara Del Prete 1, Veronica Palumbo 1, Luigi Esposito 1 , Francesco Vinale 3,4 and Francesca Ciani 1 1 Department of Veterinary Medicine and Animal Production, University of Naples Federico II, 80137 Naples, Italy; [email protected] (S.T.); [email protected] (V.M.); [email protected] (V.P.); [email protected] (F.C.); [email protected] (S.A.); [email protected] (C.D.P.); [email protected] (V.P.); [email protected] (L.E.); [email protected] (F.C.) 2 UNMSM, Universidad Nacional Mayor San Marcos, Lima 11-0058, Peru; [email protected] 3 Institute for Sustainable Plant Protection, National Research Council, 80055 Portici (Na), Italy; [email protected] (A.V.); [email protected] (A.S.); [email protected] (F.V.) 4 Department of Agricultural Sciences, University of Naples Federico II, 80055 Naples, Italy * Correspondence: [email protected]; Tel.: +39-81-253-6017; Fax: +39-81-253-6042 Running title: Maca: Chemical Analysis and Biological Activity. y The authors contributed equally to this work. z Academic Editor: Francesca Giampieri Received: 15 March 2019; Accepted: 21 May 2019; Published: 23 May 2019 Abstract: The present study was conducted to assess the chemical composition of Yellow Maca (Lepidium meyenii) and its biological activity on stallions following oral administration of hypocotyl powder.
    [Show full text]
  • Cristancho-Pinilla, Edwin Arvey.Pdf
    A University of Sussex PhD thesis Available online via Sussex Research Online: http://sro.sussex.ac.uk/ This thesis is protected by copyright which belongs to the author. This thesis cannot be reproduced or quoted extensively from without first obtaining permission in writing from the Author The content must not be changed in any way or sold commercially in any format or medium without the formal permission of the Author When referring to this work, full bibliographic details including the author, title, awarding institution and date of the thesis must be given Please visit Sussex Research Online for more information and further details Benefitting from Biodiversity-Based Innovation Edwin Arvey Cristancho-Pinilla Doctor of Philosophy SPRU – Science and Technology Policy Research University of Sussex Submitted November 2017 ii I hereby declare that this thesis has not been and will not be, submitted in whole or in part to another University for the award of any other degree. [ORIGINAL SIGNED] Signature: ……………………………………… iii UNIVERSITY OF SUSSEX Edwin Arvey Cristancho-Pinilla Doctor of Philosophy in Science and Technology Policy Benefitting from Biodiversity-Based Innovation: ABSTRACT This thesis argues for the need for a more comprehensive discussion of biodiversity use in relation to enhancing benefits of this use for biodiverse countries and promoting more equitable sharing of these benefits. The findings from this doctoral research reveal that biodiversity-based innovation is a social shaping process that has resulted in large benefits. The cumulative capability to use species from biodiversity gives meanings that contribute to the species shaping process, with organisations and institutional changes providing direction and increasing the rate of the shaping process.
    [Show full text]