Influence of Spacing on Growth of Dhundul (Xylocarpus Granatum) in the Sundarbans of Bangladesh

Total Page:16

File Type:pdf, Size:1020Kb

Influence of Spacing on Growth of Dhundul (Xylocarpus Granatum) in the Sundarbans of Bangladesh International Journal of Research and Innovations in Earth Science Volume 7, Issue 6, ISSN (Online): 2394-1375 Influence of Spacing on Growth of Dhundul (Xylocarpus granatum) in the Sundarbans of Bangladesh Dr. ASM Helal Siddiqui 1*, Sk. Md. Mehedi Hasan 2 and Dr. Md. Masudur Rahman 3 1 Divisional Officer, Mangrove Silviculrure Division, Bangladesh Forest Research Institute, Muzgunni, Khulna, Bangladesh. 2 Field Investigator, Mangrove Silviculrure Division, Bangladesh Forest Research Institute, Muzgunni, Khulna, Bangladesh. 3 Director, Mangrove Silviculrure Division, Bangladesh Forest Research Institute, Muzgunni, Khulna, Bangladesh. Date of publication (dd/mm/yyyy): 28/12/2020 Abstract – Dhundul is one of the most important moderate-sized evergreen threatened mangrove species and play a pivotal role for the conservation of the ecosystem of Sundarbans. Between 2012 and 2017, an experimental plantation with randomize complete block design (RCBD) was conducted to enrich mangrove ecosystems by conserving dhundul at Moderate saline zone-comp nos. 31 of the Sundarbans. The objectives of this study are not only sustainable conservation of dhundul but also to create a better habitat as a source of the plus tree near future. Seedling survival percentage, mean height (h) and Mean Annual Increment (MAI) were observed each year to evaluate the effectiveness of dhundul plantation. The mean height (m), MAI (m) and survival percentage of dhundul differ significantly at different spacing. The highest mean height (m) and survival percentage have been found 2.46 ± 0.19, and 85%, respectively in the spacing 1m x 1m, as well as the highest Mean Annual Increment (MAI) for height 0.364m, were found in the same spacing. The result was highly significant (F = 1.57) at the 5% level for height. There are significant differences in the total mean height (m) among the spacing 2m x 2m, 1.5m x 1.5m and 1m x 1m. On the other hand (CV) at different spacing was 24.25, 20.09 and 21.98 for height. All these findings reflect that the growth performance of dhundul was better in 1m x 1m spacing. Artificial regeneration of dhundul was able to improve degraded residences and to ensure the sustainability of mangroves. So, it is highly recommended to establish long- term scientific research programs by setting up natural reserves of that threatened species and protect the existing mangrove mangrove ecosystem sustainably. Keywords – Biodiversity, Dhundul (Xylocarpus granatum), Mangrove, Spacing, Species, Threatened. I. INTRODUCTION The Sundarbans, the largest contiguous mangrove forest in the world [1, 2] is considered as a site of national and international importance for the conservation of biodiversity [3, 4]. The Sundarbans covers an area of approximately 10,000 km2 and lies in the territory of Bangladesh and India [1]. The Sundarbans of Bangladesh lies between the latitude 21030 and 22030 N and between the longitudes 89000' and 89055 E [5]. This forest has enormous ecological and economic importance at local, national and global scales [3]. The Sundarbans plays an important role in the economy of the southwestern region of Bangladesh as well as in the national economy [6]. Most notable services of Sundarbans are acts as barriers against winds and storm surges [7], serves as coastal defense and reduces coastal flooding and coastal erosion provide livelihoods of coastal people as well as contributing to the local and national economy [8] The Sundarbans is a natural mangrove forest consisting of 245 genera and 334 species of trees, herbs, shrubs, bryophytes, and pteridophytes [9, 10] listed 66 plant species from the Sundarbans. Sundarbans also provides natural protection to life and properties of the coastal population in the cyclone prone Bangladesh [6]. Mangroves are uniquely adapted coastal plants of great ecological and Copyright © 2020 IJRIES, All right reserved 76 International Journal of Research and Innovations in Earth Science Volume 7, Issue 6, ISSN (Online): 2394-1375 economic significance, but their habitat continued to disappear globally at a rate of 0.66% per year during the 2000–2005 periods [11]. This habitat loss has put at least 40% of the animal species that are restricted to mangrove habitat at an elevated risk of extinction under the International Union for Conservation of Nature (IUCN) categories and criteria [12]. The results published in PLoS ONE reveal that 11 of the 70 mangrove species in the world (16%) are at an elevated threat of extinction [13]. Economically, Mangroves are considered as a supplier of natural products such as charcoal, wild honey, timber, food and medicinal element [14]. Nearly 50% of the biome has been lost since the 1950s because of inadequate habitat protection, and large-scale habitat alteration. If the current rate of mangrove loss continues, the whole mangrove biome will disappear in the next 100 years [15]. There are only 70 mangrove species worldwide, compared to between 40,000 and 53,000 tropical forest tree species [16]. Already 16% of mangrove species are critically endangered, endangered or vulnerable and 10% are near-threatened [13]. More than 40% of the mangrove-endemic vertebrates are now also at risk of extinction due to habitat loss [12]. It was designated a Ramsar site under the Ramsar Convention in 1992 [17]. UNESCO declared the Sundarbans a World Heritage Site in 1997, because of its ‘Outstanding Universal Value’, biological diversity and the ecosystem services the area provides [17]. Dhundul is one of the most important mangrove species out of 66 species. Xylocarpus granatum J. Konig (Meliaceae), locally known as ‘Dhundul’ in Bangladesh is a moderate-sized evergreen tree with their gray bark [18]. The plant is well distributed among some continents like Australia, South-East Asia, and East Africa [19, 20]. Dhundul has been used traditionally to treat diarrhea, cholera and fever, as an astringent and emollient [21, 22]. The barks of this plant are used for tanning and in the preparation of an amber dye. The aqueous extracts of different parts of this plant are also reported to have significant antifilarial activity [23, 24]. The wood of Xylocarpus granatum is hard and durable and can be used for house building, boat-building, construction works and furniture making, however, the trees are twisted and often hollow so large pieces of timber may not be available. The wood is also used for handles and other small items and it can be used as fuel wood but burns quickly [25]. Dhundul is under threat from coastal development and harvesting, and another threat is global warming and the consequent rise in sea levels. The dried fruit peel is used as an appetizer [26]. The astringent bark has some medicinal uses. It is reported to cure dysentery, diarrhea and other abdominal troubles, and is also used as a febrifuge [25]. Bark is used for strengthening rope that needs to be used in the water [25]. The wood is very hard, moderately heavy, strong and durable, it is rarely, if ever, attacked by beetles, but is not resistant to termites [25]. The wood shrinks little and is usually easy to work and finish; it takes a high polish [27]. It is used for making small objects such as pins, tool handles etc, and house posts [28]. It is threatened by the loss of mangrove habitat throughout its range primarily due to extraction and coastal development and there has been an estimated 21% decline in mangrove area within this species range since 1980 [29]. As a result, the dhundul species is not found everywhere in the Sundarbans. Only found in very small quantities at Katka (compt. no. 06), Andarmanik (compt. no. 37, 41) and Alki (compt. no. 38) areas of the Sundarbans. If tree trafficking continues like this, the dhundul trees will be abolished from the Sundarbans within very short period of time. Mangrove Silviculture Division of Bangladesh Forest Research Institute, Khulna is trying to conserve this species. At present, experimental plantation is ongoing of moderate saline zone at Dhangmari (compt. no. 31) areas of the Sundarbans for the conservation of dhundul species. So, the objectives of this study are to not only sustainable conservation of dhundul species but also to create a better habitat as a source of the plus tree near future through identifying better spacing pattern which affects growth of Copyright © 2020 IJRIES, All right reserved 77 International Journal of Research and Innovations in Earth Science Volume 7, Issue 6, ISSN (Online): 2394-1375 this species. Thus it is very important to conserve for the development of sustainable biodiversity and management of ecosystem in the Sundarbans mangrove forest of Bangladesh. Fig. 1. Nursery and plantation area of dhundul in the moderate saline zone of the Sundarbans of Bangladesh. II. MATERIALS AND METHODS Site Characteristics and Ecological Zonation of the Sundarbans: Climatic conditions of the Sundarbans is humid with annual rainfall of about 200-2100 mm. Highest temperature in the Sundarbans occur in April and May up to 400c and lowest temperature is 120c in December and January. The mean annual rainfall is about 1700 mm in most of the Sundarbans area. Maximum and minimum average relative humidity (RH) in the Sundarbans is 100% and 23% respectively. The soils of the Sundarbans are alluvial in nature, no distinct profile and hydromorphic with varying degree of gluing in the sub- soil horizon [30]. In general soil fertility decreases from east to west and from north to south [31]. The soil of the Sundarbans is slightly saline, silty clay loam and sub-soil consists of alternate layers of clay and sand, and it is uniform throughout the forests. The mean organic matter content in the top soil is 0.62% and pH range is 5.0- 8.0 throughout the Sundarbans. Seed Collection, Nursery Raising and Maintenance of Nursery: The experiment was conducted during the year of 2012 to 2017 to enrich mangrove ecosystems through the establishment and conservation of dhundul.
Recommended publications
  • Hypsipyla SHOOT BORERS in MELIACEAE: CURRENT STATUS
    o Proceedings of the Second Annual Forestry Symposium 1996: Management and Sustainable Utilization of Forest Resources, Sri Lanka, 6-7 December 1996. (Eds. Amarasekera, H S, Ranasinghe, D M S H K and Finlayson, W). Published by Deparlment of Forestry and Environmental Science, University of Sri Jayewardenepura, Sri Lanka (1998) Hypsipyla SHOOT BORERS IN MELIACEAE: CURRENT STATUS Jayanthi P. Edirisinghe Department of Zoology. University ofPeradeniya Abstract A briefofan international meeting held in Kandy in August /996 to discuss the present situation with regard 10 this insects. II is suggested that the relatively 10111 level of' attack in Sri Lanka may he due to good overhead shade were the trees have been planted Introduction The first international workshop on Hypsipyla shoot borers in Meliaceae was held in Kandy in August 1996, with 18 countries participating. The objective was to assess the work done in the recent past on Hypsipyla shoot borers and discuss future priorities. This paper highlights some of the aspects that were discussed. The family Mcliaceae occurs throughout the tropics and includes many of the world's finest cabinet timbers. such as Swictenia (mahogany). Khava (African mahogany). TOOI/O and Cedrela ('"cedars"). They occur naturally or arc planted in sonic 25-:\0 countries. Two Hypsipyla species. H grandel!a (Zeller) and If. robusta (Moore). arc the most important pests of the Meliaceae. They have a distinct distribution. with II. grandel/a confined to the New World and II. robusta to Africa. Asia. Australia. and the Pacific islands. Table I lists the species grown in the countries that participated at the workshop.
    [Show full text]
  • Section 1-Maggie-Final AM
    KEY TO GROUP 1 Mangroves and plants of saline habitats, i.e., regularly inundated by king tides. A. leaves B. leaves C. simple D. compound opposite alternate leaf leaf 1 Mature plants less than 60 cm high, often prostrate and succulent go to 2 1* Mature plants greater than 60 cm high, shrubs or trees go to 4 2 Plants without obvious leaves, succulent (samphires) go to Group 1.A 2* Plants with obvious leaves, sometimes succulent go to 3 3 Grass, non-succulent, leaves narrow, margins rolled inwards go to Group 1.B 3* Plants with succulent leaves, may be flattened, cylindrical or almost so go to Group 1.C 4 Trees or shrubs with opposite leaves (see sketch A) go to 5 4* Trees or shrubs with alternate leaves (B) go to 6 5 Leaves with oil glands visible when held to the light and an aromatic smell when crushed or undersurface whitish go to Group 1.D Large oil glands as seen with a good hand lens 5* Leaves without oil glands or a whitish undersurface, but prop roots, knee roots or buttresses may be present go to Group 1.E 6 Plants with copious milky sap present when parts, such as stems and leaves are broken (CAUTION) go to Group 1.F 6* Plants lacking milky sap when stems or leaves broken go to 7 7 Shrubs or trees with simple leaves (C) go to Group 1.G 7* Trees with compound leaves (D) go to Group 1.H 17 GROUP 1.A Plants succulent with no obvious leaves (samphires).
    [Show full text]
  • Hypsipyla Shoot Borers in Meliaceae
    Hypsipyla Shoot Borers in Meliaceae Proceedings of an International Workshop held at Kandy, Sri Lanka 20–23 August 1996 Editors: R.B. Floyd and C. Hauxwell Australian Centre for International Agricultural Research Canberra, 2001 i The Australian Centre for International Agricultural Research (ACIAR) was established in June 1982 by an Act of the Australian Parliament. Its mandate is to help identify agricultural problems in developing countries and to commission collaborative research between Australian and developing country researchers in fields where Australia has a special research competence. Where trade names are used this constitutes neither endorsement of nor discrimination against any product by the Centre. ACIAR PROCEEDINGS This series of publications includes the full proceedings of research workshops or symposia organised or supported by ACIAR. Numbers in this series are distributed internationally to selected individuals and scientific institutions. © Australian Centre for International Agricultural Research, GPO Box 1571, Canberra, ACT 2601 Floyd, R.B. and Hauxwell, C., ed. 2001. Hypsipyla Shoot Borers in Meliaceae. Proceedings of an International Workshop, Kandy, Sri Lanka 20–23 August 1996. ACIAR Proceedings No. 97, 189pp. ISBN 0 642 45621 6 (print) ISBN 0 642 45624 0 (electronic) Editorial management: P.W. Lynch Production editing: PK Editorial Services Pty Ltd, Brisbane Typesetting, page layout and illustrations: Sun Photoset Pty Ltd, Brisbane Printing: Brown Prior Anderson, Melbourne ii CONTENTS Foreword v Country Reports Hypsipyla Shoot Borers of Meliaceae in Sri Lanka D. Tilakaratna 3 Hypsipyla Shoot Borers of Meliaceae in India R.V. Varma 7 Hypsipyla Shoot Borers of Meliaceae in Bangladesh M.W. Baksha 10 Hypsipyla Shoot Borers of Meliaceae in Philippines E.B.
    [Show full text]
  • World Journal of Pharmaceutical Sciences a Complete Profile On
    World Journal of Pharmaceutical Sciences ISSN (Print): 2321-3310; ISSN (Online): 2321-3086 Published by Atom and Cell Publishers © All Rights Reserved Available online at: http://www.wjpsonline.org/ Review Article A complete profile on Xylocarpus moluccensis: traditional uses, pharmacological activities and phytoconstituents Raja S and Ravindranadh K GITAM Institute of Pharmacy, GITAM University, Visakhapatnam- Andhra Pradesh, India-Pincode-530 045 Received: 31-10-2014 / Revised: 14-11-2014 / Accepted: 17-11-2014 ABSTRACT The present work offers a review addressing the ethnomedical, active constituents and pharmacological activity of Xylocarpus moluccensis (belonging to Meliaceae family) regarded as one of the most significant plant species in traditional system of medicine. The plant is used in different parts of the world for the treatment of several ailments like diarrhea, fever, dysentery, candidacies, scabies, baby rash, stomach pains, and constipation joint pains, chest pains, and relapsing sickness etc., Xylocarpus moluccensis is the source of a diverse kind of chemical constituents such as swietemahonolide, febrifugin, khayasin T, febrifugin A, gedunin, isolariciresinol, phaseic acid, aromadendrin, 4-hydroxy cinnamic acid, 4-hydroxybenzoic acid, 4-hydroxyphenylaceticacid, and xylogranatinin. The isolated phytochemicals as well as different extracts exhibited significant biological activities such as antibacterial, anti diabetic, antioxidant activity, antifilarial, anti diarrheal, CNS depressant and cytotoxic activities. Exhaustive research regarding isolation of more phytochemicals and pharmacology study on this medicinal plant is still necessary so as to explore the plant regarding its medicinal importance. Therefore, the aim of this review is to boost up present day researchers in this direction to undertake further investigations of this plant. Key words: Xylocarpus moluccensis, Swietemahonolide, Febrifugin, Khayasin T.
    [Show full text]
  • Genetic Structure and Population Demographic History of a Widespread Mangrove Plant Xylocarpus Granatum (Meliaceae) Across the Indo-West Pacific Region
    Article Genetic Structure and Population Demographic History of a Widespread Mangrove Plant Xylocarpus granatum (Meliaceae) across the Indo-West Pacific Region Yuki Tomizawa 1,†,‡, Yoshiaki Tsuda 2,†, Mohd Nazre Saleh 3,† ID , Alison K. S. Wee 4,5 ID , Koji Takayama 6, Takashi Yamamoto 4,7, Orlex Baylen Yllano 8, Severino G. Salmo III 9 ID , Sarawood Sungkaew 10, Bayu Adjie 11, Erwin Ardli 12, Monica Suleiman 13 ID , Nguyen Xuan Tung 14, Khin Khin Soe 15, Kathiresan Kandasamy 16, Takeshi Asakawa 1, Yasuyuki Watano 1 ID , Shigeyuki Baba 4 and Tadashi Kajita 4,7,* ID 1 Department of Biology, Graduate School of Science, Chiba University, Chiba 263-8522, Japan; [email protected] (Y.T.); [email protected] (T.A.); [email protected] (Y.W.) 2 Sugadaira Research Station, Mountain Science Center, University of Tsukuba, 1278-294 Sugadairakogen, Ueda, Nagano 386-2204, Japan; [email protected] 3 Faculty of Forestry, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor Darul Ehsan, Malaysia; [email protected] 4 Iriomote Station, Tropical Biosphere Research Center, University of the Ryukyus, 870 Uehara, Taketomi-cho, Yaeyama-gun, Okinawa 907-1541, Japan; [email protected] (A.K.S.W.); [email protected] (T.Y.); [email protected] (S.B.) 5 Guangxi Key Laboratory of Forest Ecology and Coservation, College of Forestry, Guangxi University, Nanning 530000, China 6 Museum of Natural and Environmental History, Shizuoka, 5762 Oya, Suruga-ku, Shizuoka 422-8017, Japan; [email protected] 7 United Graduate School
    [Show full text]
  • The Occurrence of Hypsipyla Shoot Borer on Species of Exotic Meliaceae Planted in the Northern Territory
    “where to from here with R&D to underpin plantations of high-value timber species in the ‘seasonally-dry’ topics of northern Australia?” Townsville 9th-11th May 2006. _____________________________________________________________________ DEPARTMENT OF PRIMARY INDUSTRY, FISHERIES AND MINES Private Forestry North Queensland Association Inc & Queensland Department of Primary Industries and Fisheries Workshop Townsville 9-11 May 2006 “Where to from here with R&D to underpin plantations of high-value timber species in the ‘seasonally-dry’ tropics of northern Australia?” The occurrence of Hypsipyla shoot borer on species of exotic Meliaceae planted in the Northern Territory D.F. Reilly, R.M. Robertson & H. Brown Agroforestry and Entomology – DPIFM Berrimah, Northern Territory. SUMMARY African mahogany Khaya senegalensis is the favoured species for high-value plantations in the Top End of the Northern Territory because it has outperformed others in extensive trials over 40 years. Despite its vigour, Khaya is characterised by poor form that may be related to its genetics, nutrition or chronic low level pest attack. However few pests and diseases have been recorded locally for Khaya or the other species tested. The Meliaceous shoot borer or tip moth Hypsipyla robusta Pyralidae (Phycitinae) was first observed attacking Khaya in March 2004; this was was recorded on recently grafted plants at Berrimah. Subsequent attack has been observed in the field on both Khaya (Howard Springs) and Chukrasia (Berry Springs). Identification has been confirmed by ANIC and DPIFM. Source of attack may be from the indigenous mangrove species Xylocarpus granatum (Meliaceae) known to be susceptible to shoot borer. Keywords: African mahogany, shoot borer, Khaya, Chukrasia, Xylocarpus, Hypsipyla, Northern Territory _________________________________________________________________________ The occurrence of Hypsipyla shoot borer on species of exotic Meliaceae planted in the Northern Territory – D.F.
    [Show full text]
  • Morphological, Anatomical and Tissue Culture Studies on Xylocarpus Granatum
    CATRINA (2007), 2 (2): 159 -162 PROCEEDINGS OF THE SECOND INTERNATIONAL CONFERENCE ON THE ROLE OF GENETICS AND © 2007 BY THE EGYPTIAN SOCIETY FOR ENVIRONMENTAL SCIENCES BIOTECHNOLOGY IN CONSERVATION OF NATURAL RESOURCES, ISMAILIA, EGYPT, JULY 9-10, 2007 Morphological, Anatomical and Tissue Culture Studies on Xylocarpus granatum Noorma W. Haron*, and Rosna M. Taha Institute of Biological Sciences, Faculty of Science, University of Malaya, 50603 Kuala Lumpur, Malaysia ABSTRACT Xylocarpus species are important endangered mangrove species in Malaysia. One of the economic importance of the species, particularly Xylocarpus granatum is for wood carving. Hence, there is an urgent need to conserve the species. In the present study, some morphological, anatomical and tissue culture studies were carried out on Xylocarpus granatum. To date, there is no record on detailed morphological study of the species. Therefore, it is one of the aims of the study to investigate the morphological characteristics of the species. Anatomical studies on the leaf and primary stem were also carried out. Scanning electron microscope study revealed the presence of sunken, anomocytic-type stomata on the abaxial surface of the leaf. Results from anatomical studies showed the presence of thick cuticle on both abaxial and adaxial surfaces of the leaf. Sunken stomata and thick cuticle are adaptations of mangrove species to reduce transpiration. Tannin cells were also observed in the leaf lamina and primary stem and this needs further investigation. Regeneration of this species from tissue culture had been attempted, however, only callus formation was observed. Formation of callus from leaf segments, young stems and flower buds were observed after three weeks being cultured on MS medium supplemented with 2.5mg/l 2,4, Dichlorophenoxyacetic acid (2,4-D).
    [Show full text]
  • Running Head 'Biology of Mangroves'
    BIOLOGY OF MANGROVES AND MANGROVE ECOSYSTEMS 1 Biology of Mangroves and Mangrove Ecosystems ADVANCES IN MARINE BIOLOGY VOL 40: 81-251 (2001) K. Kathiresan1 and B.L. Bingham2 1Centre of Advanced Study in Marine Biology, Annamalai University, Parangipettai 608 502, India 2Huxley College of Environmental Studies, Western Washington University, Bellingham, WA 98225, USA e-mail [email protected] (correponding author) 1. Introduction.............................................................................................. 4 1.1. Preface........................................................................................ 4 1.2. Definition ................................................................................... 5 1.3. Global distribution ..................................................................... 5 2. History and Evolution ............................................................................. 10 2.1. Historical background ................................................................ 10 2.2. Evolution.................................................................................... 11 3. Biology of mangroves 3.1. Taxonomy and genetics.............................................................. 12 3.2. Anatomy..................................................................................... 15 3.3. Physiology ................................................................................. 18 3.4. Biochemistry ............................................................................. 20 3.5. Pollination
    [Show full text]
  • Biogeography and Ecology in a Pantropical Family, the Meliaceae
    Gardens’ Bulletin Singapore 71(Suppl. 2):335-461. 2019 335 doi: 10.26492/gbs71(suppl. 2).2019-22 Biogeography and ecology in a pantropical family, the Meliaceae M. Heads Buffalo Museum of Science, 1020 Humboldt Parkway, Buffalo, NY 14211-1293, USA. [email protected] ABSTRACT. This paper reviews the biogeography and ecology of the family Meliaceae and maps many of the clades. Recently published molecular phylogenies are used as a framework to interpret distributional and ecological data. The sections on distribution concentrate on allopatry, on areas of overlap among clades, and on centres of diversity. The sections on ecology focus on populations of the family that are not in typical, dry-ground, lowland rain forest, for example, in and around mangrove forest, in peat swamp and other kinds of freshwater swamp forest, on limestone, and in open vegetation such as savanna woodland. Information on the altitudinal range of the genera is presented, and brief notes on architecture are also given. The paper considers the relationship between the distribution and ecology of the taxa, and the interpretation of the fossil record of the family, along with its significance for biogeographic studies. Finally, the paper discusses whether the evolution of Meliaceae can be attributed to ‘radiations’ from restricted centres of origin into new morphological, geographical and ecological space, or whether it is better explained by phases of vicariance in widespread ancestors, alternating with phases of range expansion. Keywords. Altitude, limestone, mangrove, rain forest, savanna, swamp forest, tropics, vicariance Introduction The family Meliaceae is well known for its high-quality timbers, especially mahogany (Swietenia Jacq.).
    [Show full text]
  • "True Mangroves" Plant Species Traits
    Biodiversity Data Journal 5: e22089 doi: 10.3897/BDJ.5.e22089 Data Paper Dataset of "true mangroves" plant species traits Aline Ferreira Quadros‡‡, Martin Zimmer ‡ Leibniz Centre for Tropical Marine Research, Bremen, Germany Corresponding author: Aline Ferreira Quadros ([email protected]) Academic editor: Luis Cayuela Received: 06 Nov 2017 | Accepted: 29 Nov 2017 | Published: 29 Dec 2017 Citation: Quadros A, Zimmer M (2017) Dataset of "true mangroves" plant species traits. Biodiversity Data Journal 5: e22089. https://doi.org/10.3897/BDJ.5.e22089 Abstract Background Plant traits have been used extensively in ecology. They can be used as proxies for resource-acquisition strategies and facilitate the understanding of community structure and ecosystem functioning. However, many reviews and comparative analysis of plant traits do not include mangroves plants, possibly due to the lack of quantitative information available in a centralised form. New information Here a dataset is presented with 2364 records of traits of "true mangroves" species, gathered from 88 references (published articles, books, theses and dissertations). The dataset contains information on 107 quantitative traits and 18 qualitative traits for 55 species of "true mangroves" (sensu Tomlinson 2016). Most traits refer to components of living trees (mainly leaves), but litter traits were also included. Keywords Mangroves, Rhizophoraceae, leaf traits, plant traits, halophytes © Quadros A, Zimmer M. This is an open access article distributed under the terms of the Creative Commons Attribution License (CC BY 4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. 2 Quadros A, Zimmer M Introduction The vegetation of mangrove forests is loosely classified as "true mangroves" or "mangrove associates".
    [Show full text]
  • Factors Limiting the Intertidal Distribution of the Mangrove
    Oecologia (2003) 135:110-121 DOI 10.1007/s00442-002-1167-2 James A. Allen * Ken W. Krauss * Robert D. Hauff Factorslimiting the intertidaldistribution of the mangrovespecies Xylocarpusgranatum Received: 28 October 2002 / Accepted: 27 November 2002 / Published online: 1 February2003 ? Springer-Verlag2003 Abstract The tree species Xylocarpus granatum is com- important, especially relative to a potential contribution to monly described as occurring in the upper intertidal zone secondary stress mortality. Other factors may ultimately of mangrove forests, but mature trees are occasionally prove to be more critical, such as physiological effects of found at lower elevations. In the Utwe River basin, on the salinity on seed germination, effects of tides on seed Pacific island of Kosrae, we investigated the relative dispersal and rooting, or differential herbivory on importance of several biotic and abiotic factors that may seedlings. control the intertidal distribution of X. granatum. Factors we evaluated included differential seed predation across Keywords Kosrae Federated States of Micronesia the lower, mid, and upper intertidal zones and seedling Seed predation. Salinity tolerance Flood tolerance responses to salinity, tidal flooding, and shade. Seed predation was 22.4% over the first 34 days and varied little among zones or in gaps versus under the forest Introduction canopy. By day 161, there were still no differences in seed mortality, but a significant difference was found in Patterns of mangrove tree species zonation have been the seedling establishment, with much greater establishment subject of scientific interest for many decades (Watson in the upper intertidal plots. X. granatum seedlings in a 1928; Davis 1940; Egler 1950; Macnae 1968; Chapman greenhouse experiment exhibited greater growth in 1976).
    [Show full text]
  • Regulation of Water Balance in Mangroves
    Annals of Botany 115: 385–395, 2015 doi:10.1093/aob/mcu174, available online at www.aob.oxfordjournals.org REVIEW: PART OF A SPECIAL ISSUE ON HALOPHYTES AND SALINE ADAPTATIONS Regulation of water balance in mangroves Ruth Reef* and Catherine E. Lovelock School of Biological Sciences, The University of Queensland, St Lucia, QLD 4072, Australia * For correspondence. E-mail [email protected] Received: 3 April 2014 Returned for revision: 25 April 2014 Accepted: 30 June 2014 Published electronically: 25 August 2014 Downloaded from https://academic.oup.com/aob/article/115/3/385/2769048 by guest on 24 September 2021 † Background Mangroves are a group of highly salt-tolerant woody plants. The high water use efficiency of mangroves under saline conditions suggests that regulation of water transport is a crucial component of their salinity tolerance. † Scope This review focuses on the processes that contribute to the ability of mangroves to maintain water uptake and limit water loss to the soil and the atmosphere under saline conditions, from micro to macro scales. These processes include: (1) efficient filtering of the incoming water to exclude salt; (2) maintenance of internal osmotic potentials lower than that of the rhizosphere; (3) water-saving properties; and (4) efficient exploitation of less-saline water sources when these become available. † Conclusions Mangroves are inherently plastic and can change their structure at the root, leaf and stand levels in response to salinity in order to exclude salt from the xylem stream, maintain leaf hydraulic conductance, avoid cavitationandregulatewater loss (e.g.suberizationof rootsandalterationsof leafsize, succulence andangle, hydraul- ic anatomy and biomass partitioning).
    [Show full text]