Computer Hard Ware

Total Page:16

File Type:pdf, Size:1020Kb

Computer Hard Ware Computer Memory Mathematics Department 1 Computer Hardware –Input devices –Output devices –Main memory –Secondary storage devices Slide 1- 2 Computer Hardware –Input devices –Output devices –Main memory –Secondary storage devices Slide 1- 3 MAIN MEMORY (अथिर ) Contents of RAM are lost Contents retained while when power is turned off power is off Mathematics Department 4 MAIN MEMORY (अथिर ) Contents of RAM are lost Contents retained while when power is turned off power is off Mathematics Department 5 Mathematics Department 6 • RAM is a volatile (अथिर ) • It is non-volatile • Contents of RAM are lost • Once the prog are written when power is turned off it cannot be changed and remain intact even if power • Both the read and write is switched off. operations can be • Read only . User cannot performed make any changes. • RAM memory is only • ROM memory is used to used to store the store permanent temporary information. information and cannot be deleted. - • Store information • Store the programming of the programs for needed to begin the currently running boot up process or start on the computer the computer • Types of RAM • Types of ROM Static dynamic RAM. RAM PROM, EPROM EEPROM.. • The price of RAMs The price of ROMs are • are high low • Physically size of Physically size of ROM chip RAM chip is larger is smaller than RAM chip. than ROM chip Mathematics Department 8 Types of RAM DRAM requires a single • Static RAM • capacitor and a transistor (SRAM) does due to the use of not need to be refreshed capacitors, DRAM requires to be refreshed SRAM, periodically which uses six they will lose their• transistors , contents. slower, and can hold cheaper, larger capacity its contents longer. 3. Another type of RAM, called flash memory, can store its contents after power is turned off. Flash memory is used in digital cameras to store pictures Mathematics Department 10 • PROM Programmable Read Only Memory (PROM). • You know that it is not possible to modify or erase programs stored in ROM, but it is possible for you to store your program in PROM chip. Once the programmes are written it cannot be changed and remain intact even if power is switched off. • Programs or instructions written in PROM or ROM cannot be erased or changed. Mathematics Department 11 • EPROM: Erasable Programmable Read Only Memory, which over come the problem of PROM & ROM. • EPROM chip can be programmed time and again by erasing the information stored earlier in it. • When the EPROM is in use information can only be read. Mathematics Department 12 auxiliary memory or secondary storage • 1-Hard Disk, in computer science, one or more inflexible platters coated with material that allows the magnetic recording of computer data. • Hard disks provide faster access to data than floppy disks and are capable of storing much more information. Because platters are rigid, they can be stacked so that one hard-disk drive can access more than one platter. • Most hard disks have from two to eight platters. Mathematics Department 13 • Magnetic Tape: Magnetic tapes are used for large computers like mainframe computers where large volume of data is stored for a longer time • Floppy Disk: It is similar to magnetic disk discussed above. They are 5.25 inch or 3.5 inch in diameter. They come in single or double density and recorded on one or both surface of the diskette. The capacity of a 5.25- inch floppy is 1.2 mega bytes whereas for 3.5 inch floppy it is 1.44 mega bytes. Mathematics Department 14 • floppy disk * small magnetic data storage disk: a small flexible magnetically coated disk in a rigid plastic case on which data can be stored or retrieved by a computer * a regular floppy disk holds approximately 1.44 megabytes. Mathematics Department 15 CD- ROM • CD-ROM, short for compact disc read-only memory, a rigid plastic disk that stores a large amount of data through the use of laser optics technology. • Because they store data optically, CD-ROMs have a much higher memory capacity than computer disks that store data magnetically. • However, CD-ROM drives, the devices used to access information on CD-ROMs, can only read information from the disc, not write to it. • CD-ROMs can store large amounts of data and so are popular for storing databases and multimedia material. The most common format of CD-ROM holds approximately 630 megabytes . Mathematics Department 16.
Recommended publications
  • Section 10 Flash Technology
    10 FLASH TECHNOLOGY Overview Flash memory technology is a mix of EPROM and EEPROM technologies. The term “flash” was chosen because a large chunk of memory could be erased at one time. The name, therefore, distinguishes flash devices from EEPROMs, where each byte is erased individually. Flash memory technology is today a mature technology. Flash memory is a strong com- petitor to other memories such as EPROMs, EEPROMs, and to some DRAM applications. Figure 10-1 shows the density comparison of a flash versus other memories. 64M 16M 4M DRAM/EPROM 1M SRAM/EEPROM Density 256K Flash 64K 1980 1982 1984 1986 1988 1990 1992 1994 1996 Year Source: Intel/ICE, "Memory 1996" 18613A Figure 10-1. Flash Density Versus Other Memory How the Device Works The elementary flash cell consists of one transistor with a floating gate, similar to an EPROM cell. However, technology and geometry differences between flash devices and EPROMs exist. In particular, the gate oxide between the silicon and the floating gate is thinner for flash technology. It is similar to the tunnel oxide of an EEPROM. Source and INTEGRATED CIRCUIT ENGINEERING CORPORATION 10-1 Flash Technology drain diffusions are also different. Figure 10-2 shows a comparison between a flash cell and an EPROM cell with the same technology complexity. Due to thinner gate oxide, the flash device will be more difficult to process. CMOS Flash Cell CMOS EPROM Cell Mag. 10,000x Mag. 10,000x Flash Memory Cell – Larger transistor – Thinner floating gate – Thinner oxide (100-200Å) Photos by ICE 17561A Figure 10-2.
    [Show full text]
  • Storage Systems and Technologies - Jai Menon and Clodoaldo Barrera
    INFORMATION TECHNOLOGY AND COMMUNICATIONS RESOURCES FOR SUSTAINABLE DEVELOPMENT - Storage Systems and Technologies - Jai Menon and Clodoaldo Barrera STORAGE SYSTEMS AND TECHNOLOGIES Jai Menon IBM Academy of Technology, San Jose, CA, USA Clodoaldo Barrera IBM Systems Group, San Jose, CA, USA Keywords: Storage Systems, Hard disk drives, Tape Drives, Optical Drives, RAID, Storage Area Networks, Backup, Archive, Network Attached Storage, Copy Services, Disk Caching, Fiber Channel, Storage Switch, Storage Controllers, Disk subsystems, Information Lifecycle Management, NFS, CIFS, Storage Class Memories, Phase Change Memory, Flash Memory, SCSI, Caching, Non-Volatile Memory, Remote Copy, Storage Virtualization, Data De-duplication, File Systems, Archival Storage, Storage Software, Holographic Storage, Storage Class Memory, Long-Term data preservation Contents 1. Introduction 2. Storage devices 2.1. Storage Device Industry Overview 2.2. Hard Disk Drives 2.3. Digital Tape Drives 2.4. Optical Storage 2.5. Emerging Storage Technologies 2.5.1. Holographic Storage 2.5.2. Flash Storage 2.5.3. Storage Class Memories 3. Block Storage Systems 3.1. Storage System Functions – Current 3.2. Storage System Functions - Emerging 4. File and Archive Storage Systems 4.1. Network Attached Storage 4.2. Archive Storage Systems 5. Storage Networks 5.1. SAN Fabrics 5.2. IP FabricsUNESCO – EOLSS 5.3. Converged Networking 6. Storage SoftwareSAMPLE CHAPTERS 6.1. Data Backup 6.2. Data Archive 6.3. Information Lifecycle Management 6.4. Disaster Protection 7. Concluding Remarks Acknowledgements Glossary Bibliography Biographical Sketches ©Encyclopedia of Life Support Systems (EOLSS) INFORMATION TECHNOLOGY AND COMMUNICATIONS RESOURCES FOR SUSTAINABLE DEVELOPMENT - Storage Systems and Technologies - Jai Menon and Clodoaldo Barrera Summary Our world is increasingly becoming a data-centric world.
    [Show full text]
  • Nanotechnology ? Nram (Nano Random Access
    International Journal Of Engineering Research and Technology (IJERT) IFET-2014 Conference Proceedings INTERFACE ECE T14 INTRACT – INNOVATE - INSPIRE NANOTECHNOLOGY – NRAM (NANO RANDOM ACCESS MEMORY) RANJITHA. T, SANDHYA. R GOVERNMENT COLLEGE OF TECHNOLOGY, COIMBATORE 13. containing elements, nanotubes, are so small, NRAM technology will Abstract— NRAM (Nano Random Access Memory), is one of achieve very high memory densities: at least 10-100 times our current the important applications of nanotechnology. This paper has best. NRAM will operate electromechanically rather than just been prepared to cull out answers for the following crucial electrically, setting it apart from other memory technologies as a questions: nonvolatile form of memory, meaning data will be retained even What is NRAM? when the power is turned off. The creators of the technology claim it What is the need of it? has the advantages of all the best memory technologies with none of How can it be made possible? the disadvantages, setting it up to be the universal medium for What is the principle and technology involved in NRAM? memory in the future. What are the advantages and features of NRAM? The world is longing for all the things it can use within its TECHNOLOGY palm. As a result nanotechnology is taking its head in the world. Nantero's technology is based on a well-known effect in carbon Much of the electronic gadgets are reduced in size and increased nanotubes where crossed nanotubes on a flat surface can either be in efficiency by the nanotechnology. The memory storage devices touching or slightly separated in the vertical direction (normal to the are somewhat large in size due to the materials used for their substrate) due to Van der Waal's interactions.
    [Show full text]
  • AXP Internal 2-Apr-20 1
    2-Apr-20 AXP Internal 1 2-Apr-20 AXP Internal 2 2-Apr-20 AXP Internal 3 2-Apr-20 AXP Internal 4 2-Apr-20 AXP Internal 5 2-Apr-20 AXP Internal 6 Class 6 Subject: Computer Science Title of the Book: IT Planet Petabyte Chapter 2: Computer Memory GENERAL INSTRUCTIONS: • Exercises to be written in the book. • Assignment questions to be done in ruled sheets. • You Tube link is for the explanation of Primary and Secondary Memory. YouTube Link: ➢ https://youtu.be/aOgvgHiazQA INTRODUCTION: ➢ Computer can store a large amount of data safely in their memory for future use. ➢ A computer’s memory is measured either in Bits or Bytes. ➢ The memory of a computer is divided into two categories: Primary Memory, Secondary Memory. ➢ There are two types of Primary Memory: ROM and RAM. ➢ Cache Memory is used to store program and instructions that are frequently used. EXPLANATION: Computer Memory: Memory plays a very important role in a computer. It is the basic unit where data and instructions are stored temporarily. Memory usually consists of one or more chips on the mother board, or you can say it consists of electronic components that store instructions waiting to be executed by the processor, data needed by those instructions, and the results of processing the data. Memory Units: Computer memory is measured in bits and bytes. A bit is the smallest unit of information that a computer can process and store. A group of 4 bits is known as nibble, and a group of 8 bits is called byte.
    [Show full text]
  • Use External Storage Devices Like Pen Drives, Cds, and Dvds
    External Intel® Learn Easy Steps Activity Card Storage Devices Using external storage devices like Pen Drives, CDs, and DVDs loading Videos Since the advent of computers, there has been a need to transfer data between devices and/or store them permanently. You may want to look at a file that you have created or an image that you have taken today one year later. For this it has to be stored somewhere securely. Similarly, you may want to give a document you have created or a digital picture you have taken to someone you know. There are many ways of doing this – online and offline. While online data transfer or storage requires the use of Internet, offline storage can be managed with minimum resources. The only requirement in this case would be a storage device. Earlier data storage devices used to mainly be Floppy drives which had a small storage space. However, with the development of computer technology, we today have pen drives, CD/DVD devices and other removable media to store and transfer data. With these, you store/save/copy files and folders containing data, pictures, videos, audio, etc. from your computer and even transfer them to another computer. They are called secondary storage devices. To access the data stored in these devices, you have to attach them to a computer and access the stored data. Some of the examples of external storage devices are- Pen drives, CDs, and DVDs. Introduction to Pen Drive/CD/DVD A pen drive is a small self-powered drive that connects to a computer directly through a USB port.
    [Show full text]
  • Control Design and Implementation of Hard Disk Drive Servos by Jianbin
    Control Design and Implementation of Hard Disk Drive Servos by Jianbin Nie A dissertation submitted in partial satisfaction of the requirements for the degree of Doctor of Philosophy in Engineering-Mechanical Engineering in the Graduate Division of the University of California, Berkeley Committee in charge: Professor Roberto Horowitz, Chair Professor Masayoshi Tomizuka Professor David Brillinger Spring 2011 Control Design and Implementation of Hard Disk Drive Servos ⃝c 2011 by Jianbin Nie 1 Abstract Control Design and Implementation of Hard Disk Drive Servos by Jianbin Nie Doctor of Philosophy in Engineering-Mechanical Engineering University of California, Berkeley Professor Roberto Horowitz, Chair In this dissertation, the design of servo control algorithms is investigated to produce high-density and cost-effective hard disk drives (HDDs). In order to sustain the continuing increase of HDD data storage density, dual-stage actuator servo systems using a secondary micro-actuator have been developed to improve the precision of read/write head positioning control by increasing their servo bandwidth. In this dissertation, the modeling and control design of dual-stage track-following servos are considered. Specifically, two track-following control algorithms for dual-stage HDDs are developed. The designed controllers were implemented and evaluated on a disk drive with a PZT-actuated suspension-based dual-stage servo system. Usually, the feedback position error signal (PES) in HDDs is sampled on some spec- ified servo sectors with an equidistant sampling interval, which implies that HDD servo systems with a regular sampling rate can be modeled as linear time-invariant (LTI) systems. However, sampling intervals for HDD servo systems are not always equidistant and, sometimes, an irregular sampling rate due to missing PES sampling data is unavoidable.
    [Show full text]
  • Parallel Computer Architecture and Programming CMU / 清华 大学
    Lecture 20: Addressing the Memory Wall Parallel Computer Architecture and Programming CMU / 清华⼤学, Summer 2017 CMU / 清华⼤学, Summer 2017 Today’s topic: moving data is costly! Data movement limits performance Data movement has high energy cost Many processors in a parallel computer means… ~ 0.9 pJ for a 32-bit foating-point math op * - higher overall rate of memory requests ~ 5 pJ for a local SRAM (on chip) data access - need for more memory bandwidth to avoid ~ 640 pJ to load 32 bits from LPDDR memory being bandwidth bound Core Core Memory bus Memory Core Core CPU * Source: [Han, ICLR 2016], 45 nm CMOS assumption CMU / 清华⼤学, Summer 2017 Well written programs exploit locality to avoid redundant data transfers between CPU and memory (Key idea: place frequently accessed data in caches/buffers near processor) Core L1 Core L1 L2 Memory Core L1 Core L1 ▪ Modern processors have high-bandwidth (and low latency) access to on-chip local storage - Computations featuring data access locality can reuse data in this storage ▪ Common software optimization technique: reorder computation so that cached data is accessed many times before it is evicted (“blocking”, “loop fusion”, etc.) ▪ Performance-aware programmers go to great effort to improve the cache locality of programs - What are good examples from this class? CMU / 清华⼤学, Summer 2017 Example 1: restructuring loops for locality Program 1 void add(int n, float* A, float* B, float* C) { for (int i=0; i<n; i++) Two loads, one store per math op C[i] = A[i] + B[i]; } (arithmetic intensity = 1/3) void mul(int
    [Show full text]
  • Computer Peripheral Memory System Forecast
    OF NBS H^^LK,!,, STAND S. TECH PUBLICATIONS | COMPUTER SUici^CZ^i TECHNOLOGY: COMPUTER PERIPHERAL MEMORY SYSTEM FORECAST QC 100 U57 NBS Special Publication 500-45 #500-45 U.S. DEPARTMENT OF COMMERCE 1979 National Bureau of Standards NATIONAL BUREAU OF STANDARDS The National Bureau of Standards' was established by an act of Congress March 3, 1901 . The Bureau's overall goal is to strengthen and advance the Nation's science and technology and facilitate their effective application for public benefit. To this end, the Bureau conducts research and provides: (1) a basis for the Nation's physical measurement system, (2) scientific and technological services for industry and government, (3) a technical basis for equity in trade, and (4) technical services to promote public safety. The Bureau's technical work is performed by the National Measurement Laboratory, the National Engineering Laboratory, and the Institute for Computer Sciences and Technology. THE NATIONAL MEASUREMENT LABORATORY provides the national system of physical and chemical and materials measurement; coordinates the system with measurement systems of other nations and furnishes essential services leading to accurate and uniform physical and chemical measurement throughout the Nation's scientific community, industry, and commerce; conducts materials research leading to improved methods of measurement, standards, and data on the properties of materials needed by industry, commerce, educational institutions, and Government; provides advisory and research services to other Government Agencies; develops, produces, and distributes Standard Reference Materials; and provides calibration services. The Laboratory consists of the following centers: Absolute Physical Quantities^ — Radiation Research — Thermodynamics and Molecular Science — Analytical Chemistry — Materials Science.
    [Show full text]
  • Manufacturing Equipment Technologies for Hard Disk's
    Manufacturing Equipment Technologies for Hard Disk’s Challenge of Physical Limits 222 Manufacturing Equipment Technologies for Hard Disk’s Challenge of Physical Limits Kyoichi Mori OVERVIEW: To meet the world’s growing demands for volume information, Brian Rattray not just with computers but digitalization and video etc. the HDD must Yuichi Matsui, Dr. Eng. continually increase its capacity and meet expectations for reduced power consumption and green IT. Up until now the HDD has undergone many innovative technological developments to achieve higher recording densities. To continue this increase, innovative new technology is again required and is currently being developed at a brisk pace. The key components for areal density improvements, the disk and head, require high levels of performance and reliability from production and inspection equipment for efficient manufacturing and stable quality assurance. To meet this demand, high frequency electronics, servo positioning and optical inspection technology is being developed and equipment provided. Hitachi High-Technologies Corporation is doing its part to meet market needs for increased production and the adoption of next-generation technology by developing the technology and providing disk and head manufacturing/inspection equipment (see Fig. 1). INTRODUCTION higher efficiency storage, namely higher density HDDS (hard disk drives) have long relied on the HDDs will play a major role. computer market for growth but in recent years To increase density, the performance and quality of there has been a shift towards cloud computing and the HDD’s key components, disks (media) and heads consumer electronics etc. along with a rapid expansion have most effect. Therefore further technological of data storage applications (see Fig.
    [Show full text]
  • Digital Preservation Guide: 3.5-Inch Floppy Disks Caralie Heinrichs And
    DIGITAL PRESERVATION GUIDE: 3.5-Inch Floppy Disks Digital Preservation Guide: 3.5-Inch Floppy Disks Caralie Heinrichs and Emilie Vandal ISI 6354 University of Ottawa Jada Watson Friday, December 13, 2019 DIGITAL PRESERVATION GUIDE 2 Table of Contents Introduction ................................................................................................................................................. 3 History of the Floppy Disk ......................................................................................................................... 3 Where, when, and by whom was it developed? 3 Why was it developed? 4 How Does a 3.5-inch Floppy Disk Work? ................................................................................................. 5 Major parts of a floppy disk 5 Writing data on a floppy disk 7 Preservation and Digitization Challenges ................................................................................................. 8 Physical damage and degradation 8 Hardware and software obsolescence 9 Best Practices ............................................................................................................................................. 10 Storage conditions 10 Description and documentation 10 Creating a disk image 11 Ensuring authenticity: Write blockers 11 Ensuring reliability: Sustainability of the disk image file format 12 Metadata 12 Virus scanning 13 Ensuring integrity: checksums 13 Identifying personal or sensitive information 13 Best practices: Use of hardware and software 14 Hardware
    [Show full text]
  • Unit 5: Memory Organizations
    Memory Organizations Unit 5: Memory Organizations Introduction This unit considers the organization of a computer's memory system. The characteristics of the most important storage technologies are described in detail. Basically memories are classified as main memory and secondary memory. Main memory with many different categories are described in Lesson 1. Lesson 2 focuses the secondary memory including the details of floppy disks and hard disks. Lesson 1: Main Memory 1.1 Learning Objectives On completion of this lesson you will be able to : • describe the memory organization • distinguish between ROM, RAM, PROM, EEPROM and • other primary memory elements. 1.2 Organization Computer systems combine binary digits to form groups called words. The size of the word varies from system to system. Table 5.1 illustrates the current word sizes most commonly used with the various computer systems. Two decades ago, IBM introduced their 8-bit PC. This was Memory Organization followed a few years later by the 16-bit PC AT microcomputer, and already it has been replaced with 32- and 64-bit systems. The machine with increased word size is generally faster because it can process more bits of information in the same time span. The current trend is in the direction of the larger word size. Microcomputer main memories are generally made up of many individual chips and perform different functions. The ROM, RAM, Several types of semi- PROM, and EEPROM memories are used in connection with the conductor memories. primary memory of a microcomputers. The main memory generally store computer words as multiple of bytes; each byte consisting of eight bits.
    [Show full text]
  • Quality Checking of Storage Devices Using Moore's
    International Journal of Scientific & Engineering Research Volume 3, Issue 5, May-2012 1 ISSN 2229-5518 Quality Checking of Storage Devices Using Moore’s Law S.Yuvarani, P.Manikandan. ABSTRACT and tape drives. In a computer, storage is the place Today the computer storage devices have where data is held in an electromagnetic or optical been product for different company and different form for access by a computer processor. Computer size. The products to be change the quality of data storage; often called storage or memory refer to product also change. As computer technology computer components, devices and recording media advances, computers became more powerful, while that retain digital data used for computing for some their size decreases of memory chips and increase interval of time. storage capacity. This is because the basic unit of the storage devices has decreased in size. This Likes and dislikes apart, in basic terms, Measurement consists of nano-scale measure for computer storage can be defined as “device or main memory, the secondary storage devices media stores data for later retrieval". From the including magnetic drums, magnetic tapes, definition, we can see that the storage device magnetic disks, and optical disks. These devices possess two features namely "storage" and vary with respect to their speed, memory and "retrieval". A storage facility without retrieval capacity. We have select different files to options seems to be of no use a storage device may interchange the storage devices and measures speed store application programs, Databases, Media files to count time, How to read, write and erase of etc...
    [Show full text]