Computers Memory 4
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
The Law on Optical Discs
THE LAW ON OPTICAL DISCS I. GENERAL PROVISIONS Subject-matter of the Law Article 1 This Law shall regulate the manufacturing, commercial duplication, circulation and exports of optical discs, and imports and exports of production parts, raw materials and equipment used for manufacturing of optical discs. Definitions Article 2 The terms used in this Law, shall have the following meaning: 1) Optical Disc shall mean any medium or device, other than a production part, on which data in digital form, readable by means of an optical scanning mechanism employing a high-density light source (a laser), has been stored or is capable of being stored, including all the formats, notably: - CD (compact disc) - CD-DA (compact disc digital audio) - CD-I (compact disc – interactive) - CD-P (compact disc – photo) - CD-ROM (compact disc read-only memory) - CD-R (compact disc recordable) - CD-RW (compact disc rewritable) - CD-WO (compact disc write once) - DVD (digital versatile disc) - DVD-RAM (digital versatile disc random access memory) - DVD-ROM (digital versatile disc read-only memory) - LD (laserdisc) - MD (mini-disc) - VCD (video compact disc) - CVD (China video disc) - SVCD (super video compact disc) - SACD (Super audio compact disc) 2) Production Part shall mean any component of a mould (a “stamper”), that embodies data in a digital form and is capable of being used to mould optical discs, or any other device embodying data from which a stamper may be produced by means of an electroplating process; 3) Master disc shall mean a disc made of glass or polymer that contains data in digital form used to produce Production Part (a “stamper”);. -
Section 10 Flash Technology
10 FLASH TECHNOLOGY Overview Flash memory technology is a mix of EPROM and EEPROM technologies. The term “flash” was chosen because a large chunk of memory could be erased at one time. The name, therefore, distinguishes flash devices from EEPROMs, where each byte is erased individually. Flash memory technology is today a mature technology. Flash memory is a strong com- petitor to other memories such as EPROMs, EEPROMs, and to some DRAM applications. Figure 10-1 shows the density comparison of a flash versus other memories. 64M 16M 4M DRAM/EPROM 1M SRAM/EEPROM Density 256K Flash 64K 1980 1982 1984 1986 1988 1990 1992 1994 1996 Year Source: Intel/ICE, "Memory 1996" 18613A Figure 10-1. Flash Density Versus Other Memory How the Device Works The elementary flash cell consists of one transistor with a floating gate, similar to an EPROM cell. However, technology and geometry differences between flash devices and EPROMs exist. In particular, the gate oxide between the silicon and the floating gate is thinner for flash technology. It is similar to the tunnel oxide of an EEPROM. Source and INTEGRATED CIRCUIT ENGINEERING CORPORATION 10-1 Flash Technology drain diffusions are also different. Figure 10-2 shows a comparison between a flash cell and an EPROM cell with the same technology complexity. Due to thinner gate oxide, the flash device will be more difficult to process. CMOS Flash Cell CMOS EPROM Cell Mag. 10,000x Mag. 10,000x Flash Memory Cell – Larger transistor – Thinner floating gate – Thinner oxide (100-200Å) Photos by ICE 17561A Figure 10-2. -
3D-Graphics Module • H.264(AVC)Decoder • Reconfigurable Processor • Embedded DRAM • Chip Implementation • Conclusion Sony Corporation Sony LSI Design Inc
A 90nm embedded DRAM single chip LSI with a 3D graphics, H.264 codec engine, and a reconfigurable processor Authors Yoshikazu Kurose Ichiro Kumata Masanobu Okabe Hirokazu Hanaki Katsunori Seno Kouichi Hasegawa Hiroyuki Ozawa Seiichiro Horiike Toru Wada Shunkaku Arima Kazuo Taniguchi Kazuya Ono* Hiromi Hokazono Toshiyuki Hiroi** Tetsuya Hirano Shinji Takashima* * Sony Corporation * Sony LSI Design Inc. * * Sony Computer Entertainment Inc. outline • What is PlayStation® Portable (PSPTM) • PSPTM system chip block diagram • 3D-graphics module • H.264(AVC)Decoder • Reconfigurable processor • Embedded DRAM • Chip implementation • Conclusion Sony Corporation Sony LSI Design Inc. Sony Computer Entertainment Inc. 1 What is PlayStation® Portable (PSPTM) New Handheld Video Game System TM UMDTM PSP TFT LCD controller System Chip 480x272 dots UMDTM Memory StickTM / USB n 3D-CG Games with High Quality Video/ Sound n 4.3 inch, Wide Screen(16:9) TFT LCD n UMDTM, High-Capacity (1.8GB) Optical Disc n ATRAC3 plus, AAC, MP3 for Music n AVC/ @MP for Picture/ Movie n Li-ion Battery Sony Corporation Sony LSI Design Inc. Sony Computer Entertainment Inc. PSPTM System Chip Block Diagram I/O VRAM I/O Security Ext. GPU DMAC I/O System Timer Bus DDR-IF Data Inst. Data Inst. Cache Cache VFPU Virtual Cache Cache AVC Mobile Main CPU Engine Media eDRAM Core Engine FPU Memory Game processing unit Media processing unit Sony Corporation Sony LSI Design Inc. Sony Computer Entertainment Inc. 2 Game/ Media processing unit n Game processing unit n CPU Core n MI PS R4000 32bit Core:1-333MHz n FPU, VFPU (Vector Unit) n 3D graphics n ‘Rendering Engine’ + ‘Surface Engine’ n 2MByte eDRAM(VRAM):512bit/ 166MHz bus I / F n Media processing unit n Media Engine n MI PS R4000 32bit Core with FPU n 1-333MHz n H.264 codec engine n H.264 hardware accelerator n VME(Virtual Mobile Engine) n A reconfigurable processor to decode audio/ video codec Sony Corporation Sony LSI Design Inc. -
Introduction to Computere
Usmani Ghani Private High School INTRODUCTION TO COMPUTERE For School students GRADE ( 9 ) Ketabton.com Prepared BY : Toryali {Danish} Email : [email protected] (c) ketabton.com: The Digital Library INTRODUCTION TO COMPUTER TABLE OF CONTENTS What is a computer? .............................................................................................................................................. 4 computers parts: ................................................................................................................................................... 5 Hardware: ............................................................................................................................................................. 5 Software: ............................................................................................................................................................... 5 System software: ................................................................................................................................................... 6 Application Software: ............................................................................................................................................ 6 System: ................................................................................................................................................................... 7 Classification of computer: ................................................................................................................................... -
Data Output Interface for Holographic Memory
Invited Paper DataOutput Interface for Holographic Memory Gan Zhou, Olga Ivanova, Allen Pu, Demetri Psaltis, and Fai Mok Holoplex inc. 600 S. Lake Ave., Ste. 102, Pasadena, CA 91106 Email: [email protected] ABSTRACT The issue of interfacing holographic memory with an electronic processor is discussed. The high speed and parallel access of two dimensional, page formatted optical data from holographic memory can be utilized to reconfigure an electronic processor at a rate much faster than traditionally available. This new technique could be the stepping stone to a new class of high performance device for a variety of image/signal processing tasks. We will first give a review of the holographic memory activity at Holoplex, in particular, our research on holographic optical disk as a read-only memory device. We will then discuss the optical architecture for interfacing an optical RUM with a programmable gate array processor. Keywords: optical memory, holographic ROM, parallel access, reconfigurable computing. 1. HOLOGRAPHIC ROM (HROM) We have implemented a holographic optical disk for high-capacity, digital data storage application. The holographic disk utilizes the Bragg-selectivity of the volume hologram to achieve a storage density much higher than conventional means. Figure 1 illustrates the holographic disc system where the holograms are arranged on concentric tracks. Each spot contains a number of multiplexed holograms that can be read out in separate steps by steering the reference beam to different angles Figure 1.Conceptual Diagram oft/ic Holographic Optical i)isk Theimaging optics and the performance of the imaging system are shown in figures 2 and 3. -
Computer Peripheral Memory System Forecast
OF NBS H^^LK,!,, STAND S. TECH PUBLICATIONS | COMPUTER SUici^CZ^i TECHNOLOGY: COMPUTER PERIPHERAL MEMORY SYSTEM FORECAST QC 100 U57 NBS Special Publication 500-45 #500-45 U.S. DEPARTMENT OF COMMERCE 1979 National Bureau of Standards NATIONAL BUREAU OF STANDARDS The National Bureau of Standards' was established by an act of Congress March 3, 1901 . The Bureau's overall goal is to strengthen and advance the Nation's science and technology and facilitate their effective application for public benefit. To this end, the Bureau conducts research and provides: (1) a basis for the Nation's physical measurement system, (2) scientific and technological services for industry and government, (3) a technical basis for equity in trade, and (4) technical services to promote public safety. The Bureau's technical work is performed by the National Measurement Laboratory, the National Engineering Laboratory, and the Institute for Computer Sciences and Technology. THE NATIONAL MEASUREMENT LABORATORY provides the national system of physical and chemical and materials measurement; coordinates the system with measurement systems of other nations and furnishes essential services leading to accurate and uniform physical and chemical measurement throughout the Nation's scientific community, industry, and commerce; conducts materials research leading to improved methods of measurement, standards, and data on the properties of materials needed by industry, commerce, educational institutions, and Government; provides advisory and research services to other Government Agencies; develops, produces, and distributes Standard Reference Materials; and provides calibration services. The Laboratory consists of the following centers: Absolute Physical Quantities^ — Radiation Research — Thermodynamics and Molecular Science — Analytical Chemistry — Materials Science. -
Care and Handling of Cds and Dvds
A GUIDE FOR LIBRARIANS AND ARCHIVISTS Care and Handling of CDs and DVDs by Fred R. Byers, October 2003 Council on Library and Information Resources National Institute of Standards and Technology Care and Handling of CDs and DVDs A Guide for Librarians and Archivists by Fred R. Byers October 2003 Council on Library and Information Resources Washington, DC ii iii About the Author Fred R. Byers has been a member of the technical staff in the Convergent Information Systems Division of the Information Technology Laboratory at the National Institute of Standards and Technology (NIST) for more than six years. He works with the Data Preservation Group on optical disc reliability studies; previously, he worked on the localization of defects in optical discs. Mr. Byers’ background includes training in electronics, chemical engineering, and computer science. His latest interest is in the management of technology: he is currently attending the University of Pennsylvania and expects to receive his Executive Master’s in Technology Management (EMTM) degree in 2005. Council on Library and Information Resources The Council on Library and Information Resources is an independent, nonprofit organization dedicated to improving the management of information for research, teaching, and learning. CLIR works to expand access to information, however recorded and preserved, as a public good. National Institute of Standards and Technology Founded in 1901, the National Institute of Standards and Technology is a nonregulatory federal agency within the Technology Administration of the U.S. Department of Commerce. Its mission is to develop and promote measurement, standards, and technology to enhance productivity, facilitate trade, and improve the quality of life. -
Digital Preservation Guide: 3.5-Inch Floppy Disks Caralie Heinrichs And
DIGITAL PRESERVATION GUIDE: 3.5-Inch Floppy Disks Digital Preservation Guide: 3.5-Inch Floppy Disks Caralie Heinrichs and Emilie Vandal ISI 6354 University of Ottawa Jada Watson Friday, December 13, 2019 DIGITAL PRESERVATION GUIDE 2 Table of Contents Introduction ................................................................................................................................................. 3 History of the Floppy Disk ......................................................................................................................... 3 Where, when, and by whom was it developed? 3 Why was it developed? 4 How Does a 3.5-inch Floppy Disk Work? ................................................................................................. 5 Major parts of a floppy disk 5 Writing data on a floppy disk 7 Preservation and Digitization Challenges ................................................................................................. 8 Physical damage and degradation 8 Hardware and software obsolescence 9 Best Practices ............................................................................................................................................. 10 Storage conditions 10 Description and documentation 10 Creating a disk image 11 Ensuring authenticity: Write blockers 11 Ensuring reliability: Sustainability of the disk image file format 12 Metadata 12 Virus scanning 13 Ensuring integrity: checksums 13 Identifying personal or sensitive information 13 Best practices: Use of hardware and software 14 Hardware -
Trusted Optical Disc
Trusted Optical Disc March 2008 1 AgendaAgenda • TCG - Trusted Optical Disc™ mission • Overview - 2 minute drill • Target Features/Platforms/Markets • Optical SSC Details 2 TrustedTrusted OpticalOptical DiscDisc MissionMission 9 Encrypt data on standard optical discs; 9 Provide access control to support organizational security policies with strong, n-factor authentication and Full Disc Encryption; 9 Employ the Trusted Computing Group as a forum for critical security review, system architecture and interoperability; • “Georgia on the mind of three million after CD loss” Sensitive personal information on 2.9 million Georgia residents is at risk after a company lost a CD that contained the details. http://www.theregister.co.uk/2007/04/11/georgia_data_loss/ • “Brown apologizes for records lost” Prime Minister Gordon Brown has said he "profoundly regrets" the loss of 25 million child benefit records. The Revenue and Customs data on the two missing discs includes names, dates of birth, bank and address details. http://news.bbc.co.uk/2/hi/uk_news/politics/7104945.stm 3 LegislativeLegislative RequirementsRequirements US Government Regulation concerned with Data Security • Presidential Mandate requiring US government agencies to encrypt mobile data • http://www.whitehouse.gov/omb/memoranda/fy2007/m07-16.pdf • “Encryption. Encrypt, using only NIST certified cryptographic modules, all data on mobile computers/devices carrying agency data unless the data is determined not to be sensitive, in writing, by your Deputy Secretary or a senior-level individual -
Unit 5: Memory Organizations
Memory Organizations Unit 5: Memory Organizations Introduction This unit considers the organization of a computer's memory system. The characteristics of the most important storage technologies are described in detail. Basically memories are classified as main memory and secondary memory. Main memory with many different categories are described in Lesson 1. Lesson 2 focuses the secondary memory including the details of floppy disks and hard disks. Lesson 1: Main Memory 1.1 Learning Objectives On completion of this lesson you will be able to : • describe the memory organization • distinguish between ROM, RAM, PROM, EEPROM and • other primary memory elements. 1.2 Organization Computer systems combine binary digits to form groups called words. The size of the word varies from system to system. Table 5.1 illustrates the current word sizes most commonly used with the various computer systems. Two decades ago, IBM introduced their 8-bit PC. This was Memory Organization followed a few years later by the 16-bit PC AT microcomputer, and already it has been replaced with 32- and 64-bit systems. The machine with increased word size is generally faster because it can process more bits of information in the same time span. The current trend is in the direction of the larger word size. Microcomputer main memories are generally made up of many individual chips and perform different functions. The ROM, RAM, Several types of semi- PROM, and EEPROM memories are used in connection with the conductor memories. primary memory of a microcomputers. The main memory generally store computer words as multiple of bytes; each byte consisting of eight bits. -
Quality Checking of Storage Devices Using Moore's
International Journal of Scientific & Engineering Research Volume 3, Issue 5, May-2012 1 ISSN 2229-5518 Quality Checking of Storage Devices Using Moore’s Law S.Yuvarani, P.Manikandan. ABSTRACT and tape drives. In a computer, storage is the place Today the computer storage devices have where data is held in an electromagnetic or optical been product for different company and different form for access by a computer processor. Computer size. The products to be change the quality of data storage; often called storage or memory refer to product also change. As computer technology computer components, devices and recording media advances, computers became more powerful, while that retain digital data used for computing for some their size decreases of memory chips and increase interval of time. storage capacity. This is because the basic unit of the storage devices has decreased in size. This Likes and dislikes apart, in basic terms, Measurement consists of nano-scale measure for computer storage can be defined as “device or main memory, the secondary storage devices media stores data for later retrieval". From the including magnetic drums, magnetic tapes, definition, we can see that the storage device magnetic disks, and optical disks. These devices possess two features namely "storage" and vary with respect to their speed, memory and "retrieval". A storage facility without retrieval capacity. We have select different files to options seems to be of no use a storage device may interchange the storage devices and measures speed store application programs, Databases, Media files to count time, How to read, write and erase of etc... -
Recovering Data from Failing Floppy Disks
Chapter 3 RECOVERING DATA FROM FAILING FLOPPY DISKS Frederick Cohen and Charles Preston Abstract As floppy disks and other similar media age, they may lose data due to a reduction in the retention of electromagnetic fields over time, mainly due to environmental factors. However, the coding techniques used to write data can be exploited along with the fault mechanisms themselves to successfully read data from failing floppy disks. This paper discusses the problem of recovering data from failing floppy disks and describes a practical example involving a case of substantial legal value. Keywords: Floppy disks, field density loss, weak bits, data recovery 1. Introduction This paper discusses a method for recovering data from floppy disks that are failing due to “weak bits.” It describes a repetitive read tech- nique that has successfully recovered data in forensic cases and dis- cusses the analysis of the results of repetitive reads in terms of yielding forensically-sound data. This technique is not new; however, neither the technique nor the analysis necessary to support its use in legal matters have been published. The case discussed in this paper involved a fifteen-year-old floppy disk, which contained the only copy of the binary version of a software pro- gram that was subject to intellectual property claims of sufficient value to warrant recovery beyond the means normally used by commercial re- covery firms. After attempts to read the disk by these firms had failed, the disk was given to the authors to use more rigorous and possibly destructive data recovery methods, subject to court approval.