Multi-GNSS Precise Point Positioning Using GPS, GLONASS and Galileo
Total Page:16
File Type:pdf, Size:1020Kb
Multi-GNSS Precise Point Positioning Using GPS, GLONASS and Galileo THESIS Presented in Partial Fulfillment of the Requirements for the Degree Master of Science in the Graduate School of The Ohio State University By Ahmet Bayram TOLUC, B.S. Graduate Program in Civil Engineering The Ohio State University 2016 Master's Examination Committee: Dr. Charles Toth, Advisor Dr. Alper Yilmaz Dr. Rongjun Qin Copyrighted by Ahmet Bayram TOLUC 2016 Abstract A Global Navigation Satellite System (GNSS) refers to a global, satellite-based, all- weather, 24-hour operational radio-navigation and time transfer system that is designed to provide positioning, timing and navigation (PNT) services primarily for military as well as civilian applications. In recent years, a positioning method known as Precise Point Positioning (PPP) has attracted broad interest in scientific research and engineering applications, as it does not require a reference station, reduces labor and equipment costs and simplifies field work. PPP, however, requires a long convergence time of 30 minutes or more in order to ensure centimeter level positioning accuracy, as PPP provides float ambiguity resolution due to the fact that ambiguity terms are not integer numbers because of satellite and receiver un-calibrated hardware delay biases. Although the main issue with the PPP method is its long convergence time, further improvements in the positioning accuracy especially for short observing-session durations is also expected. In this thesis, the impact of combining GPS, GLONASS and Galileo on the solutions of the positioning accuracy and convergence time problems is investigated. For this purpose, specific experiments are conducted using GPS, GLONASS and Galileo measurements collected at Multi-GNSS Experiment (MGEX) stations. First, the performance of the PPP method is analyzed in both static and kinematic modes for the following scenarios: GPS-only, combined GPS/GLONASS and combined GPS/GLONASS/Galileo. Secondly, the ii positioning solutions obtained with different precise satellite orbit and clock products of three IGS MGEX analysis centers are compared since at the time of writing, there was no combined precise product available. Thirdly, the performance of GPS-only, combined GPS/GLONASS and combined GPS/GLONASS/Galileo PPP solutions are demonstrated under different elevation cutoff angles (15°, 25° and 35°) to simulate constrained environments. Furthermore, the performance of GPS-only, combined GPS/GLONASS and combined GPS/GLONASS/Galileo PPP solutions from 1-hour, 2-hour and 3-hour observing-session durations are compared to analyze how the observing-session duration affects the positioning accuracy. Lastly, the performance of PPP and long baseline Differential GPS (DGPS) with ionosphere and troposphere elimination are compared through the use of combined GPS/GLONASS/Galileo measurements in order to compare the impact of the multi-GNSS combination on the PPP and DGPS methods. According to the numerical results, it is found that combined GPS/GLONASS improves both the positioning accuracy and convergence time over GPS-only while combined GPS/GLONASS/Galileo may either improve or worsen the positioning accuracy and convergence time over combined GPS/GLONASS, which depends on the number of Galileo satellites used. iii Dedicated to my little sister iv Acknowledgments I would like to express my sincere gratitude to my advisor, Dr. Charles Toth for his advice, help and understanding throughout my study. In addition, I would like to specifically thank Dr. Rongjun Qin and Dr. Alper Yilmaz for being on my committee and reviewing my thesis. I also appreciate the financial support from Turkish Petroleum Corporation to pursue master’s degree. Finally, I must express my very profound gratitude to my mum, dad, brother, sister and friends for providing me continuous support and encouraging me throughout my years of study. Anything I did would not have been possible without them. v Vita July 3, 1990 ....................................................Born in Denizli, Turkey 2008................................................................Samsun Anatolian High School, Samsun, Turkey 2012................................................................B.S. Geomatics Engineering, Ondokuz Mayis University, Samsun, Turkey 2014 to present ...............................................M.S Civil Engineering, The Ohio State University Fields of Study Major Field: Civil Engineering vi Table of Contents Abstract ............................................................................................................................... ii Acknowledgments............................................................................................................... v Vita ..................................................................................................................................... vi List of Tables .................................................................................................................... xii List of Figures .................................................................................................................. xix List of Abbreviations ...................................................................................................... xxx CHAPTER 1: INTRODUCTION ...................................................................................... 1 1.1 Background .......................................................................................................... 1 1.2 Thesis Objectives ................................................................................................. 6 CHAPTER 2: GLOBAL NAVIGATION SATELLITE SYSTEMS................................ 10 2.1 Global Positioning System (GPS) ...................................................................... 10 2.2 GLONASS ......................................................................................................... 13 2.3 Galileo ................................................................................................................ 15 2.4 BeiDou ............................................................................................................... 17 2.5 QZSS .................................................................................................................. 18 CHAPTER 3: GPS OBSERVABLES AND ERRORS .................................................... 20 vii 3.1 GPS Measurements and Observables ................................................................. 20 3.2 Common Error Sources ...................................................................................... 25 3.2.1 Satellite Orbit and Clock Errors .................................................................. 25 3.2.1.1 IGS Organization ................................................................................. 26 3.2.2 Ionospheric Delay ....................................................................................... 30 3.2.3 Tropospheric Delay ..................................................................................... 32 3.2.4 Receiver Clock Error .................................................................................. 37 3.2.5 Multipath and Noise .................................................................................... 38 3.3 Special Error Sources ......................................................................................... 39 3.3.1 Satellite Antenna Phase Center Offset ........................................................ 39 3.3.2 Phase Wind-Up ........................................................................................... 41 3.3.3 Solid Earth Tide .......................................................................................... 44 3.3.4 Ocean Tide Loading .................................................................................... 45 3.3.5 Relativistic Effect........................................................................................ 48 CHAPTER 4: DIFFERENTIAL GLOBAL POSITIONING SYSTEM AND PRECISE POINT POSITIONING METHODS ................................................................................ 53 4.1 Kalman Filter...................................................................................................... 53 4.2 Extended Kalman Filter ..................................................................................... 55 4.3 Differential Global Positioning System ............................................................. 56 viii 4.3.1 Single Difference ........................................................................................ 57 4.3.2 Double Difference ....................................................................................... 60 4.4 Functional Model of Multi-GNSS Precise Point Positioning ............................ 62 4.5 Stochastic Model of Multi-GNSS Precise Point Positioning ............................. 76 4.5.1 Stochastic Model of Measurements ............................................................ 76 4.5.2 Stochastic Model of Parameters.................................................................. 78 CHAPTER 5: EXPERIMENTS ........................................................................................ 82 5.1 Station and Data Selection ................................................................................. 82 5.2 Software Introduction ......................................................................................... 86 5.3 Statistical Evaluation Strategy ..........................................................................