Multi-GNSS Precise Point Positioning Using GPS, GLONASS and Galileo

Total Page:16

File Type:pdf, Size:1020Kb

Multi-GNSS Precise Point Positioning Using GPS, GLONASS and Galileo Multi-GNSS Precise Point Positioning Using GPS, GLONASS and Galileo THESIS Presented in Partial Fulfillment of the Requirements for the Degree Master of Science in the Graduate School of The Ohio State University By Ahmet Bayram TOLUC, B.S. Graduate Program in Civil Engineering The Ohio State University 2016 Master's Examination Committee: Dr. Charles Toth, Advisor Dr. Alper Yilmaz Dr. Rongjun Qin Copyrighted by Ahmet Bayram TOLUC 2016 Abstract A Global Navigation Satellite System (GNSS) refers to a global, satellite-based, all- weather, 24-hour operational radio-navigation and time transfer system that is designed to provide positioning, timing and navigation (PNT) services primarily for military as well as civilian applications. In recent years, a positioning method known as Precise Point Positioning (PPP) has attracted broad interest in scientific research and engineering applications, as it does not require a reference station, reduces labor and equipment costs and simplifies field work. PPP, however, requires a long convergence time of 30 minutes or more in order to ensure centimeter level positioning accuracy, as PPP provides float ambiguity resolution due to the fact that ambiguity terms are not integer numbers because of satellite and receiver un-calibrated hardware delay biases. Although the main issue with the PPP method is its long convergence time, further improvements in the positioning accuracy especially for short observing-session durations is also expected. In this thesis, the impact of combining GPS, GLONASS and Galileo on the solutions of the positioning accuracy and convergence time problems is investigated. For this purpose, specific experiments are conducted using GPS, GLONASS and Galileo measurements collected at Multi-GNSS Experiment (MGEX) stations. First, the performance of the PPP method is analyzed in both static and kinematic modes for the following scenarios: GPS-only, combined GPS/GLONASS and combined GPS/GLONASS/Galileo. Secondly, the ii positioning solutions obtained with different precise satellite orbit and clock products of three IGS MGEX analysis centers are compared since at the time of writing, there was no combined precise product available. Thirdly, the performance of GPS-only, combined GPS/GLONASS and combined GPS/GLONASS/Galileo PPP solutions are demonstrated under different elevation cutoff angles (15°, 25° and 35°) to simulate constrained environments. Furthermore, the performance of GPS-only, combined GPS/GLONASS and combined GPS/GLONASS/Galileo PPP solutions from 1-hour, 2-hour and 3-hour observing-session durations are compared to analyze how the observing-session duration affects the positioning accuracy. Lastly, the performance of PPP and long baseline Differential GPS (DGPS) with ionosphere and troposphere elimination are compared through the use of combined GPS/GLONASS/Galileo measurements in order to compare the impact of the multi-GNSS combination on the PPP and DGPS methods. According to the numerical results, it is found that combined GPS/GLONASS improves both the positioning accuracy and convergence time over GPS-only while combined GPS/GLONASS/Galileo may either improve or worsen the positioning accuracy and convergence time over combined GPS/GLONASS, which depends on the number of Galileo satellites used. iii Dedicated to my little sister iv Acknowledgments I would like to express my sincere gratitude to my advisor, Dr. Charles Toth for his advice, help and understanding throughout my study. In addition, I would like to specifically thank Dr. Rongjun Qin and Dr. Alper Yilmaz for being on my committee and reviewing my thesis. I also appreciate the financial support from Turkish Petroleum Corporation to pursue master’s degree. Finally, I must express my very profound gratitude to my mum, dad, brother, sister and friends for providing me continuous support and encouraging me throughout my years of study. Anything I did would not have been possible without them. v Vita July 3, 1990 ....................................................Born in Denizli, Turkey 2008................................................................Samsun Anatolian High School, Samsun, Turkey 2012................................................................B.S. Geomatics Engineering, Ondokuz Mayis University, Samsun, Turkey 2014 to present ...............................................M.S Civil Engineering, The Ohio State University Fields of Study Major Field: Civil Engineering vi Table of Contents Abstract ............................................................................................................................... ii Acknowledgments............................................................................................................... v Vita ..................................................................................................................................... vi List of Tables .................................................................................................................... xii List of Figures .................................................................................................................. xix List of Abbreviations ...................................................................................................... xxx CHAPTER 1: INTRODUCTION ...................................................................................... 1 1.1 Background .......................................................................................................... 1 1.2 Thesis Objectives ................................................................................................. 6 CHAPTER 2: GLOBAL NAVIGATION SATELLITE SYSTEMS................................ 10 2.1 Global Positioning System (GPS) ...................................................................... 10 2.2 GLONASS ......................................................................................................... 13 2.3 Galileo ................................................................................................................ 15 2.4 BeiDou ............................................................................................................... 17 2.5 QZSS .................................................................................................................. 18 CHAPTER 3: GPS OBSERVABLES AND ERRORS .................................................... 20 vii 3.1 GPS Measurements and Observables ................................................................. 20 3.2 Common Error Sources ...................................................................................... 25 3.2.1 Satellite Orbit and Clock Errors .................................................................. 25 3.2.1.1 IGS Organization ................................................................................. 26 3.2.2 Ionospheric Delay ....................................................................................... 30 3.2.3 Tropospheric Delay ..................................................................................... 32 3.2.4 Receiver Clock Error .................................................................................. 37 3.2.5 Multipath and Noise .................................................................................... 38 3.3 Special Error Sources ......................................................................................... 39 3.3.1 Satellite Antenna Phase Center Offset ........................................................ 39 3.3.2 Phase Wind-Up ........................................................................................... 41 3.3.3 Solid Earth Tide .......................................................................................... 44 3.3.4 Ocean Tide Loading .................................................................................... 45 3.3.5 Relativistic Effect........................................................................................ 48 CHAPTER 4: DIFFERENTIAL GLOBAL POSITIONING SYSTEM AND PRECISE POINT POSITIONING METHODS ................................................................................ 53 4.1 Kalman Filter...................................................................................................... 53 4.2 Extended Kalman Filter ..................................................................................... 55 4.3 Differential Global Positioning System ............................................................. 56 viii 4.3.1 Single Difference ........................................................................................ 57 4.3.2 Double Difference ....................................................................................... 60 4.4 Functional Model of Multi-GNSS Precise Point Positioning ............................ 62 4.5 Stochastic Model of Multi-GNSS Precise Point Positioning ............................. 76 4.5.1 Stochastic Model of Measurements ............................................................ 76 4.5.2 Stochastic Model of Parameters.................................................................. 78 CHAPTER 5: EXPERIMENTS ........................................................................................ 82 5.1 Station and Data Selection ................................................................................. 82 5.2 Software Introduction ......................................................................................... 86 5.3 Statistical Evaluation Strategy ..........................................................................
Recommended publications
  • GLONASS System As a Tool for Space Weather Monitoring
    GLONASS System as a tool for space weather monitoring V.V. Alpatov, S.N. Karutin, А.Yu. Repin Institute of Applied Geophysics, Roshydromet TSNIIMASH, Roscosmos BAKU-2018 PLAN OF PRESENTATION General information about GLONASS Goals Organization and Management Technical information about GLONASS Space Weather Effects On Space Systems On Ground based Systems Possible Opportunities of GLONASS for Monitoring Space Weather Effects Russian Monitoring System for Monitoring Space Weather Effects with Use Opportunities of GLONASS 2 GENERAL INFORMATION ABOUT GLONASS NATIONAL SATELLITE NAVIGATION POLICY AND ORGANIZATION Presidential Decree of May 17, 2007 No. 638 On Use of GLONASS (Global Navigation Satellite System) for the Benefit of Social and Economic Development of the Russian Federation Federal Program on GLONASS Sustainment, Development and Use for 2012-2020 – planning and budgeting instrument for GLONASS development and use Budget planning for the forthcoming decade – up to 2030 GLONASS Program governance: Roscosmos State Space Corporation Government Contracting Authority – Program Coordinator Government Contracting Authorities Program Scientific and Coordination Board GLONASS Program Goals: Improving GLONASS performance – its accuracy and integrity Ensuring positioning, navigation and timing solutions in restricted visibility of satellites, interference and jamming conditions Enhancing current application efficiency and broadening application domains 3 CHARACTERISTICS IMPROVEMENT PLAN Accuracy Improvement by means of: . Ground Segment
    [Show full text]
  • GLONASS Interface Control Document Specifies Parameters of Interface Between GLONASS Space Segment and User Equipment
    GLOBALNAVIGATION SATELLITE SYSTEM GLONASS TION CENTER INTERFACE CONTROL DOCUMENT COORDINATION SCIENTIFIC INFORMA MOSCOW 1998ã. Version 4.0 1998 GLONASS ICD COORDINATION SCIENTIFIC INFORMATION CENTER TABLE OF CONTENTS FIGURES................................................................................................................................................................... 2 TABLES .................................................................................................................................................................... 3 ABBREVIATIONS.................................................................................................................................................... 4 1. INTRODUCTION ................................................................................................................................................. 5 1.1 GLONASS PURPOSE.......................................................................................................................................... 5 1.2 GLONASS COMPONENTS .................................................................................................................................. 5 1.3 NAVIGATION DETERMINATION CONCEPT ............................................................................................................. 5 2. GENERAL............................................................................................................................................................. 6 2.1 ICD DEFINITION ...............................................................................................................................................
    [Show full text]
  • Russia's Posture in Space
    Russia’s Posture in Space: Prospects for Europe Executive Summary Prepared by the European Space Policy Institute Marco ALIBERTI Ksenia LISITSYNA May 2018 Table of Contents Background and Research Objectives ........................................................................................ 1 Domestic Developments in Russia’s Space Programme ............................................................ 2 Russia’s International Space Posture ......................................................................................... 4 Prospects for Europe .................................................................................................................. 5 Background and Research Objectives For the 50th anniversary of the launch of Sputnik-1, in 2007, the rebirth of Russian space activities appeared well on its way. After the decade-long crisis of the 1990s, the country’s political leadership guided by President Putin gave new impetus to the development of national space activities and put the sector back among the top priorities of Moscow’s domestic and foreign policy agenda. Supported by the progressive recovery of Russia’s economy, renewed political stability, and an improving external environment, Russia re-asserted strong ambitions and the resolve to regain its original position on the international scene. Towards this, several major space programmes were adopted, including the Federal Space Programme 2006-2015, the Federal Target Programme on the development of Russian cosmodromes, and the Federal Target Programme on the redeployment of GLONASS. This renewed commitment to the development of space activities was duly reflected in a sharp increase in the country’s launch rate and space budget throughout the decade. Thanks to the funds made available by flourishing energy exports, Russia’s space expenditure continued to grow even in the midst of the global financial crisis. Besides new programmes and increased funding, the spectrum of activities was also widened to encompass a new focus on space applications and commercial products.
    [Show full text]
  • Robotic Forest Harvesting Process Using GNSS
    RNI: DELENG/2005/15153 No: DL(E)-01/5079/17-19 Publication: 15th of every month Licensed to post without pre-payment U(E) 28/2017-19 Posting: 19th/20th of every month at NDPSO Rs.150 ISSN 0973-2136 Volume XV, Issue 5, May 2019 THE MONTHLY MAGAZINE ON POSITIONING, NAVIGATION AND BEYOND Robotic forest harvesting process using GNSS Soil moisture retrieval using NavIC-GPS-SBAS receiver Rethinking asset management. At 172 megapixels per full-spherical image, the UltraCam Panther Reality Capture System lets you capture your production plant in more detail, with superior sharpness and in higher fidelity than ever before. ULTRACAM PANTHER KEY FEATURES Indoor and outdoor Multitude of use Easy to deploy, mapping even cases through operate and without GPS modular design maintain Discover more on www.vexcel-imaging.com i50 GNSS RTK Brings speed and accuracy in Rethinking one easy-to-use GNSS solution asset management. At 172 megapixels per full-spherical image, the UltraCam Panther Reality Capture System lets you capture your production plant in more detail, with superior sharpness and in higher fidelity than ever before. ULTRACAM PANTHER KEY FEATURES Full GNSS technology Extended connectivity GPS+Glonass+Beidou+Galileo Internal UHF and 4G modems for robust data quality for optimized field operations Indoor and outdoor Multitude of use Easy to deploy, mapping even cases through operate and Preset work modes Rugged and compact without GPS modular design maintain Select configurations in a few Industrial design to withstand seconds for higher productivity
    [Show full text]
  • Gnss and Avionics Simulation for Rohde & Schwarz Signal Generators
    GNSS AND AVIONICS SIMULATION FOR ROHDE & SCHWARZ SIGNAL GENERATORS Specifications R&S®SMBV100B Vector Signal Generator R&S®SMW200A Vector Signal Generator Data Sheet Version 11.00 Version 11.00, February 2021 CONTENTS Definitions ....................................................................................................................................................................... 4 Overview .......................................................................................................................................................................... 5 Abbreviations ..................................................................................................................................................................................... 6 GNSS testing with the R&S®SMW200A ............................................................................................................................................. 6 Minimum instrument configuration for GNSS testing .......................................................................................................................... 7 Minimum instrument configuration for avionics testing ....................................................................................................................... 7 Global navigation satellite systems (GNSS) ................................................................................................................. 8 Addressed GNSS applications ..........................................................................................................................................................
    [Show full text]
  • COPERNICUS MARITIME SURVEILLANCE SERVICE OVERVIEW Copernicus Maritime Surveillance Service
    European Maritime Safety Agency COPERNICUS MARITIME SURVEILLANCE SERVICE OVERVIEW Copernicus Maritime Surveillance Service THE COPERNICUS PROGRAMME Copernicus is a European Union Programme aimed at developing European information services based on satellite Earth Observation and in situ (non-space) data analyses. The programme is managed by the European Commission, and implemented in partnership with the member states and other organisations, including the European Maritime Safety Agency (EMSA). Copernicus is served by a set of dedicated satellites (the Sentinels) and contributing missions (existing commercial and public satellites). Copernicus services address six main thematic areas: Security; Land Monitoring; Marine Monitoring; Atmosphere Monitoring; Emergency Management; and Climate Change. THE SECURITY SERVICE The Copernicus Security Service supports EU policy by providing information in response to Europe’s security challenges. It improves crisis prevention, preparedness and response in three key areas: maritime surveillance (implemented by EMSA) border surveillance support to EU External Action The Copernicus service for security applications is distinct from other services in the Copernicus programme. Data obtained directly through the Copernicus programme is combined with data from other sources, which may be sensitive or restricted. The end services are then provided directly to authorised national administrations and to a limited number of EU institutions and bodies, in accordance with their access rights. European Maritime Safety Agency THE COPERNICUS MARITIME SURVEILLANCE SERVICE The Copernicus Maritime Surveillance Service supports improved monitoring of activities at sea. The goal of the Copernicus Maritime Surveillance Service, implemented by EMSA, is to support its users by providing a better understanding and improved monitoring of activities at sea that have an impact on areas such as: fisheries control maritime safety and security law enforcement marine environment (pollution monitoring) support to international organisations.
    [Show full text]
  • Antennas for High-Precision GNSS Applications
    Antennas for High-Precision GNSS Applications Roshni Prasad Associate Engineer – RF & Connectivity Abracon, LLC Antennas for High-Precision GNSS Applications | Abracon LLC Abstract: The increasing interest in high-precision GNSS/GPS services has led to the development of novel antenna solutions to service various end-customer applications in markets such as agriculture, recreation, surveying & mapping, and timing. Multi-band receivers and antennas are required to derive a higher-precision rate on positioning. However, using dedicated antennas for widely separated multi- band support may introduce several challenges in the design, including increased occupancy in board space and coupling. This application note reviews how these challenges are addressed by employing a single multi-band antenna. The discussion primarily focuses on Abracon’s internal and external antenna solutions that can cover multiple GPS and/or GNSS bands as a single entity for precision positioning applications. Index Introduction to GNSS Antennas for Multi-band GNSS Receivers Types of Antennas for Multi-Band GNSS Receivers Integrating Antennas in GNSS Applications Key Factors in Determining Antenna Performance Advantages of Using Multi-band GNSS Conclusion References Page | 2 5101 Hidden Creek Ln Spicewood TX 78669 | 512.371.6159 | www.abracon.com Antennas for High-Precision GNSS Applications | Abracon LLC 1. Introduction to GNSS What is GNSS? Why is GNSS needed? What are the available constellations? Global Navigation Satellite System (GNSS) is a satellite-based navigation and positioning system that offers a prediction of coordinates in space, with respect to velocity and time, to assist in the navigation and positioning of receiver systems. The service is supported by various global constellations, including GPS (U.S.), GLONASS (Russia), Galileo (Europe), and regional constellations such as BeiDou (China), QZSS (Japan) and IRNSS (India).
    [Show full text]
  • CNES Miniaturization Policy: an Answer to Nanosatellites Challenges
    SSC19-I-02 CNES miniaturization policy: an answer to Nanosatellites challenges C. Dudal, C. Laporte, T. Floriant, P. Lafabrie CNES 18, avenue Edouard Belin 31401 Toulouse Cedex 9, France; +33561283070 [email protected] ABSTRACT The reduction of mass and size with improvement of the performance of a device is a permanent challenge for the space industry. The French National Space Agency has funded hundreds of R&D activities in the past, in all dedicated technical areas to facilitate these kind of technological evolution. Miniaturization efforts have, more recently, encountered a growing field of application, the one of Nanosatellites. For these applications, performance/cost trade-off is largely dominated by full cost, that is to say the cost including the entire satellite system development, from the initial idea to the end of life, including operations, data processing and its distribution. The carried out trade-offs are therefore based on a different constraints environment, in which the risk variable is systematically re-evaluated considering the cost/performance couple; the methods, the development process and the planning of delivery being directly impacted by this challenge. In this logic, and while continuing its efforts to miniaturize and improve performance for conventional markets (Earth observation, science, telecommunications, ...), CNES has adapted its working environment around the Nanosats domain to accelerate the development of adapted solutions. This adaptation being made both in terms of new development processes and of use of new COTS technology for equipment themselves. Moreover, projects in New Space are changing the historical relationship between CNES and its industrial partners and are encouraging a transition from a client/provider approach to a more co-partners approach.
    [Show full text]
  • Global Exploration Roadmap
    The Global Exploration Roadmap January 2018 What is New in The Global Exploration Roadmap? This new edition of the Global Exploration robotic space exploration. Refinements in important role in sustainable human space Roadmap reaffirms the interest of 14 space this edition include: exploration. Initially, it supports human and agencies to expand human presence into the robotic lunar exploration in a manner which Solar System, with the surface of Mars as • A summary of the benefits stemming from creates opportunities for multiple sectors to a common driving goal. It reflects a coordi- space exploration. Numerous benefits will advance key goals. nated international effort to prepare for space come from this exciting endeavour. It is • The recognition of the growing private exploration missions beginning with the Inter- important that mission objectives reflect this sector interest in space exploration. national Space Station (ISS) and continuing priority when planning exploration missions. Interest from the private sector is already to the lunar vicinity, the lunar surface, then • The important role of science and knowl- transforming the future of low Earth orbit, on to Mars. The expanded group of agencies edge gain. Open interaction with the creating new opportunities as space agen- demonstrates the growing interest in space international science community helped cies look to expand human presence into exploration and the importance of coopera- identify specific scientific opportunities the Solar System. Growing capability and tion to realise individual and common goals created by the presence of humans and interest from the private sector indicate and objectives. their infrastructure as they explore the Solar a future for collaboration not only among System.
    [Show full text]
  • GLONASS Spacecraft
    INNO V AT IO N The task of designing and developing the GLONASS GLONASS spacecraft fell to the Scientific Production Association of Applied Mechan­ ics (Nauchno Proizvodstvennoe Ob"edinenie Spacecraft Prikladnoi Mekaniki or NPO PM) , located near Krasnoyarsk in Siberia. This major aero­ Nicholas L. Johnson space industrial complex was established in 1959 as a division of Sergei Korolev 's Kaman Sciences Corporation Expe1imental Design Bureau (Opytno Kon­ struktorskoe Byuro or OKB). (Korolev , among other notable achievements , led the Fourteen years after the launch of the effort to develop the Soviet Union's first first test spacecraft, the Russian Global Nav­ launch vehicle - the A launcher - which igation Satellite System (Global 'naya Navi­ placed Sputnik 1 into orbit.) The founding gatsionnaya Sputnikovaya Sistema or and current general director and chief GLONASS) program remains viable and designer is Mikhail Fyodorovich Reshetnev, essentially on schedule despite the economic one of only two still-active chief designers and political turmoil surrounding the final from Russia's fledgling 1950s-era space years of the Soviet Union and the emergence program. of the Commonwealth of Independent States A closed facility until the early 1990s, (CIS). By the summer of 1994, a total of 53 NPO PM has been responsible for all major GLONASS spacecraft had been successfully Russian operational communications, navi­ Despite the significant economic hardships deployed in nearly semisynchronous orbits; gation, and geodetic satellite systems to associated with the breakup of the Soviet Union of the 53 , nearly 12 had been normally oper­ date. Serial (or assembly-line) production of and the transition to a modern market economy, ational since the establishment of the Phase I some spacecraft, including Tsikada and Russia continues to develop its space programs, constellation in 1990.
    [Show full text]
  • Leica Viva Series White Paper Beidou Integration
    New Systems, New Signals Providing BeiDou Integration Technical literature December 2013 P. Fairhurst, X. Luo, J. Aponte, B. Richter, Leica Geosystems AG Switzerland Heerbrugg, Schweiz 2 | Technical literature New Systems, New Signals, New Positions – Providing BeiDou Integration Abstract In December 2012, the China Satellite Navigation Leica Geosystems is a world leader in GNSS Office (CSNO) released the official Signal-in-Space positioning and in utilizing innovative methods Interface Control Document (ICD; ICD-BeiDou, for providing high precision GNSS solutions. With 2012) and announced the system operability over new GNSS such as BeiDou and other signals and the Asia-Pacific region. regional systems providing a significant increase in satellite availability, new methods are required to The ICD release prompted Leica Geosystems to fully realize the potential benefits of these additi- release software to fully support the BeiDou cons- onal GNSS constellations. tellation in the Leica Viva GNSS technologies: However, before the potential of these new sys- n Leica SmartTrack tems can be fully realized, we must first under- n Leica SmartCheck stand what advantages they can provide when n Leica xRTK being used in a high precision GNSS solution. Leica Geosystems’ previous leading-edge work on These technologies form the basis of Leica Geo- GLONASS observation interoperability showed that systems GNSS RTK performance. Leica SmartTrack there are many challenges involved with incorpora- technology guarantees the most accurate signal ting new GNSS constellation into a position soluti- tracking. It is future proof and ensures compa- on, and careful evaluation needs to be carried out tibility with all GNSS systems today and tomor- to understand the behaviour and characteristics of row.
    [Show full text]
  • 2012 BMW Cospas-Sarat Updates Secretariat
    2012 Beacon Manufacturers’ Workshop Orlando, Florida 28 September 2012 Cospas-Sarsat Updates Dany St-Pierre Cospas-SSSarsat Secretar iat 0 Source: CNES – D. Ducros Cospas-Sarsat Updates • Intern ati on al Cospas-Sarsat Pr ogr amm e • Space Segment and LUTs status • Saves and Events • MEOSAR System and status • IBRD and Website Updates • Upcoming Events and Activities Cospas-Sarsat Mission and Objective Mission: To provide accurate, timely and reliable distress alert and location data to help SAR authorities assist persons in distress. Objective: To reduce, as far as possible, delays in the provision of distress alerts to SAR and the time to locate a distress and provide assistance. Strategy: To implement, maintain, co-ordinate and operate a satellite system capable of detecting tiitransmissions from radio-beacons tha t complywith C/S specifications. Cospas-Sarsat Participants Netherlands New Algeria Zealand Argentina Nigeria Australia Norway Brazil Pakistan Canada Peru Chile Poland China (P.R.) Russia Cyprus Saudi Denmark Arabia Finland Serbia France Singapore Germany South Africa Greece Spain Hong Kong Sweden India Switzerland Indonesia Thailand Italy Tunisia ITDC Turkey Japan UAE Korea (R. of) UK 4 Founders: Canada, France, Russia and the USA Madagascar USA • 60 % of world land area Vietnam 26 GdStPidGround Segment Providers • 72 % of world population 11 User States 2 Organisations • 84 % of estimated world wealth Cospas-Sarsat System Combined LEO / GEO Operations • LEOSAR: Sarsat (NOAA, MetOp) and Cospas • GEOSAR: GOES (USA), INSAT
    [Show full text]