Mars Atmospheric Chemistry and Methane Measurements
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
A Stringent Upper Limit of 20 Pptv for Methane on Mars and Constraints on Its Dispersion Outside Gale Crater F
A&A 650, A140 (2021) Astronomy https://doi.org/10.1051/0004-6361/202140389 & © F. Montmessin et al. 2021 Astrophysics A stringent upper limit of 20 pptv for methane on Mars and constraints on its dispersion outside Gale crater F. Montmessin1 , O. I. Korablev2 , A. Trokhimovskiy2 , F. Lefèvre3 , A. A. Fedorova2 , L. Baggio1 , A. Irbah1 , G. Lacombe1, K. S. Olsen4 , A. S. Braude1 , D. A. Belyaev2 , J. Alday4 , F. Forget5 , F. Daerden6, J. Pla-Garcia7,8 , S. Rafkin8 , C. F. Wilson4, A. Patrakeev2, A. Shakun2, and J. L. Bertaux1 1 LATMOS/IPSL, UVSQ Université Paris-Saclay, Sorbonne Université, CNRS, Guyancourt, France e-mail: [email protected] 2 Space Research Institute (IKI) RAS, Moscow, Russia 3 LATMOS/IPSL, Sorbonne Université, UVSQ Université Paris-Saclay, CNRS, Paris, France 4 AOPP, Oxford University, Oxford, UK 5 Laboratoire de Météorologie Dynamique, Sorbonne Université, Paris, France 6 BIRA-IASB, Bruxelles, Belgium 7 Centro de Astrobiología (CSIC?INTA), Torrejón de Ardoz, Spain 8 Southwest Research Institute, Boulder, CO, USA Received 20 January 2021 / Accepted 23 April 2021 ABSTRACT Context. Reports on the detection of methane in the Martian atmosphere have motivated numerous studies aiming to confirm or explain its presence on a planet where it might imply a biogenic or more likely a geophysical origin. Aims. Our intent is to complement and improve on the previously reported detection attempts by the Atmospheric Chemistry Suite (ACS) on board the ExoMars Trace Gas Orbiter (TGO). This latter study reported the results of a campaign that was a few months in length, and was significantly hindered by a dusty period that impaired detection performances. -
The Mystery of Methane on Mars and Titan
The Mystery of Methane on Mars & Titan By Sushil K. Atreya MARS has long been thought of as a possible abode of life. The discovery of methane in its atmosphere has rekindled those visions. The visible face of Mars looks nearly static, apart from a few wispy clouds (white). But the methane hints at a beehive of biological or geochemical activity underground. Of all the planets in the solar system other than Earth, own way, revealing either that we are not alone in the universe Mars has arguably the greatest potential for life, either extinct or that both Mars and Titan harbor large underground bodies or extant. It resembles Earth in so many ways: its formation of water together with unexpected levels of geochemical activ- process, its early climate history, its reservoirs of water, its vol- ity. Understanding the origin and fate of methane on these bod- canoes and other geologic processes. Microorganisms would fit ies will provide crucial clues to the processes that shape the right in. Another planetary body, Saturn’s largest moon Titan, formation, evolution and habitability of terrestrial worlds in also routinely comes up in discussions of extraterrestrial biology. this solar system and possibly in others. In its primordial past, Titan possessed conditions conducive to Methane (CH4) is abundant on the giant planets—Jupiter, the formation of molecular precursors of life, and some scientists Saturn, Uranus and Neptune—where it was the product of chem- believe it may have been alive then and might even be alive now. ical processing of primordial solar nebula material. On Earth, To add intrigue to these possibilities, astronomers studying though, methane is special. -
Martian Crater Morphology
ANALYSIS OF THE DEPTH-DIAMETER RELATIONSHIP OF MARTIAN CRATERS A Capstone Experience Thesis Presented by Jared Howenstine Completion Date: May 2006 Approved By: Professor M. Darby Dyar, Astronomy Professor Christopher Condit, Geology Professor Judith Young, Astronomy Abstract Title: Analysis of the Depth-Diameter Relationship of Martian Craters Author: Jared Howenstine, Astronomy Approved By: Judith Young, Astronomy Approved By: M. Darby Dyar, Astronomy Approved By: Christopher Condit, Geology CE Type: Departmental Honors Project Using a gridded version of maritan topography with the computer program Gridview, this project studied the depth-diameter relationship of martian impact craters. The work encompasses 361 profiles of impacts with diameters larger than 15 kilometers and is a continuation of work that was started at the Lunar and Planetary Institute in Houston, Texas under the guidance of Dr. Walter S. Keifer. Using the most ‘pristine,’ or deepest craters in the data a depth-diameter relationship was determined: d = 0.610D 0.327 , where d is the depth of the crater and D is the diameter of the crater, both in kilometers. This relationship can then be used to estimate the theoretical depth of any impact radius, and therefore can be used to estimate the pristine shape of the crater. With a depth-diameter ratio for a particular crater, the measured depth can then be compared to this theoretical value and an estimate of the amount of material within the crater, or fill, can then be calculated. The data includes 140 named impact craters, 3 basins, and 218 other impacts. The named data encompasses all named impact structures of greater than 100 kilometers in diameter. -
Evidence for Methane in Martian Meteorites
Blamey, N. J. F., Parnell, J., McMahon, S., Mark, D. F., Tomkinson, T., Lee, M., Shivak, J., Izawa, M. R. M., Banerjee, N. R., & Flemming, R. L. (2015). Evidence for methane in Martian meteorites. Nature Communications, 6, [7399]. https://doi.org/10.1038/ncomms8399 Publisher's PDF, also known as Version of record License (if available): CC BY Link to published version (if available): 10.1038/ncomms8399 Link to publication record in Explore Bristol Research PDF-document This is the final published version of the article (version of record). It first appeared online via Nature Publishing Group at doi:10.1038/ncomms8399. Please refer to any applicable terms of use of the publisher. University of Bristol - Explore Bristol Research General rights This document is made available in accordance with publisher policies. Please cite only the published version using the reference above. Full terms of use are available: http://www.bristol.ac.uk/red/research-policy/pure/user-guides/ebr-terms/ ARTICLE Received 19 Sep 2014 | Accepted 1 May 2015 | Published 16 Jun 2015 DOI: 10.1038/ncomms8399 OPEN Evidence for methane in Martian meteorites Nigel J.F. Blamey1,2, John Parnell2, Sean McMahon2, Darren F. Mark3, Tim Tomkinson3,4, Martin Lee4, Jared Shivak5, Matthew R.M. Izawa5, Neil R. Banerjee5 & Roberta L. Flemming5 The putative occurrence of methane in the Martian atmosphere has had a major influence on the exploration of Mars, especially by the implication of active biology. The occurrence has not been borne out by measurements of atmosphere by the MSL rover Curiosity but, as on Earth, methane on Mars is most likely in the subsurface of the crust. -
THE CHANTICLEER Jacksonville State University Jacksonville
Jacksonville State University JSU Digital Commons Chanticleer Historical Newspapers 1985-01-11 Chanticleer | Vol 32, Issue 15 Jacksonville State University Follow this and additional works at: https://digitalcommons.jsu.edu/lib_ac_chanty Recommended Citation Jacksonville State University, "Chanticleer | Vol 32, Issue 15" (1985). Chanticleer. 871. https://digitalcommons.jsu.edu/lib_ac_chanty/871 This Book is brought to you for free and open access by the Historical Newspapers at JSU Digital Commons. It has been accepted for inclusion in Chanticleer by an authorized administrator of JSU Digital Commons. For more information, please contact [email protected]. C Entertainment THE CHANTICLEER Jacksonville State university Jacksonville. Alabama Vol. &No. W January 11, 1985 Mild controversy erupts over - senate resolution By JAN DICKINSON A resolution calling for a faculty-wide vote of "no confidence" in Resident Theron Montgomery was presented to the Faculty Senate at its December 10 meeting, two days before Montgomery anriounced his resignation to the Board of Trustees. Now the sponsor of the resolution, Dr. Gene Blanton, of the English Department, says that he intends to withdraw the resolution at the January 14 meeting of the senate. 13lanton stated in the January 6 edition of the Anniston Star that, because of comments made by several members of the Board of bstees, the wssibility of dropping the resolution was strong. According to that article, trustee Paul Carpenter said, "It (the vote) wouid make absolutely no difference in my opinion. We have studied the entire situation, and we are satisfied with the decision." Another board member, Dwaine Luce, stated, "....the bard is responsible for running the school, and the faculty is responsible for iristructing the students." Echoing the sentiments of Carpenter, he added, "'I'he board has inade its decision and the board, in my pinion, will stand by its decision." According to Dr. -
Appendix I Lunar and Martian Nomenclature
APPENDIX I LUNAR AND MARTIAN NOMENCLATURE LUNAR AND MARTIAN NOMENCLATURE A large number of names of craters and other features on the Moon and Mars, were accepted by the IAU General Assemblies X (Moscow, 1958), XI (Berkeley, 1961), XII (Hamburg, 1964), XIV (Brighton, 1970), and XV (Sydney, 1973). The names were suggested by the appropriate IAU Commissions (16 and 17). In particular the Lunar names accepted at the XIVth and XVth General Assemblies were recommended by the 'Working Group on Lunar Nomenclature' under the Chairmanship of Dr D. H. Menzel. The Martian names were suggested by the 'Working Group on Martian Nomenclature' under the Chairmanship of Dr G. de Vaucouleurs. At the XVth General Assembly a new 'Working Group on Planetary System Nomenclature' was formed (Chairman: Dr P. M. Millman) comprising various Task Groups, one for each particular subject. For further references see: [AU Trans. X, 259-263, 1960; XIB, 236-238, 1962; Xlffi, 203-204, 1966; xnffi, 99-105, 1968; XIVB, 63, 129, 139, 1971; Space Sci. Rev. 12, 136-186, 1971. Because at the recent General Assemblies some small changes, or corrections, were made, the complete list of Lunar and Martian Topographic Features is published here. Table 1 Lunar Craters Abbe 58S,174E Balboa 19N,83W Abbot 6N,55E Baldet 54S, 151W Abel 34S,85E Balmer 20S,70E Abul Wafa 2N,ll7E Banachiewicz 5N,80E Adams 32S,69E Banting 26N,16E Aitken 17S,173E Barbier 248, 158E AI-Biruni 18N,93E Barnard 30S,86E Alden 24S, lllE Barringer 29S,151W Aldrin I.4N,22.1E Bartels 24N,90W Alekhin 68S,131W Becquerei -
In Pdf Format
lós 1877 Mik 88 ge N 18 e N i h 80° 80° 80° ll T 80° re ly a o ndae ma p k Pl m os U has ia n anum Boreu bal e C h o A al m re u c K e o re S O a B Bo l y m p i a U n d Planum Es co e ria a l H y n d s p e U 60° e 60° 60° r b o r e a e 60° l l o C MARS · Korolev a i PHOTOMAP d n a c S Lomono a sov i T a t n M 1:320 000 000 i t V s a Per V s n a s l i l epe a s l i t i t a s B o r e a R u 1 cm = 320 km lkin t i t a s B o r e a a A a A l v s l i F e c b a P u o ss i North a s North s Fo d V s a a F s i e i c a a t ssa l vi o l eo Fo i p l ko R e e r e a o an u s a p t il b s em Stokes M ic s T M T P l Kunowski U 40° on a a 40° 40° a n T 40° e n i O Va a t i a LY VI 19 ll ic KI 76 es a As N M curi N G– ra ras- s Planum Acidalia Colles ier 2 + te . -
Geologic Mapping of Vinogradov Crater on Mars: Ancient Phyllosilicates to Alluvial Fans
45th Lunar and Planetary Science Conference (2014) 2382.pdf GEOLOGIC MAPPING OF VINOGRADOV CRATER ON MARS: ANCIENT PHYLLOSILICATES TO ALLUVIAL FANS. S. A. Wilson1, J. A. Grant1, C. M. Weitz2 and R. P. Irwin1 1Center for Earth and Planetary Studies, National Air and Space Museum, Smithsonian Institution, 6th St. at Independence Ave. SW, Washington, DC, 20560 ([email protected]), 2Planetary Science Institute, 1700 E Fort Lowell, Suite 106, Tucson, AZ 85719. Introduction: Southern Margaritifer Terra on Mars preserves a long geologic history of water-related activity (Fig. 1). The northward-draining Uzboi– Ladon–Morava (ULM) outflow system dominates drainage in southwest Margaritifer Terra [1-4] and was incised during the Late Noachian to Hesperian [2]. Holden crater formed in the mid to Late Hesperian [5] and blocked the northern end of Uzboi, creating an enclosed basin that filled as a large paleolake [6]. The geology of Vinogradov crater and vicinity, located ~200 km west of Ladon basin and 250 km northwest of Holden crater (Fig. 1), is consistent with the long and diverse history of water in the region to the east [5]. Figure 2. Vinogradov crater is flanked by fan-bearing craters Roddy (D=85.8km; 21.7ºS, 320.6ºE), Gringauz (D=71.0km; 20.7ºS, 324.3ºE) and Luba (D=38.8km, 18.3ºS, 323ºE). Phyllosilicates are found in the depression (dashed line) between ejecta from Roddy and Gringauz (Fig. 3). MOLA 128 pixel/degree with 25 m contours over THEMIS daytime IR mosaic. Figure 1. Southern Margaritifer Terra indicating major place names. Stars show craters containing alluvial fans [7-8]. -
Life on Mars- Extracting the Signs for Future Human Habitation on The
Muhammad Shadab Khan, Department of Aeronautical Engineering, Babu Banarasi Das National Institute of Technology and Management, Lucknow, India CONTENT- Introduction Life on Mars Signs of Life Found on Mars and Similarities with those signs on Earth Utilizing Life Support Resources present on Mars for human habitation INTRODUCTION 1- Rise of Global Warming and it’s alarming consequences which might cause complete loss of life on Earth– Search for an Earth like habitable body in the outer Space 2- Ongoing Exploration of Mars in search of Life on the Red Planet for future human habitation on the planet. 3- Mars is the planet which is very similar to Earth and it’s believed that Life had existed on Mars in the Past– Big support to our quest for life in the future 4- The life supporting features found on Mars are very similar to those found on Earth– Giving a sign of prospective life in the near future on Mars Life on Mars Life on Mars has been a subject of wide discussion from the very early beginning. There has been speculations about the existence of Life on the Red Planet in the Past But still about the presence of an Earth like habitable environment on Mars is a BIG QUESTION ? The first search for Life on Mars was carried out by NASA’s VIKING LANDER in 1976 Gas Chromatograph/Mass Spectrometer Instrument on the Lander detected the possible MICROBIAL LIFE in the soil sample . The question about MICROBIAL LIFE remains unresolved LIQUID WATER ON MARS The speculation about the presence of LIQUID WATER on Mars has been a subject of deep interest to the scientists from the very beginning As it’s believed in order to support LIFE, the need of WATER in LIQUID FORM is MUST. -
Schultze-Makuch Methane Mars.Pdf
International Journal of Astrobiology 7 (2): 117–141 (2008) Printed in the United Kingdom 117 doi:10.1017/S1473550408004175 f 2008 Cambridge University Press The case for life on Mars Dirk Schulze-Makuch1, Alberto G. Faire´n2 and Alfonso F. Davila2 1School of Earth and Environmental Sciences, Washington State University, Pullman, WA 99163, USA e-mail: [email protected] 2Space Science and Astrobiology Division, NASA Ames Research Center, USA Abstract: There have been several attempts to answer the question of whether there is, or has ever been, life on Mars. The boldest attempt was the only ever life detection experiment conducted on another planet: the Viking mission. The mission was a great success, but it failed to provide a clear answer to the question of life on Mars. More than 30 years after the Viking mission our understanding of the history and evolution of Mars has increased vastly to reveal a wetter Martian past and the occurrence of diverse environments that could have supported microbial life similar to that on Earth for extended periods of time. The discovery of Terran extremophilic microorganisms, adapted to environments previously though to be prohibitive for life, has greatly expanded the limits of habitability in our Solar System, and has opened new avenues for the search of life on Mars. Remnants of a possible early biosphere may be found in the Martian meteorite ALH84001. This claim is based on a collection of facts and observations consistent with biogenic origins, but individual links in the collective chain of evidence remain controversial. Recent evidence for contemporary liquid water on Mars and the detection of methane in the Martian atmosphere further enhance the case for life on Mars. -
Jeans Escape
TheThe lossloss ofof thethe earlyearly MartianMartian atmosphereatmosphere andand itsits waterwater inventoryinventory duedue toto thethe activeactive youngyoung SunSun H. Lammer (1), Yu. N. Kulikov (2), N. Terada (3), I. Ribas (4), D. Langmayr (1), N. V. Erkaev (5), G. Jaritz (6), H. K. Biernat (1,6) (1) Space Research Institute, Austrian Academy of Sciences, Schmiedlstrasse 6, A-8042 Graz, Austria (2) Polar Geophysical Institute (PGI), Russian Academy of Sciences, Khalturina Str. 15, Murmansk, 183010, Russian Federation (3) Solar-Terrestrial Environment Laboratory, Nagoya University, Japan (4) Institute for Space Studies of Catalonia (IEEC) and Instituto de Ciencias del Espacio (CSIC), E-08034, Barcelona, Spain (5) Institute for Computational Modelling, Russian Academy of Sciences, Ru-660036 Krasnoyarsk 36, Russian Federation (6) Institute for Geophysics, Astrophysics, and Meteorology, University of Graz, Universitätsplatz 5, A-8010 Graz, Austria IEEC/CSIC TheThe casecase forfor aa wet,wet, warmwarm Mars:Mars: ButBut wherewhere isis allall thethe waterwater andand thethe atmosphereatmosphere ?? ¾ Observations of a network of valleys in crater rich areas of the southern hemisphere suggests that Mars had once a significant hydrologic activity [e.g., Carr Nature 326, 30, 1987; Baker Nature 412, 228, 2001; Carr & Head III JGR 108, E5, 5042, 2003] ¾ Asteroids and comets from beyond 2.5 AU provide the source of Mars’ water, which totals 6 – 27 % of the Earth’s present ocean equivalent to 600 – 2700 m depth on the Martian surface or in the crustal regolith [Lunine et al. Icarus 165, 1, 2003] ¾ Enrichment and fractionation of heavy isotopes [e.g., Pepin Icarus 111, 289, 1994] ¾ Estimations of volumes of potential early Martian water reservoirs from geo-morphological analysis of possible shorelines by MGS images and MOLA data → d ≈ 150 - 160 m [Carr & Head III JGR 108, E5, 5042, 2003] - Stored in present polar caps → d ≈ 20 - 30 m - Surface ground water → d ≈ 80 m ? - Escaped to space → d ≈ 50 - 80 m ? ¾ Early atmosphere ≈ 1 – 5 bars [e.g., Pollack, Kasting et al. -
Large Impact Crater Histories of Mars: the Effect of Different Model Crater Age Techniques ⇑ Stuart J
Icarus 225 (2013) 173–184 Contents lists available at SciVerse ScienceDirect Icarus journal homepage: www.elsevier.com/locate/icarus Large impact crater histories of Mars: The effect of different model crater age techniques ⇑ Stuart J. Robbins a, , Brian M. Hynek a,b, Robert J. Lillis c, William F. Bottke d a Laboratory for Atmospheric and Space Physics, 3665 Discovery Drive, University of Colorado, Boulder, CO 80309, United States b Department of Geological Sciences, 3665 Discovery Drive, University of Colorado, Boulder, CO 80309, United States c UC Berkeley Space Sciences Laboratory, 7 Gauss Way, Berkeley, CA 94720, United States d Southwest Research Institute and NASA Lunar Science Institute, 1050 Walnut Street, Suite 300, Boulder, CO 80302, United States article info abstract Article history: Impact events that produce large craters primarily occurred early in the Solar System’s history because Received 25 June 2012 the largest bolides were remnants from planet ary formation .Determi ning when large impacts occurred Revised 6 February 2013 on a planetary surface such as Mars can yield clues to the flux of material in the early inner Solar System Accepted 25 March 2013 which, in turn, can constrain other planet ary processes such as the timing and magnitude of resur facing Available online 3 April 2013 and the history of the martian core dynamo. We have used a large, global planetary databas ein conjunc- tion with geomorpholog icmapping to identify craters superposed on the rims of 78 larger craters with Keywords: diameters D P 150 km on Mars, 78% of which have not been previously dated in this manner.