Runway Status Light System Demonstration at Logan Airport 6

Total Page:16

File Type:pdf, Size:1020Kb

Runway Status Light System Demonstration at Logan Airport 6 Project Report ATC-206 Runway Status Light System Demonstration at Logan Airport J. R. Eggert R. J. Sasiela M. P. Kastner W. H. Harman H. Wilhelmsen T. J. Morin H. B. Schultz J. L Sturdy D. Wyschogrod P. M. Daly 12 October 1995 Lincoln Laboratory MASSACHUSETTS INSTITUTE OF TECHNOLOGY LEXINGTON, MASSACHUSETTS Prepared for the Federal Aviation Administration, Washington, D.C. 20591 This document is available to the public through the National Technical Information Service, Springfield, VA 22161 This document is disseminated under the sponsorship of the Department of Transportation in the interest of information exchange. The United States Government assumes no liability for its contents or use thereof. TECHNICAL REPORT STANDARD TITLE PAGE 1. Report No. 2. Government Accession No. 3. Recipient·s Catalog No. ATC-206 4. Title and Subtitle 5. Report Date 12 October 1995 Runway Status Light System Demonstration at Logan Airport 6. Performing Organization Code 7. Author(s) 8. Performing Organization Report No. J.R. Eggert, R.J. Sasiela, M.P. Kastner, W.H. Harman, H. Wilhelmsen, T.J. Morin, H.B. Schultz, J.L. Sturdy, D. Wyschogrod, and P.M. Daly ATC-206 9. Performing Organization Name and Address 10. Work Unit No. (TAAIS) Lincoln Laboratory, MIT 244 Wood Street 11. Contract or Grant No. Lexington, MA 02173-9108 DTFAOI-95-X-02018 12. Sponsoring Agency Name and Address 13. Type of Report and Period Covered Department of Transportation Federal Aviation Administration Washington, DC 20591 14. Sponsoring Agency Code 15. Supplementary Notes This report is based on studies performed at Lincoln Laboratory, a center for research operated by Massachusetts Institute of Technology under Air Force Contract F19628-95-C-0002. 16. Abstract The Runway Status Light System (RSLS), developed under the FAA's Airport Surface Traffic Automation (ASTA) program, is intended to help reduce the incidence of runway incursions and airport surface accidents. It will do so by providing a preventive, back-up system of automatically controlled lights on the airport surface that inform pilots when runways are unsafe for entry or takeoff, and by providing controllers with enhanced surface radar displays. This report documents a proof-of-concept evaluation of the RSLS at Boston's Logan Airport. It details the methods used to provide the necessary surface surveillance and safety logic to allow a computer to operate the runway status lights and associated controller displays without human assistance. The system was installed and tested off-line at Boston's Logan Airport using an inexpensive commercial marine radar as a primary surveillance source. The system operated live and in real time but the runway status lights were not physically installed. They were displayed on a scale model of Logan Airport located in a demonstration room that had a good view of the airport. This allowed visual comparison between the actual aircraft and the resulting lights and displays. In addition to providing a convincing demonstration of the system, real-time viewing of the aircraft movement was an important aid in the development of the surveillance processing and safety logic software. Surveillance perfor­ mance and runway status light operational performance were evaluated quantitatively. The probability of tracking an aircraft in movement areas with line-of-sight coverage was better than 98%. The false track rate was about four per bour, and the surveillance jitter was about 1 meter rms. From an operational point of view, had there been real lights on the field, it appears that they would have provided the intended safety back-up with little impact on airport capacity or controller and pilot workload. Only once in 15 minutes would the pilot population have ob­ served a light in an incorrect state for more than four seconds. From the point of view of a specific cockpit crew, only once in 36 operations would a runway status light have been seen in an incorrect state for more than four seconds, and, furthermore, only once in 50 operations would light illuminations have interfered with normal, safe traffic flow. These are encouraging results for a system in an early demonstration phase because significant im­ provement is possible in all of these performance measures. Specific suggestions for improvement are included in this document. 17. Key Words 18. Distribution Statement Runway Status Light System (RSLS) This document is available to the public through the Airport Surface Traffic Automation (ASTA) National Technical Information Service, Logan Airport Springfield, VA 22161. Airport Surface Detection Equipment-X (ASDE-X) 19. Security Classif. (of this report) 20. Security Classif. (of this page) 21. No. of Pages 22. Price Unclassified Unclassified 285 FORM DOT F 1700.7 (8-72) Reproduction of completed page authorized EXECUTIVESU~ARY INTRODUCTION In the last two decades, at least nine major airport surface conflict accidents have occurred in the United States. In a thirteen-month period in 1990 and 1991, three airport runway conflict accidents together resulted in the loss of 43 lives. Runway conflicts start with runway incursions. About 200 runway incursions occur every year at US airports. With domestic air traffic predicted to increase by 3% annually over the next decade, the airport surface is expected to become increasingly crowded. The runway incursion problem must be addressed if future runway conflict accidents are to be prevented. The Runway Status Light System (RSLS), developed under the FAA-administered research and development program in Airport Surface Traffic Automation (ASTA), is designed to reduce the incidence of runway incursions and airport surface accidents. The RSLS is a preventive, back-up system intended to provide runway status information to pilots via automatically controlled lights on the airport surface .that indicate when particular runways are either unsafe to enter or are unsafe for takeoff. The system will also provide runway status and traffic information to controllers via surface radar display enhancements. The technical approach is to use automatic processing of surface primary and approach secondary radar data to drive the runway-status lights and associated controller surface traffic displays. This report documents a proof-of-concept evaluation of the RSLS at Boston's Logan airport. It details the methods used to provide the necessary surface surveillance and control logic to allow a computer to operate the runway status lights and associated controller displays without human assistance. THE RSLS SOLUTION An important design goal of the RSLS is to enhance airport surface traffic safety with minimum operational impact on air traffic controllers and pilots, and with no reduction in airport capacity. The RSLS operational concepts were devised using extensive knowledge of actual airport operations, drawing on the experience of controllers, pilots, and safety experts. The RSLS is designed to be an all-weather, automatic system providing a safety backup to controllers and pilots, requiring no increase in controller workload, and incurring no decrease in airport capacity. The result of the RSLS design effort is a system that works in concert with existing procedures, and enhances runway safety. Analysis of past runway accidents and incidents has shown that a complete airport surface traffic safety system should include a good surface radar, controller alerts in the tower cab, and runway status lights. A surface radar aids the controller to acquire and maintain a mental image of the present and pending runway operations. Digital display enhancements such as aircraft icons and identification tags on the surface radar display greatly, enhance the display visibility. These enhancements require automatic surveillance processing to provide tracking information. The same tracking information derived for the display enhancements can be used to drive controller alerts and runway status lights. The runway status lights and enhanced surface traffic displays are the chief outputs of the RSLS system. The improved controller surface traffic display, depicted in Figure ES-I, provides controllers with an advanced digital display of airport surface and approach traffic. Aircraft and surface vehicles are depicted by arrows that point in the direction of motion and whose size represents the size of the radar image. Tags provide velocity information and, when available from the Automated Radar Terminal iii System (ARTS) computer, aircraft flight number, equipment type, and altitude. The traffic is depicted on a map of the runways and taxiways. As shown in Figures ES-2 and ES-3, the runway status lights, composed of runway entrance lights and takeoff hold lights, present runway status information to pilots on and near the airport runways. These lights are driven automatically by computer processing of surface and approach radar information. The RSLS software detects the presence and motion of aircraft and surface vehicles on or near the runways, assesses any possible conflicts with other surface traffic, illuminates red runway entrance lights if the runway is unsafe to enter, and illuminates red takeoff hold lights if the runway is unsafe for departure. The runway status lights will have the effect of preventing runway incursions before they happen. They will prevent runway incursions without interfering with normal and safe airport operations. A basic controller alerting capability is included in the RSLS for demonstration purposes. The RSLS safety logic was designed to
Recommended publications
  • Human-In-The-Loop Simulation of an Integrated Ground Movement Safety System
    MTR 05W0000074 MITRE TECHNICAL REPORT Human-in-the-Loop Simulation of an Integrated Ground Movement Safety System September 2005 Dr. Peter M. Moertl This is the copyright work of The MITRE Corporation and was produced for the U.S. Government under Contract Number DTFA01-01-C-00001 and is subject to Federal Aviation Administration Acquisition Management System Clause 3.5-13, Rights in Data-General, Alt. III and Alt. IV (Oct., 1996). Sponsor: Federal Aviation Administration Contract No.: DTFA01-01-C-00001 Dept. No.: F053 Project No.: 0205F110-DW Approved for public release; distribution unlimited. The contents of this material reflect the views of the author and/or the Director of the Center for Advanced Aviation System Development. Neither the Federal Aviation Administration nor the Department of Transportation makes any warranty or guarantee, or promise, expressed or implied, concerning the content or accuracy of the views expressed herein ©2005 The MITRE Corporation. All Rights Reserved. Center for Advanced Aviation System Development McLean, Virginia MITRE Department Approval: Urmila C. Hiremath Associate Program Manager ATM/CNS Research Computing Capability MITRE Project Approval: Edward C. Hahn Outcome Leader Aviation Safety ii Abstract This document describes a human-in-the-loop simulation evaluating the effectiveness of an integrated ground movement safety system for improved runway safety. The evaluated ground movement safety system contained technologies to enhance pilot awareness as well as warn pilots about runway safety risks and had been proposed by Andrews, Dorfman, Estes, Jones, and Olmos (2005). Strengths and limitations of this integrated system as well as possibilities to address these limitations were determined.
    [Show full text]
  • SANDOR Safe Airport Navigation Demonstrator
    Doc.nr.: KDC/2010/0065 Version: 1.0 Date: 20 okt 2010 SANDOR Safe Airport Navigation DemonstratOR Summary Safety on the airport surface is of great importance to the Schiphol operation. In order to keep safety at a high level for now and in the future when traffic numbers grow, it is necessary to improve the ATM system with respect to the ground operation. In 2007 the KDC study “Increased ground handling capacity” was conducted. The focus of that study was to solve hot-sports in the traffic flow during good visibility conditions. Low visibility conditions were only briefly discussed. So although an in- depth research was not conducted, it concluded that synthetic vision applications could improve the situational awareness of the cockpit crew and therefore could improve safety. In this project several applications and tools to improve the surface operation have been researched. The starting point was a runway safety analysis which was performed for the years 2007-2009 to learn what is important for the current ground operation at Schiphol. The cases that were studied led to ten different types of runway incursions. Using an identified formula for the potential gravity of runway incursions at Schiphol which was developed by the project team, it was decided that the potentially most dangerous situations are: - line-up without ATC clearance - taxiing on an active runway without ATC clearance - vehicle on the runway without ATC clearance Besides the runway incursion analysis a complete list was compiled of what kind of tools in the area of Advanced Surface Movement Guidance and Control Systems (A-SMGCS) have already been invented, developed or are even being deployed internationally.
    [Show full text]
  • Notice Federal Aviation Administration
    U.S. DEPARTMENT OF TRANSPORTATION N JO 7210.842 NOTICE FEDERAL AVIATION ADMINISTRATION Air Traffic Organization Policy Effective Date: March 29, 2013 Cancellation Date: March 28, 2014 SUBJ: Guidance for the Use of Runway Status Lights (RWSL) Light System 1. Purpose of This Notice. This notice provides guidance to the air traffic manager (ATM) and/or front line manager (FLM) concerning the operations and periodic check of the RWSL system. A new paragraph will not be added to FAA Order JO 7210.3 until after all testing is complete. 2. Audience. This notice applies to the Air Traffic Organization (ATO) Terminal Services Units at the following airport: Orlando International Airport (MCO). Airports that are not currently conducting RWSL testing but that may begin testing RWSL, are as follows: George Bush Intercontinental/Houston Airport (IAH); Phoenix Sky Harbor International Airport (PHX); Washington Dulles International Airport (IAD); Minneapolis-St. Paul International/Wold-Chamberlain Airport (MSP); Charlotte/Douglas International Airport (CLT); Fort Lauderdale/Hollywood International Airport (FLL); Seattle-Tacoma International Airport (SEA); Detroit Metropolitan Wayne County Airport (DTW); Baltimore/Washington International Thurgood Marshall Airport (BWI); Chicago O'Hare International Airport (ORD); McCarran International Airport (LAS); San Francisco International Airport (SFO), and LaGuardia Airport (LGA). 3. Where Can I Find This Notice? This notice is available on the MyFAA employee Web site at https://employees.faa.gov/tools_resources/orders_notices/ and on the air traffic publications Web site at http://www.faa.gov/air_traffic/publications. 4. Explanation of Policy Change. This notice cancels N JO 7210.812, Guidance for the Use of Runway Status Lights (RWSL) Light System at Orlando, FL, Airport (MCO), effective May 4, 2012.
    [Show full text]
  • Controller and Pilot Error in Airport Operations: a Review of Previous Research and Analysis of Safety Data
    Controller and Pilot Error in Airport Operations: A Review of Previous Research and Analysis of Safety Data DOT/FAA/AR-00/51 DOT-VNTSC-FAA-00-21 Office of Aviation Research Washington, DC20591 Kim Cardosi, Ph.D. Alan Yost U.S. Department ofTransportation Research and Special Programs Administration John A. Voipe National Transportation Systems Center Cambridge, MA 02142-1093 Final Report January 2001 This document is available to the public through the National Technical Information Service, Springfield, Virginia 22161 O U.S. Department ofTransportation Federal Aviation Administration NOTICE This document is disseminated under the sponsorship of the Department of Transportation in the interest of information exchange. The United States Government assumes no liability for its contents or use thereof. NOTICE The United States Government does not endorse products or manufacturers. Trade or manufacturers' names appear herein solely because they are considered essential to the objective of this report. Form Approved REPORT DOCUMENTATION PAGE OMB No. 0704-0188 PuMcreporting burden torttnscollection ol information 6 estimated to average 1tourperresponse, mduolrigffw timeforreviewing ensawr^sourceSjMlJier^andmamtainttigirte data neeoWa^amptetirnaxlrenewrathecoDedOTolW SendMrmwrtsreoarSr^fts burden estimate oranyotheri olthiscoQecSon ofinformation, inctuanasuggestionsforr (hisburden, toWashington Headquarters Services, Directorate forInformation Operators andRep^ 1204, Arlmgton, VA 22202-4302, and toBte &$M Ol M and Budaet PapeworgReftrtonProject (0704-01B8). WaslfoSon. PC 20503. _ 1. AGENCY USE ONLY (Leave blank) 2. REPORT DATE 3.REPORTTYPE AND DATES COVERED January 2001 Final Report January 1997 -June 1999 4. TITLE AND SUBTITLE 5. FUNDING NUMBERS Controllerand Pilot Errorin AirportOperations: A Review ofPreviousResearch and Analysis of SafetyData FA1L1/A1112 6. AUTHOR(S) Kim Cardosi. Ph.D„ Alan Yost 7.
    [Show full text]
  • Pilot Evaluations of Runway Status Light System
    / NASA Technical Memorandum 4727 Pilot Evaluations of Runway Status Light System Steven D. Young, Robert W. Wills, and R. Marshall Smith October 1996 NASA Technical Memorandum 4727 Pilot Evaluations of Runway Status Light System Steven D. Young, Robert W. Wills, and R. Marshall Smith Langley Research Center • Hampton, Virginia National Aeronautics and Space Administration Langley Research Center • Hampton, Virginia 23681-0001 October 1996 The use of trademarks or names of manufacturers in this report is for accurate reporting and does not constitute an official endorsement, either expressed or implied, of such products or manufacturers by the National Aeronautics and Space Administration. Acknowledgments The authors would like to thank Vern Edwards of the Federal Avia- tion Administration, Robert Rudis of the Volpe National Transporta- tion Systems Center, Jerry Wright of the Air Line Pilots Association, and the LaRC flight simulation laboratory staff for their help in this investigation. Without their efforts, this project could not have been completed. Available electronically at the following URL address: http://techreports.larc.nasa.gov/Itrs/ltrs.html Printed copies available from the following: NASA Center for AeroSpace Information National Technical Information Service (NTIS) 800 Elkridge Landing Road 5285 Port Royal Road Linthicum Heights, MD 21090-2934 Springfield, VA 22161-2171 (301) 621-0390 (703) 487-4650 Contents Abbreviations ...................................................................... v Abstract ..........................................................................
    [Show full text]
  • Runway Safety
    Federal Aviation Administration Runway Safety Presented to: RASG – Pan America Meeting By: James white, Deputy Director Airport Safety and Standards, FAA Date: November, 2009 Reducing Safety Surface Operations Risk Factors Minimal separation and rapid pace High-speed operations with little margin for error Complex environment Low visibility in poor weather Combination of Factors Minimizes Safety Margin Federal Aviation 2 2 November 2009 Administration All Categories of Runway Incursions Rate est. 1200 18.08* as Runway Incursions Airport1,000,000 per Operations of 09/30/09 1009 Runway IncursionRate 18.0 1000 892 951 816 779 17.23 16.0 800 14.57 14.0 600 13.34 12.36 12.0 400 10.0 200 0 FY05 FY06 FY07 FY08 FY09 63.01 61.13 61.15 58.56 52.59 Airport Operations (millions) * Rates are based on Estimated Tower Operations Federal Aviation 3 3 November 2009 Administration Category A&B Runway Incursions 0.600 Category A&BRunway IncursionRate 60 Runway Incursions Airport1,000,000 per Operations 0.507 0.460 0.500 50 0.427 0.392 0.400 40 Rate est. 0.228 * 31 as of 09/30/09 29 Performance Reference = 0.300 0.472 * 30 24 25 0.200 20 12 0.100 10 0.000 0 FY05 FY06 FY07 FY08 FY09 63.01 61.13 61.15 58.56 52.59 Airport Operations (millions) * Rates are based on Estimated Tower Operations Federal Aviation 4 4 November 2009 Administration ParticipationParticipation inin RSATsRSATs Federal Aviation 5 5 November 2009 Administration ParticipationParticipation inin RSATsRSATs The preliminary inspection of the movement area includes: 1.
    [Show full text]
  • Timing Is Everything
    AIRPORTOPS hen the U.S. Federal Aviation that airport surface detection equipment, If the deployment repeats the success Administration (FAA) awards model X (ASDE-X) — a surface surveil- of systems already tested at Dallas-Fort a contract in late 2008 to lance system designed to identify and Worth (DFW) and San Diego inter- install runway status lights display traffic and, in enhanced versions, national airports, one result will be a W(RWSL) at 22 major U.S. airports1 in automatically alert air traffic control compelling case for updating interna- 2009–2011, the worldwide aviation com- (ATC) to imminent ground collisions — tional standards to add RWSL to existing munity will be anxious to hear about the has proved to be a key enabler. defenses against the human errors and new system’s effectiveness in preventing “We have an approval and a com- other causes of runway incursions. runway incursions. From 2001 to Febru- mitment of capital to go out and invest Saves So Far ary 2008, the FAA spent US$25.8 million hundreds of millions of dollars in get- The FAA cites two occurrences in 2008, to complete its research, development ting RWSL to these airports,” said Jaime both at DFW, as prime examples of and operational evaluation of RWSL. Figueroa, field demonstration manager, RWSL providing safety-critical situation- Available technology did not enable surface technology assessment, FAA al awareness quickly enough to prevent a a nation wide deployment in the mid- Air Traffic Organization (ATO) Opera- runway collision with complete inde- 1990s — the last time the FAA studied tions Planning.
    [Show full text]
  • Runway Status Lights Information
    Runway Status Lights Information What Are Runway Status Lights? Runway Status Lights (RWSL) are a series of red in-pavement lights that warn pilots of high-speed aircraft or vehicles on runways. They operate independently of Air Traffic Control. Runway Status Lights have two states: ON (lights are illuminated red) and OFF (lights are off) and are switched automatically based on information from the airport surface surveillance systems. RWSL will improve airport safety by indicating when it is unsafe to enter, cross, or takeoff from a runway. The RWSL system has two types of lights. Runway Entrance Lights (RELs) are installed at taxiways and Takeoff Hold Lights (THLs) on runways. Runway Entrance Lights Runway Entrance Lights (RELs) are a series of red in-pavement lights spaced evenly along the taxiway centerline from the taxiway hold line to the runway edge. One REL is placed before the hold line and one REL is placed near the runway centerline. RELs are directed toward the runway hold line and are oriented to be visible only to pilots entering or crossing the runway from that location. RELs that are ON (illuminated red) indicate that the runway ahead is not safe to enter or cross. Pilots should remain clear of a runway when RELs along their taxi route are illuminated. Lights that are off convey no meaning. The system is not, at any time, intended to convey approval or clearance to proceed into a runway. Pilots remain obligated to comply with all ATC clearances, except when compliance would require crossing illuminated red RELs. In such a case, the crews should hold short of the runway for RELs, contact ATC, and await further instructions.
    [Show full text]
  • Safety Bulletin Caution on Use of Runway Status Lights in the US
    Safety Bulletin 17SAB09 25 October 2017 Caution on use of Runway Status Lights in the US This Safety Bulletin is a reprint from our Member Association, ALPA-I, issued Safety Alert Bulletin 2017-02. BACKGROUND The Federal Aviation Administration (FAA) issued a Safety Alert for Operators (SAFO) 17011 on September 28, 2017, to ensure that aircraft operators, pilots and airport personnel are aware of the installation, meaning and use of Runway Status Lights (RWSLs). RWSLs are fully automated systems of red lights that are designed to aid in preventing runway incursions and ground collisions. The RWSL system integrates airport lighting equipment with approach and surface surveillance radar systems to provide aircraft and vehicle crews a visual cue indicating when it is unsafe to enter/cross or begin/continue takeoff on the runway. According to the FAA, there have been several instances at airports equipped with RWSLs in which flight crews have failed to stop after receiving a clearance by Air Traffic Control while these red lights were lit. Illuminated RWSLs mean that flight crews/vehicle operators must stop or remain stopped, immediately inform ATC that the RWSLs are lit, and request further directions. The RWSL system operates independently and controllers do not have any indication when the lights are illuminated. Failure to comply with the instructions to stop when indicated by RWSLs may result in a high-risk collision event. RWSLs are presently installed and operating at these locations: Orlando (MCO), Phoenix (PHX), Houston Inter- continental (IAH), Baltimore-Washington (BWI), Las Vegas (LAS), Charlotte-Douglas (CLT), Los Angeles (LAX), Seattle-Tacoma (SEA), Chicago O’Hare (ORD), Washington Dulles (IAD), LaGuardia (LGA), New York (JFK), Minneapolis-St.
    [Show full text]
  • The Philippines' State Runway Safety Programme
    THE PHILIPPINES’ STATE RUNWAY SAFETY PROGRAMME CIVIL AVIATION AUTHORITY OF THE PHILIPPINES A Component of the STATE SAFETY PROGRAMME FOR PHILIPPINE CIVIL AVIATION Edition 1.0 April 2014 THE PHILIPPINES’ STATE RUNWAY SAFETY PROGRAMME A component of the STATE SAFETY PROGRAMME FOR PHILIPPINE CIVIL AVIATION CONTENTS Page Contents i Amendment Record iii Foreword iv Part 1 INTRODUCTION 1 1.1 General 1 1.2 ICAO Runway Incursion Definition 1 1.3 Runway Incursion Severity Classifications 2 1.4 Factors Considered in Severity Categorization 3 Part 2 RUNWAY SAFETY PROGRAMME STRUCTURE 5 2.1 Runway Safety Office (Office of Runway Safety) 5 2.2 Runway Safety Programme Officers 5 2.3 Local Runway Safety Teams (LRST) 7 2.4 Local Runway Safety Programmes 7 2.5 Significant Activities of the Runway Safety Office 8 2.6 Other Initiatives 8 2.6.1 Runway Safety Educational Materials 8 2.6.2 Runway Safety Reviews 8 2.6.3 Airport Infrastructure and Information 9 2.6.4 Human Factors and Training Initiatives 9 2.6.6 Improving the Safety Culture 10 2.6.7 Changes in Procedures 10 2.6.8 New Technology 11 Part 3 LOCAL RUNWAY SAFETY TEAM 12 3.1 Background 12 3.2 Goals of the Local Runway Safety Team 12 3.3 Terms of Reference 13 3.4 Hot Spots 14 3.5 Action Items 15 3.6 Responsibility for Tasks Associated with Action Items 15 3.7 Effectiveness of Completed Action Items 15 3.8 Education and Awareness 15 3.9 Memorandum Circular AC for LRSTs 16 i Part 4 AIRPORT OPERATIONS 18 4.1 Annex 14 Provisions 18 4.2 Runway Strip Maintenance Programme 18 4.3 Pavement Maintenance 18 4.4
    [Show full text]
  • Human Factors Assessment of Runway Status Lights and Final Approach Runway Occupancy Signal FAA Operational Evaluations at Dallas Ft
    Eighth USA/Europe Air Traffic Management Research and Development Seminar (ATM2009) Human Factors Assessment of Runway Status Lights and Final Approach Runway Occupancy Signal FAA Operational Evaluations at Dallas Ft. Worth and San Diego International Airports Maria Picardi Kuffner Captain Robert Perkins Human Factors Specialist Air Safety Coordinator - Canada MIT Lincoln Laboratory Air Line Pilots Association, International Lexington, MA, USA Ottawa, ON, Canada [email protected] [email protected] Abstract— Runway incursions have been a persistent problem in airport operations for decades, both in the I. INTRODUCTION - RUNWAY INCURSION PROBLEM National Airspace System (NAS) and worldwide. The In descending order of causation, errors committed by pilots, deadliest accident in the history of commercial aviation controllers, or vehicle operators - often because their occurred at Tenerife Airport in the Canary Islands. As situational awareness is lost – result in runway incursions. commercial airliners become larger and airports more Recent Federal Aviation Administration (FAA) data (see congested the potential for major accidents on the airport figure 1) summarizes and analyzes the patterns and trends in surface is expected to increase. Runway Status Lights runway incursions [1]. The data indicate that the most severe (RWSL) have shown promise in precluding this runway incursions can develop quickly and without warning potentiality through demonstrated operational suitability from perfectly safe and routine traffic situations on the airport and measured reductions in runway incursions as cited surface. Severe runway incursions leave little time for independently in an audit by the US Inspector General. corrective action such as a tower controller responding to a RWSL will be deployed to 22 airports in the near future.
    [Show full text]
  • Preventing Runway Collisions
    HindThe ability or opportunity to understand and judge an event or experience after it has occuredight24 PREVENTING EUROCONTROL RUNWAY COLLISION WHAT I HAVE TRIED TO DO by Tzvetomir Blajev A RUNWAY INCURSION, AND NOT PEEING IN YOUR PANTS by Professor Sidney Dekker LEARNING FROM EXPERIENCE by Captain Ed Pooley Winter 2016 Winter HindSight 24 WINTER 2016 6 11 25 What I Learning from Return of have tried experience the JEDI to do Runway incursion That was close, Runway prevention how did that clear a Safety II approach happen? 42 46 53 TABLE OF CONTENTS 4 DG’S KEYNOTE FROM THE BRIEFING ROOM 20 Hold Position! EDITORIAL by Captain Conor Nolan 6 What I have tried to do by Tzvetomir Blajev 22 Runway collision prevention – a first for Europe! by Jean-Marc Flon, Thomas Tritscher & Arnaud Guihard 8 A runway incursion, and not peeing in your pants by Professor Sidney Dekker 25 Understanding of runway safety, you must: return of the JEDI by Dr Anne Issac VIEW FROM ABOVE 29 What goes up must come down by Maciej Szczukowski 11 Learning from experience 32 FAA update by James Fee by Captain Ed Pooley 34 Runway safety II by Jim Krieger CASE STUDY 36 RWY AHEAD by Libor Kurzweil 40 A simple idea – no wind, no clearance, no runway collision! 15 The Missed Opportunity by Bengt Collin by Patrick Legrand 17 Comment 1 Radu Cioponea 18 Comment 2 Captain Ed Pooley 42 Runway clear by Captain David Charles & Captain Andrew Elbert 19 Comment 3 Mike Edwards 46 Runway incursion prevention – a Safety II approach by Maria Lundahl 36 CONTACT US RWY AHEAD The success of this publication depends very much on you.
    [Show full text]