Geometric Origin of Coincidences and Hierarchies in the Landscape

Total Page:16

File Type:pdf, Size:1020Kb

Geometric Origin of Coincidences and Hierarchies in the Landscape Geometric origin of coincidences and hierarchies in the landscape The MIT Faculty has made this article openly available. Please share how this access benefits you. Your story matters. Citation Bousso, Raphael et al. “Geometric origin of coincidences and hierarchies in the landscape.” Physical Review D 84.8 (2011): n. pag. Web. 26 Jan. 2012. © 2011 American Physical Society As Published http://dx.doi.org/10.1103/PhysRevD.84.083517 Publisher American Physical Society (APS) Version Final published version Citable link http://hdl.handle.net/1721.1/68666 Terms of Use Article is made available in accordance with the publisher's policy and may be subject to US copyright law. Please refer to the publisher's site for terms of use. PHYSICAL REVIEW D 84, 083517 (2011) Geometric origin of coincidences and hierarchies in the landscape Raphael Bousso,1,2 Ben Freivogel,3 Stefan Leichenauer,1,2 and Vladimir Rosenhaus1,2 1Center for Theoretical Physics and Department of Physics, University of California, Berkeley, California 94720-7300, USA 2Lawrence Berkeley National Laboratory, Berkeley, California 94720-8162, USA 3Center for Theoretical Physics and Laboratory for Nuclear Science, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA (Received 2 August 2011; published 14 October 2011) We show that the geometry of cutoffs on eternal inflation strongly constrains predictions for the time scales of vacuum domination, curvature domination, and observation. We consider three measure proposals: the causal patch, the fat geodesic, and the apparent horizon cutoff, which is introduced here for the first time. We impose neither anthropic requirements nor restrictions on landscape vacua. For vacua with positive cosmological constant, all three measures predict the double coincidence that most observers live at the onset of vacuum domination and just before the onset of curvature domination. The hierarchy between the Planck scale and the cosmological constant is related to the number of vacua in the landscape. These results require only mild assumptions about the distribution of vacua (somewhat stronger assumptions are required by the fat geodesic measure). At this level of generality, none of the three measures are successful for vacua with negative cosmological constant. Their applicability in this regime is ruled out unless much stronger anthropic requirements are imposed. DOI: 10.1103/PhysRevD.84.083517 PACS numbers: 98.80.Cq I. INTRODUCTION keeps a fixed physical volume surrounding the geodesic; in simple situations, it is equivalent to the global scale String theory appears to contain an enormous landscape factor time cutoff [30].1 We also introduce a new measure, of metastable vacua [1,2], with a corresponding diversity of which restricts to the interior of the apparent horizon low-energy physics. The cosmological dynamics of this surrounding the geodesic. theory is eternal inflation. It generates a multiverse in From little more than the geometry of these cutoffs, we which each vacuum is produced infinitely many times. are able to make remarkable progress in addressing cos- In a theory that predicts a large universe, it is natural to mological coincidence and hierarchy problems. Using each assume that the relative probability for two different out- comes of an experiment is the ratio of the expected number measure, we will predict three time scales: the time when of times each outcome occurs. But in eternal inflation, observations are made,pffiffiffiffiffiffiffiffiffiffiffiffitobs, the time of vacuum energy j j every possible outcome happens infinitely many times. domination, tà 3= à , and the time of curvature domi- 2 The relative abundance of two different observations is nation, tc. We work in the approximation that observations ambiguous until one defines a measure: a prescription for occur in nearly homogeneous Friedmann-Robertson- regulating the infinities of eternal inflation. Walker (FRW) universes so that these time scales are Weinberg’s prediction [3] of the cosmological constant well defined. [4,5] was a stunning success for this type of reasoning. In We will allow all vacuum parameters to vary simulta- hindsight, however, it was based on a measure that was ill- neously. Parameters for which we do not compute proba- suited for a landscape in which parameters other than à bilities are marginalized. We will not restrict attention to can vary. Moreover, the measure had severe phenomeno- vacua with specific features such as baryons or stars. We logical problems [6]. This spurred the development of will make some weak, qualitative assumptions about the more powerful measure proposals in recent years [7–27]. Surprisingly, some of these measures do far more than to 1Local measures are sensitive to initial conditions and the resolve the above shortcomings. As we shall see in this equivalences hold if the initial conditions specify starting in the longest lived vacuum in the landscape. paper, they obviate the need for Weinberg’s assumption 2 that observers require galaxies, and they help overcome the In regions where curvature will never dominate, such as our own vacuum, tc is defined as the time when curvature would limitation of fixing all parameters but one to their observed come to dominate if there were no vacuum energy. Since our values. observations are consistent with a flat universe, we can only In this paper we will analyze three different measure place a lower bound on the observed value of tc. We include tc in proposals. Each regulates the infinite multiverse by re- our analysis because bubble universes in the multiverse are stricting attention to a finite portion. The causal patch naturally very highly curved, so the absence of curvature re- quires an explanation. Moreover, we shall see that some mea- measure [15] keeps the causal past of the future endpoint sures select for high curvature in vacua with negative of a geodesic; it is equivalent to a global cutoff known as cosmological constant. This effect is partly responsible for the light-cone time [24,28]. The fat geodesic measure [29] problems encountered in this portion of the landscape. 1550-7998=2011=84(8)=083517(16) 083517-1 Ó 2011 American Physical Society BOUSSO et al. PHYSICAL REVIEW D 84, 083517 (2011) prior distribution of parameters in the landscape. We will what extent early curvature domination disrupts the for- assume that most observers are made of something that mation of observers. What is clear from our analysis is that redshifts faster than curvature. (This includes all forms of all three measures are in grave danger of predicting that radiation and matter but excludes, e.g., networks of domain most observers see negative Ã, in conflict with observa- walls.) But we will not impose any detailed anthropic tion, unless the anthropic factor takes on rather specific requirements, such as the assumption that observers re- forms. Assuming that this is not the case, we must ask quire galaxies or complex molecules; we will not even whether the measures can be modified to agree with assume that they are correlated with entropy production observation. Both the causal patch measure and the fat [15,31,32]. Thus we obtain robust predictions that apply to geodesic measure are dual [28,29] to global time cutoffs, essentially arbitrary observers in arbitrary vacua. the light-cone time and the scale factor time cutoff, re- The probability distribution over all three variables can spectively. These global cutoffs, in turn, are motivated by be decomposed into three factors, as we will explain fur- an analogy with the UV/IR relation in AdS/CFT[19]. But ther in Sec. II: this analogy really only applies to positive Ã,soitis d3p natural to suspect that the measure obtained from it is inapplicable to regions with à 0 [24]. (Indeed, the d logt d logt d logt obs à c causal patch does not eliminate infinities in à ¼ 0 bubbles 2 ¼ d p~  ð Þ [15]. We do not consider such regions in this paper.) M logtobs; logtc; logtà d logtÃd logtc  ð Þ logtobs; logtc; logtà : (1.1) Outline and summary of results Here p~ is the probability density that a bubble with pa- In Sec. II, we will describe in detail our method for counting observations. We will derive an equation for the rameters ðlogtÃ; logtcÞ is produced within the region de- fined by the cutoff. Its form can be estimated reliably probability distribution over the three variables ð Þ enough for our purposes from our existing knowledge logtÃ; logtc; logtobs . We will explain how simple qualita- ð Þ tive assumptions about ðlogt ; logt ; logt Þ, the number about the landscape. The factor M logtobs; logtÃ; logtc is obs c à of observations per unit mass per unit logarithmic time the mass inside the cutoff region at the time tobs. This is completely determined by the geometry of the cutoff and interval, allow us to compute probabilities very generally the geometry of a FRW bubble with parameters for all measures. ð Þ We work in the approximation that observations in the logtÃ; logtc , so it can be computed unambiguously. The multiverse take place in negatively curved FRW universes. last factor, ðlogtobs; logtc; logtÃÞ, is the one we know the least about. It is the number of observations per unit mass In Sec. III, we will obtain solutions for their scale factor, in per logarithmic time interval, averaged over all bubbles the approximation where the matter-, vacuum-, and possi- ð Þ with the given values logtÃ; logtc . bly the curvature-dominated regime are widely separated in A central insight exploited in this paper is the following. time. In bubbles with positive cosmological constant, the calcu- In Secs. IV, V, and VI, we will compute the probability ð Þ lable quantity M so strongly suppresses the probability in distribution over logtÃ; logtc; logtobs , using three differ- other regimes that in many cases we only need to know the ent measures.
Recommended publications
  • The State of the Multiverse: the String Landscape, the Cosmological Constant, and the Arrow of Time
    The State of the Multiverse: The String Landscape, the Cosmological Constant, and the Arrow of Time Raphael Bousso Center for Theoretical Physics University of California, Berkeley Stephen Hawking: 70th Birthday Conference Cambridge, 6 January 2011 RB & Polchinski, hep-th/0004134; RB, arXiv:1112.3341 The Cosmological Constant Problem The Landscape of String Theory Cosmology: Eternal inflation and the Multiverse The Observed Arrow of Time The Arrow of Time in Monovacuous Theories A Landscape with Two Vacua A Landscape with Four Vacua The String Landscape Magnitude of contributions to the vacuum energy graviton (a) (b) I Vacuum fluctuations: SUSY cutoff: ! 10−64; Planck scale cutoff: ! 1 I Effective potentials for scalars: Electroweak symmetry breaking lowers Λ by approximately (200 GeV)4 ≈ 10−67. The cosmological constant problem −121 I Each known contribution is much larger than 10 (the observational upper bound on jΛj known for decades) I Different contributions can cancel against each other or against ΛEinstein. I But why would they do so to a precision better than 10−121? Why is the vacuum energy so small? 6= 0 Why is the energy of the vacuum so small, and why is it comparable to the matter density in the present era? Recent observations Supernovae/CMB/ Large Scale Structure: Λ ≈ 0:4 × 10−121 Recent observations Supernovae/CMB/ Large Scale Structure: Λ ≈ 0:4 × 10−121 6= 0 Why is the energy of the vacuum so small, and why is it comparable to the matter density in the present era? The Cosmological Constant Problem The Landscape of String Theory Cosmology: Eternal inflation and the Multiverse The Observed Arrow of Time The Arrow of Time in Monovacuous Theories A Landscape with Two Vacua A Landscape with Four Vacua The String Landscape Many ways to make empty space Topology and combinatorics RB & Polchinski (2000) I A six-dimensional manifold contains hundreds of topological cycles.
    [Show full text]
  • On Asymptotically De Sitter Space: Entropy & Moduli Dynamics
    On Asymptotically de Sitter Space: Entropy & Moduli Dynamics To Appear... [1206.nnnn] Mahdi Torabian International Centre for Theoretical Physics, Trieste String Phenomenology Workshop 2012 Isaac Newton Institute , CAMBRIDGE 1 Tuesday, June 26, 12 WMAP 7-year Cosmological Interpretation 3 TABLE 1 The state of Summarythe ofart the cosmological of Observational parameters of ΛCDM modela Cosmology b c Class Parameter WMAP 7-year ML WMAP+BAO+H0 ML WMAP 7-year Mean WMAP+BAO+H0 Mean 2 +0.056 Primary 100Ωbh 2.227 2.253 2.249−0.057 2.255 ± 0.054 2 Ωch 0.1116 0.1122 0.1120 ± 0.0056 0.1126 ± 0.0036 +0.030 ΩΛ 0.729 0.728 0.727−0.029 0.725 ± 0.016 ns 0.966 0.967 0.967 ± 0.014 0.968 ± 0.012 τ 0.085 0.085 0.088 ± 0.015 0.088 ± 0.014 2 d −9 −9 −9 −9 ∆R(k0) 2.42 × 10 2.42 × 10 (2.43 ± 0.11) × 10 (2.430 ± 0.091) × 10 +0.030 Derived σ8 0.809 0.810 0.811−0.031 0.816 ± 0.024 H0 70.3km/s/Mpc 70.4km/s/Mpc 70.4 ± 2.5km/s/Mpc 70.2 ± 1.4km/s/Mpc Ωb 0.0451 0.0455 0.0455 ± 0.0028 0.0458 ± 0.0016 Ωc 0.226 0.226 0.228 ± 0.027 0.229 ± 0.015 2 +0.0056 Ωmh 0.1338 0.1347 0.1345−0.0055 0.1352 ± 0.0036 e zreion 10.4 10.3 10.6 ± 1.210.6 ± 1.2 f t0 13.79 Gyr 13.76 Gyr 13.77 ± 0.13 Gyr 13.76 ± 0.11 Gyr a The parameters listed here are derived using the RECFAST 1.5 and version 4.1 of the WMAP[WMAP-7likelihood 1001.4538] code.
    [Show full text]
  • University of California Santa Cruz Quantum
    UNIVERSITY OF CALIFORNIA SANTA CRUZ QUANTUM GRAVITY AND COSMOLOGY A dissertation submitted in partial satisfaction of the requirements for the degree of DOCTOR OF PHILOSOPHY in PHYSICS by Lorenzo Mannelli September 2005 The Dissertation of Lorenzo Mannelli is approved: Professor Tom Banks, Chair Professor Michael Dine Professor Anthony Aguirre Lisa C. Sloan Vice Provost and Dean of Graduate Studies °c 2005 Lorenzo Mannelli Contents List of Figures vi Abstract vii Dedication viii Acknowledgments ix I The Holographic Principle 1 1 Introduction 2 2 Entropy Bounds for Black Holes 6 2.1 Black Holes Thermodynamics ........................ 6 2.1.1 Area Theorem ............................ 7 2.1.2 No-hair Theorem ........................... 7 2.2 Bekenstein Entropy and the Generalized Second Law ........... 8 2.2.1 Hawking Radiation .......................... 10 2.2.2 Bekenstein Bound: Geroch Process . 12 2.2.3 Spherical Entropy Bound: Susskind Process . 12 2.2.4 Relation to the Bekenstein Bound . 13 3 Degrees of Freedom and Entropy 15 3.1 Degrees of Freedom .............................. 15 3.1.1 Fundamental System ......................... 16 3.2 Complexity According to Local Field Theory . 16 3.3 Complexity According to the Spherical Entropy Bound . 18 3.4 Why Local Field Theory Gives the Wrong Answer . 19 4 The Covariant Entropy Bound 20 4.1 Light-Sheets .................................. 20 iii 4.1.1 The Raychaudhuri Equation .................... 20 4.1.2 Orthogonal Null Hypersurfaces ................... 24 4.1.3 Light-sheet Selection ......................... 26 4.1.4 Light-sheet Termination ....................... 28 4.2 Entropy on a Light-Sheet .......................... 29 4.3 Formulation of the Covariant Entropy Bound . 30 5 Quantum Field Theory in Curved Spacetime 32 5.1 Scalar Field Quantization .........................
    [Show full text]
  • On the Limits of Effective Quantum Field Theory
    RUNHETC-2019-15 On the Limits of Effective Quantum Field Theory: Eternal Inflation, Landscapes, and Other Mythical Beasts Tom Banks Department of Physics and NHETC Rutgers University, Piscataway, NJ 08854 E-mail: [email protected] Abstract We recapitulate multiple arguments that Eternal Inflation and the String Landscape are actually part of the Swampland: ideas in Effective Quantum Field Theory that do not have a counterpart in genuine models of Quantum Gravity. 1 Introduction Most of the arguments and results in this paper are old, dating back a decade, and very little of what is written here has not been published previously, or presented in talks. I was motivated to write this note after spending two weeks at the Vacuum Energy and Electroweak Scale workshop at KITP in Santa Barbara. There I found a whole new generation of effective field theorists recycling tired ideas from the 1980s about the use of effective field theory in gravitational contexts. These were ideas that I once believed in, but since the beginning of the 21st century my work in string theory and the dynamics of black holes, convinced me that they arXiv:1910.12817v2 [hep-th] 6 Nov 2019 were wrong. I wrote and lectured about this extensively in the first decade of the century, but apparently those arguments have not been accepted, and effective field theorists have concluded that the main lesson from string theory is that there is a vast landscape of meta-stable states in the theory of quantum gravity, connected by tunneling transitions in the manner envisioned by effective field theorists in the 1980s.
    [Show full text]
  • Arxiv:Hep-Th/0209231 V1 26 Sep 2002 Tbs,Daai N Uigi Eurdfrsae Te Hntetemlvcu Olead to Vacuum Thermal the Anisotropy
    SLAC-PUB-9533 BRX TH-505 October 2002 SU-ITP-02/02 Initial conditions for inflation Nemanja Kaloper1;2, Matthew Kleban1, Albion Lawrence1;3;4, Stephen Shenker1 and Leonard Susskind1 1Department of Physics, Stanford University, Stanford, CA 94305 2Department of Physics, University of California, Davis, CA 95616 3Brandeis University Physics Department, MS 057, POB 549110, Waltham, MA 02454y 4SLAC Theory Group, MS 81, 2575 Sand Hill Road, Menlo Park, CA 94025 Free scalar fields in de Sitter space have a one-parameter family of states invariant under the de Sitter group, including the standard thermal vacuum. We show that, except for the thermal vacuum, these states are unphysical when gravitational interactions are arXiv:hep-th/0209231 v1 26 Sep 2002 included. We apply these observations to the quantum state of the inflaton, and find that at best, dramatic fine tuning is required for states other than the thermal vacuum to lead to observable features in the CMBR anisotropy. y Present and permanent address. *Work supported in part by Department of Energy Contract DE-AC03-76SF00515. 1. Introduction In inflationary cosmology, cosmic microwave background (CMB) data place a tanta- lizing upper bound on the vacuum energy density during the inflationary epoch: 4 V M 4 1016 GeV : (1:1) ∼ GUT ∼ Here MGUT is the \unification scale" in supersymmetric grand unified models, as predicted by the running of the observed strong, weak and electromagnetic couplings above 1 T eV in the minimal supersymmetric standard model. If this upper bound is close to the truth, the vacuum energy can be measured directly with detectors sensitive to the polarization of the CMBR.
    [Show full text]
  • Geometric Approaches to Quantum Field Theory
    GEOMETRIC APPROACHES TO QUANTUM FIELD THEORY A thesis submitted to The University of Manchester for the degree of Doctor of Philosophy in the Faculty of Science and Engineering 2020 Kieran T. O. Finn School of Physics and Astronomy Supervised by Professor Apostolos Pilaftsis BLANK PAGE 2 Contents Abstract 7 Declaration 9 Copyright 11 Acknowledgements 13 Publications by the Author 15 1 Introduction 19 1.1 Unit Independence . 20 1.2 Reparametrisation Invariance in Quantum Field Theories . 24 1.3 Example: Complex Scalar Field . 25 1.4 Outline . 31 1.5 Conventions . 34 2 Field Space Covariance 35 2.1 Riemannian Geometry . 35 2.1.1 Manifolds . 35 2.1.2 Tensors . 36 2.1.3 Connections and the Covariant Derivative . 37 2.1.4 Distances on the Manifold . 38 2.1.5 Curvature of a Manifold . 39 2.1.6 Local Normal Coordinates and the Vielbein Formalism 41 2.1.7 Submanifolds and Induced Metrics . 42 2.1.8 The Geodesic Equation . 42 2.1.9 Isometries . 43 2.2 The Field Space . 44 2.2.1 Interpretation of the Field Space . 48 3 2.3 The Configuration Space . 50 2.4 Parametrisation Dependence of Standard Approaches to Quan- tum Field Theory . 52 2.4.1 Feynman Diagrams . 53 2.4.2 The Effective Action . 56 2.5 Covariant Approaches to Quantum Field Theory . 59 2.5.1 Covariant Feynman Diagrams . 59 2.5.2 The Vilkovisky–DeWitt Effective Action . 62 2.6 Example: Complex Scalar Field . 66 3 Frame Covariance in Quantum Gravity 69 3.1 The Cosmological Frame Problem .
    [Show full text]
  • Observational Cosmology - 30H Course 218.163.109.230 Et Al
    Observational cosmology - 30h course 218.163.109.230 et al. (2004–2014) PDF generated using the open source mwlib toolkit. See http://code.pediapress.com/ for more information. PDF generated at: Thu, 31 Oct 2013 03:42:03 UTC Contents Articles Observational cosmology 1 Observations: expansion, nucleosynthesis, CMB 5 Redshift 5 Hubble's law 19 Metric expansion of space 29 Big Bang nucleosynthesis 41 Cosmic microwave background 47 Hot big bang model 58 Friedmann equations 58 Friedmann–Lemaître–Robertson–Walker metric 62 Distance measures (cosmology) 68 Observations: up to 10 Gpc/h 71 Observable universe 71 Structure formation 82 Galaxy formation and evolution 88 Quasar 93 Active galactic nucleus 99 Galaxy filament 106 Phenomenological model: LambdaCDM + MOND 111 Lambda-CDM model 111 Inflation (cosmology) 116 Modified Newtonian dynamics 129 Towards a physical model 137 Shape of the universe 137 Inhomogeneous cosmology 143 Back-reaction 144 References Article Sources and Contributors 145 Image Sources, Licenses and Contributors 148 Article Licenses License 150 Observational cosmology 1 Observational cosmology Observational cosmology is the study of the structure, the evolution and the origin of the universe through observation, using instruments such as telescopes and cosmic ray detectors. Early observations The science of physical cosmology as it is practiced today had its subject material defined in the years following the Shapley-Curtis debate when it was determined that the universe had a larger scale than the Milky Way galaxy. This was precipitated by observations that established the size and the dynamics of the cosmos that could be explained by Einstein's General Theory of Relativity.
    [Show full text]
  • Arxiv:1707.01092V2 [Gr-Qc]
    September 2017 Holographic Entanglement Entropy and Cyclic Cosmology Paul H. Frampton∗ Dipartimento di Matematica e Fisica ”Ennio De Giorgi” Universit`adel Salento and INFN Lecce, Via Arnesano 73100 Lecce,Italy. Abstract We discuss a cyclic cosmology in which the visible universe, or introverse, is all that is accessible to an observer while the extroverse represents the total spacetime originating from the time when the dark energy began to dominate. It is argued that entanglement entropy of the introverse is the more appropriate quantity to render infinitely cyclic, rather than the entropy of the total universe. Since vanishing entanglement entropy implies disconnected spacetimes, at the turnaround when the introverse entropy is zero the disconnected extroverse can be jettisoned with impunity. arXiv:1707.01092v2 [gr-qc] 1 Sep 2017 ∗email: [email protected] 1 Introduction Cyclic cosmology with an infinite number of cycles which include – expansion, turnaround, contraction, bounce – is an appealing theory, and one of the most recent attempts at a solution was in [1]. As emphasized first by Tolman [2,3], entropy and the second law of thermodynamics provide a significant challenge to implementing a cyclic theory. The approach was based on the so-called Come Back Empty (CBE) principle which chooses the turnaround as the point in the cycles where entropy is jettisoned. A successful universe must be selected with zero entropy at the turnaround to begin an adiabatic contraction to the bounce while empty of all matter including black holes. In this article we provide a better understanding of CBE based on the holographic principle [4–6].
    [Show full text]
  • Ads/CFT and Black Holes - Lecture 3
    2230-3 Spring School on Superstring Theory and Related Topics 28 March - 5 April, 2011 AdS/CFT and Black Holes - Lecture 3 A. MALONEY McGill University Montreal Canada A de Sitter Farey Tail ICTP Alex Maloney, McGill University Castro, Lashkari & A. M. Overview The Problem Quantum cosmology is confusing: What are the appropriate observables for eternal inflation? What is the meaning and origin of the entropy of a cosmological horizon? Is quantum mechanics the right language to describe cosmology? We were able to answer analogous questions about black hole physics using AdS/CFT. Let us be bold and apply the same techniques to cosmology. de Sitter Space de Sitter space is the maximally symmetric solution of general relativity with a positive cosmological constant. √ 1 − − 2 S(g)= g R 2 G M The universe inflates eternally. The three dimensional theory can be solved exactly, in the sense that the partition function − [ ] Z = Dge S g can be computed exactly. We will be inspired by AdS/CFT but we will not use it. The Idea The saddle point approximation is 1 −S[g] −kS0+S1+ S2+... Z = Dge = e k g0 where k = /G is the coupling. The approximation becomes exact if we can Find all classical saddles Compute all perturbative corrections around each saddle We can do it! The new classical saddles have a straightforward physical interpretation and lead to quantum gravitational effects for de Sitter observers. The Plan for Today: • The de Sitter Farey Tail • The Partition Function • Discussion Causal Structure of de Sitter Eternal inflation is the ultimate existential nightmare.
    [Show full text]
  • Xavier Calmet Editor Quantum Aspects of Black Holes Fundamental Theories of Physics
    Fundamental Theories of Physics 178 Xavier Calmet Editor Quantum Aspects of Black Holes Fundamental Theories of Physics Volume 178 Series editors Henk van Beijeren Philippe Blanchard Paul Busch Bob Coecke Dennis Dieks Detlef Dürr Roman Frigg Christopher Fuchs Giancarlo Ghirardi Domenico J.W. Giulini Gregg Jaeger Claus Kiefer Nicolaas P. Landsman Christian Maes Hermann Nicolai Vesselin Petkov Alwyn van der Merwe Rainer Verch R.F. Werner Christian Wuthrich More information about this series at http://www.springer.com/series/6001 Xavier Calmet Editor Quantum Aspects of Black Holes 123 Editor Xavier Calmet Department of Physics and Astronomy University of Sussex Brighton UK ISBN 978-3-319-10851-3 ISBN 978-3-319-10852-0 (eBook) DOI 10.1007/978-3-319-10852-0 Library of Congress Control Number: 2014951685 Springer Cham Heidelberg New York Dordrecht London © Springer International Publishing Switzerland 2015 This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation, broadcasting, reproduction on microfilms or in any other physical way, and transmission or information storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now known or hereafter developed. Exempted from this legal reservation are brief excerpts in connection with reviews or scholarly analysis or material supplied specifically for the purpose of being entered and executed on a computer system, for exclusive use by the purchaser of the work. Duplication of this publication or parts thereof is permitted only under the provisions of the Copyright Law of the Publisher’s location, in its current version, and permission for use must always be obtained from Springer.
    [Show full text]
  • Arxiv:1511.02114V5
    Hawking modes and the optimal disperser : Holographic lessons from the observer’s causal-patch unitarity J. Koohbor (a) ∗, M. Nouri-Zonoz (a)† and A. Tavanfar (b)(c) ‡ (a): Department of Physics, University of Tehran, North Karegar Ave., Tehran 14395-547, Iran. (b) : Instituto de Telecomunica¸co˜es, Physics of Information and Quantum Technologies Group, Lisbon, Portugal. (c): International Institute of Physics, Universidade Federal do Rio Grande do Norte, 59078-400 Natal-RN, Brazil. Abstract Based on an observer-centric methodology, we pinpoint the basic origin of the spectral Planckian- ity of the asymptotic Hawking modes in the conventional treatments of the evaporating horizons. By considering an observer who analyzes a causal horizon in a generic spacetime, we first clarify how the asymptotic Planckian spectrum is imposed on the exponentially redshifted Hawking modes through a geometric dispersion mechanism developed by a semiclassical environment which is com- posed by all the modes that build up the curvature of the causal patch of the asymptotic observer. We also discuss the actual microscopic phenomenon of the Hawking evaporation of generic causal horizons. Our quantum description is based on a novel holographic scheme of gravitational open quantum systems in which the degrees of freedom that build up the curvature of the observer’s causal patch interact with the radiated Hawking modes, initially as environmental quanta, and after a crossover time, as quantum defects. Planckian dispersion of the modes would only be de- arXiv:1511.02114v5 [hep-th] 24 Apr 2018 veloped in the strict thermodynamic limit of this quantum environment, called optimal disperser, which is nevertheless avoided holographically.
    [Show full text]
  • Planckian Physics in the Sky
    Planckian Physics in the Sky Ulf H. Danielsson Institutionen f¨orTeoretisk Fysik, Box 803, SE-751 08 Uppsala, Sweden [email protected] Abstract In this talk I review a few ideas on how to connect the physics of quantum gravity with cosmology. In particular, I review a possible modulation of the power spectrum of primordial density fluctuations generated through transplanckian (maybe stringy) effects. I also dis- cuss the prospects of finding effects due to holography during inflation. 1 Introduction In the coming years we can expect substantial advances in fundamental physics thanks to two new circumstances. The first is that string theory has reached a maturity which makes it possible to construct detailed cosmolog- ical models. The second is that the precision of cosmological observations is rapidly increasing. Important areas include the time variation of the expan- sion rate of the universe and its relation to a possible cosmological constant, as well as the fluctuation spectrum of the CMBR. It is widely believed that cosmology could be the key to the verification of string theory, and that string theory could be what we need to solve several of the present puzzles in cosmology. Many attempts to describe the early universe are based on inflation, for an excellent review see [1]. The defining feature of inflation is a stage 43 of accelerated expansion which is believed to be necessary to solve a few embarrassing problems of the Big Bang model, in particular the flatness and horizon problems. The flatness problem relates to the observation that the real density of the universe, ρ, has long been known to be very close to the critical density ρ .
    [Show full text]