The Logarithmic Spiral by Donald G
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Indirect Proof
95698_ch02_067-120.qxp 9/5/13 4:53 PM Page 76 76 CHAPTER 2 ■ PARALLEL LINES In Exercises 28 to 30, write a formal proof of each theorem. 34. Given: Triangle MNQ with M obtuse ∠MNQ 28. If two parallel lines are cut by a transversal, then the pairs Construct: NE Ќ MQ, with E of alternate exterior angles are congruent. on MQ. N Q 29. If two parallel lines are cut by a transversal, then the pairs 35. Given: Triangle MNQ with of exterior angles on the same side of the transversal are Exercises 34, 35 obtuse ∠MNQ supplementary. Construct: MR Ќ NQ 30. If a transversal is perpendicular to one of two parallel lines, (HINT: Extend NQ.) then it is also perpendicular to the other line. 36. Given: A line m and a point T not on m 31. Suppose that two lines are cut by a transversal in such a way that the pairs of corresponding angles are not congruent. T Can those two lines be parallel? 32. Given: Line ᐍ and point P P m not on ᐍ —! Suppose that you do the following: Construct: PQ Ќ ᐍ i) Construct a perpendicular line r from T to line m. ii) Construct a line s perpendicular to line r at point T. 33. Given: Triangle ABC with B three acute angles What is the relationship between lines s and m? Construct: BD Ќ AC, with D on AC. A C 2.2 Indirect Proof KEY CONCEPTS Conditional Contrapositive Indirect Proof Converse Law of Negative Inverse Inference Let P S Q represent the conditional statement “If P, then Q.” The following statements are related to this conditional statement (also called an implication). -
Curves with Rational Chord-Length Parametrization
Curves with rational chord-length parametrization J. Sanchez-Reyes , L. Fernandez-Jambrina Instituto de Matemdtica Aplicada a la Ciencia e Ingenieria, ETS Ingenieros Industrials, Universidad de Castilla-La Mancha, Campus Universitario, 13071-Ciudad Real, Spain ETSI Navales, Universidad Politecnica de Madrid, Arco de la Victoria s/n, 28040-Madrid, Spain Abstract It has been recently proved that rational quadratic circles in standard Bezier form are parameterized by chord-length. If we consider that standard circles coincide with the isoparametric curves in a system of bipolar coordinates, this property comes as a straightforward consequence. General curves with chord-length parametrization are simply the analogue in bipolar coordinates of nonparametric curves. This interpretation furnishes a compact explicit expression for all planar curves with rational chord-length parametrization. In addition to straight lines and circles in standard form, they include remarkable curves, such as the equilateral hyperbola, Lemniscate of Bernoulli and Limacon of Pascal. The extension to 3D rational curves is also tackled. Keywords: Bezier circle; Bipolar coordinates; Chord-length parametrization; Equilateral hyperbola; Lemniscate of Bernoulli 1. Chord-length parametrization Given a parametric curve p(t) over a certain domain t e[a,b], its chord-length at a given point p(7) is defined as (Farm, 2001, 2006): IF|p(0 — A| chord(0 := y A = p(fl), B = p(Z?) (1) |p(0-A| + |p(0-B| where bars denote the modulus of a vector. The curve is said to be chord-length parameterized if chord(f) = t. Chord- length parametrization is clearly invariant with respect to linear transformations of the domain. -
Generating Negative Pedal Curve Through Inverse Function – an Overview *Ramesha
© 2017 JETIR March 2017, Volume 4, Issue 3 www.jetir.org (ISSN-2349-5162) Generating Negative pedal curve through Inverse function – An Overview *Ramesha. H.G. Asst Professor of Mathematics. Govt First Grade College, Tiptur. Abstract This paper attempts to study the negative pedal of a curve with fixed point O is therefore the envelope of the lines perpendicular at the point M to the lines. In inversive geometry, an inverse curve of a given curve C is the result of applying an inverse operation to C. Specifically, with respect to a fixed circle with center O and radius k the inverse of a point Q is the point P for which P lies on the ray OQ and OP·OQ = k2. The inverse of the curve C is then the locus of P as Q runs over C. The point O in this construction is called the center of inversion, the circle the circle of inversion, and k the radius of inversion. An inversion applied twice is the identity transformation, so the inverse of an inverse curve with respect to the same circle is the original curve. Points on the circle of inversion are fixed by the inversion, so its inverse is itself. is a function that "reverses" another function: if the function f applied to an input x gives a result of y, then applying its inverse function g to y gives the result x, and vice versa, i.e., f(x) = y if and only if g(y) = x. The inverse function of f is also denoted. -
Strophoids, a Family of Cubic Curves with Remarkable Properties
Strophoids, a family of cubic curves with remarkable properties Hellmuth Stachel [email protected] — http://www.geometrie.tuwien.ac.at/stachel 6th International Conference on Engineering Graphics and Design University Transilvania, June 11–13, Brasov/Romania Table of contents 1. Definition of Strophoids 2. Associated Points 3. Strophoids as a Geometric Locus June 12, 2015: 6th Internat. Conference on Engineering Graphics and Design, Brasov/Romania 1/29 replacements 1. Definition of Strophoids ′ F Definition: An irreducible cubic is called circular if it passes through the absolute circle-points. asymptote A circular cubic is called strophoid ′ if it has a double point (= node) with G orthogonal tangents. F g A strophoid without an axis of y G symmetry is called oblique, other- wise right. S S : (x 2 + y 2)(ax + by) − xy =0 with a, b ∈ R, (a, b) =6 (0, 0). In x N fact, S intersects the line at infinity at (0 : 1 : ±i) and (0 : b : −a). June 12, 2015: 6th Internat. Conference on Engineering Graphics and Design, Brasov/Romania 2/29 1. Definition of Strophoids F ′ The line through N with inclination angle ϕ intersects S in the point asymptote 2 2 ′ sϕ c ϕ s ϕ cϕ G X = , . a cϕ + b sϕ a cϕ + b sϕ F g y G X This yields a parametrization of S. S ϕ = ±45◦ gives the points G, G′. ϕ The tangents at the absolute circle- N x points intersect in the focus F . June 12, 2015: 6th Internat. Conference on Engineering Graphics and Design, Brasov/Romania 3/29 1. -
Icons of Mathematics an EXPLORATION of TWENTY KEY IMAGES Claudi Alsina and Roger B
AMS / MAA DOLCIANI MATHEMATICAL EXPOSITIONS VOL 45 Icons of Mathematics AN EXPLORATION OF TWENTY KEY IMAGES Claudi Alsina and Roger B. Nelsen i i “MABK018-FM” — 2011/5/16 — 19:53 — page i — #1 i i 10.1090/dol/045 Icons of Mathematics An Exploration of Twenty Key Images i i i i i i “MABK018-FM” — 2011/5/16 — 19:53 — page ii — #2 i i c 2011 by The Mathematical Association of America (Incorporated) Library of Congress Catalog Card Number 2011923441 Print ISBN 978-0-88385-352-8 Electronic ISBN 978-0-88385-986-5 Printed in the United States of America Current Printing (last digit): 10987654321 i i i i i i “MABK018-FM” — 2011/5/16 — 19:53 — page iii — #3 i i The Dolciani Mathematical Expositions NUMBER FORTY-FIVE Icons of Mathematics An Exploration of Twenty Key Images Claudi Alsina Universitat Politecnica` de Catalunya Roger B. Nelsen Lewis & Clark College Published and Distributed by The Mathematical Association of America i i i i i i “MABK018-FM” — 2011/5/16 — 19:53 — page iv — #4 i i DOLCIANI MATHEMATICAL EXPOSITIONS Committee on Books Frank Farris, Chair Dolciani Mathematical Expositions Editorial Board Underwood Dudley, Editor Jeremy S. Case Rosalie A. Dance Tevian Dray Thomas M. Halverson Patricia B. Humphrey Michael J. McAsey Michael J. Mossinghoff Jonathan Rogness Thomas Q. Sibley i i i i i i “MABK018-FM” — 2011/5/16 — 19:53 — page v — #5 i i The DOLCIANI MATHEMATICAL EXPOSITIONS series of the Mathematical As- sociation of America was established through a generous gift to the Association from Mary P. -
Simple Andi Complete K-Points in Continuous and in Modular Projective Spaces
SIMPLE ANDI COMPLETE K-POINTS IN CONTINUOUS AND IN MODULAR PROJECTIVE SPACES by Beulah Armstrong Submitted to the Department of Mathematica and the faculty of the Graduate School of the University of Kansas in partial fulfillment.of I the requirements for the degree of Master of Arts. · Approved . 'UI/;~ _ Depar.tment of~ B I B L I ·o G R A P H Y. Allman, G.J. - Greek Geometry from Thales to Euclid - Longmans, Green & Co., London - 1889. Beman, W.W. and Smith, D.E. - Kls.in's Famous. Problems in ·Elementary Geometry - Ginn & Co., Boston - 1897. , , n Cantor, Moritz - Vorlesungen Uber Geschichte der Math- ematik - B.G. !l:eubner - Leipzig - 1894. Daviesf Iviathematical Dictionary and Cyclopedia of Math- ematical ~cieilce - A.s. Barnes & Co., New. York - 1855. Eisenlohr, Augu.st - Mathematisches Hendbuch der Alten Aegypter, Erst er Band - j. c. Hinrich, Le~pzig - 1877/ . _ Gow, James - A Short History of Greek Mathematics, University Press, Cambridge - 1884. Heath, T.L. - The i;chirteen Books of Euclid 1 s Elements, University Press; Cambridge - 1908. Lachlan, R. :.. Modern Pure Geometry - MacMillan & Co., New York - 1893. Tropfke, Johannes, Gesohichte der E1ementar Mathematik, Veit und Comp, Leipzig, 1903. Veblen and Young - Projective Geometry - Ginn & Co., New York - 1910. Young, J.W.A. - Monographs on Modern Mathematics, ·Longmans, Green & Co., New York - 1911. 1. INTRODUCTION. It is the pil:rpose of this paper, (1) ¥0 trace the development of the concepts of the simple· k-point ·and the complete k-point as they appear in mathematical literature and to £ormulate their definitions in a modular or an ordinary projective n-space (Se.ctioris 1 and 2); and (2) To determine the number of complete k-points in a modular projective plane (Section 3). -
And Innovative Research of Emerging Technologies
WWW.JETIR.ORG [email protected] An International Open Access Journal UGC and ISSN Approved | ISSN: 2349-5162 INTERNATIONAL JOURNAL OF EMERGING TECHNOLOGIES AND INNOVATIVE RESEARCH JETIR.ORG INTERNATIONAL JOURNAL OF EMERGING TECHNOLOGIES AND INNOVATIVE RESEARCH International Peer Reviewed, Open Access Journal ISSN: 2349-5162 | Impact Factor: 5.87 UGC and ISSN Approved Journals. Website: www. jetir.org Website: www.jetir.org JETIR INTERNATIONAL JOURNAL OF EMERGING TECHNOLOGIES AND INNOVATIVE RESEARCH (ISSN: 2349-5162) International Peer Reviewed, Open Access Journal ISSN: 2349-5162 | Impact Factor: 5.87 | UGC and ISSN Approved ISSN (Online): 2349-5162 This work is subjected to be copyright. All rights are reserved whether the whole or part of the material is concerned, specifically the rights of translation, reprinting, re-use of illusions, recitation, broadcasting, reproduction on microfilms or in any other way, and storage in data banks. Duplication of this publication of parts thereof is permitted only under the provision of the copyright law, in its current version, and permission of use must always be obtained from JETIR www.jetir.org Publishers. International Journal of Emerging Technologies and Innovative Research is published under the name of JETIR publication and URL: www.jetir.org. © JETIR Journal Published in India Typesetting: Camera-ready by author, data conversation by JETIR Publishing Services – JETIR Journal. JETIR Journal, WWW. JETIR.ORG ISSN (Online): 2349-5162 International Journal of Emerging Technologies and Innovative Research (JETIR) is published in online form over Internet. This journal is published at the Website http://www.jetir.org maintained by JETIR Gujarat, India. © 2017 JETIR March 2017, Volume 4, Issue 3 www.jetir.org (ISSN-2349-5162) Generating Negative pedal curve through Inverse function – An Overview *Ramesha. -
Newton's Parabola Observed from Pappus
Applied Physics Research; Vol. 11, No. 2; 2019 ISSN 1916-9639 E-ISSN 1916-9647 Published by Canadian Center of Science and Education Newton’s Parabola Observed from Pappus’ Directrix, Apollonius’ Pedal Curve (Line), Newton’s Evolute, Leibniz’s Subtangent and Subnormal, Castillon’s Cardioid, and Ptolemy’s Circle (Hodograph) (09.02.2019) Jiří Stávek1 1 Bazovského, Prague, Czech Republic Correspondence: Jiří Stávek, Bazovského 1228, 163 00 Prague, Czech Republic. E-mail: [email protected] Received: February 2, 2019 Accepted: February 20, 2019 Online Published: February 25, 2019 doi:10.5539/apr.v11n2p30 URL: http://dx.doi.org/10.5539/apr.v11n2p30 Abstract Johannes Kepler and Isaac Newton inspired generations of researchers to study properties of elliptic, hyperbolic, and parabolic paths of planets and other astronomical objects orbiting around the Sun. The books of these two Old Masters “Astronomia Nova” and “Principia…” were originally written in the geometrical language. However, the following generations of researchers translated the geometrical language of these Old Masters into the infinitesimal calculus independently discovered by Newton and Leibniz. In our attempt we will try to return back to the original geometrical language and to present several figures with possible hidden properties of parabolic orbits. For the description of events on parabolic orbits we will employ the interplay of the directrix of parabola discovered by Pappus of Alexandria, the pedal curve with the pedal point in the focus discovered by Apollonius of Perga (The Great Geometer), and the focus occupied by our Sun discovered in several stages by Aristarchus, Copernicus, Kepler and Isaac Newton (The Great Mathematician). -
Polygrammal Symmetries in Bio-Macromolecules: Heptagonal Poly D(As4t) . Poly D(As4t) and Heptameric -Hemolysin
Polygrammal Symmetries in Bio-macromolecules: Heptagonal Poly d(As4T) . poly d(As4T) and Heptameric -Hemolysin A. Janner * Institute for Theoretical Physics, University of Nijmegen, Toernooiveld, 6525 ED Nijmegen The Netherlands Polygrammal symmetries, which are scale-rotation transformations of star polygons, are considered in the heptagonal case. It is shown how one can get a faithful integral 6-dimensional representation leading to a crystallographic approach for structural prop- erties of single molecules with a 7-fold point symmetry. Two bio-macromolecules have been selected in order to demonstrate how these general concepts can be applied: the left-handed Z-DNA form of the nucleic acid poly d(As4T) . poly d(As4T) which has the line group symmetry 7622, and the heptameric transmembrane pore protein ¡ -hemolysin. Their molecular forms are consistent with the crystallographic restrictions imposed on the combination of scaling transformations with 7-fold rotations. This all is presented in a 2-dimensional description which is natural because of the axial symmetry. 1. Introduction ture [4,6]. In a previous paper [1] a unifying general crystallography has The interest for the 7-fold case arose from the very nice axial been de®ned, characterized by the possibility of point groups of view of ¡ -hemolysin appearing in the cover picture of the book in®nite order. Crystallography then becomes applicable even to on Macromolecular Structures 1997 [7] which shows a nearly single molecules, allowing to give a crystallographic interpre- perfect 7-fold scale-rotation symmetry of the heptamer. In or- tation of structural relations which extend those commonly de- der to distinguish between law and accident, nucleic acids have noted as 'non-crystallographic' in protein crystallography. -
WA35 188795 11772-1 13.Pdf
CHAPTER XIII. QUADRATURE (II). TANGENTIAL POLARS, PEDAL EQUATIONS AND PEDAL CURVES, INTRINSIC EQUATIONS, ETC. 416. Other Expressions for an Area Many other expressions may be deduced for the area of a plane curve, or proved independently, specially adapted to the cases when the curve is defined by systems of coordinates other than Cartesians or Polars, or for regions bounded in a particular manner. To avoid continual redefinition of the symbols used we may state that in the subsequent work the letters have the meanings assigned to them throughout the treatment of Curvature in the author’s Differential Calculus. 417. The (p, s) formula. Fig. 61. Let PQ be an element δs of a plane curve and OY the per pendicular from the pole upon the chord PQ. Then 438 www.rcin.org.pl TANGENTIAL-POLAR CURVES. 439 and any sectorial area the summation being conducted along the whole bounding arc. In the notation of the Integral Calculus this is 1/2∫pds. This might be deduced from the polar formula at once. For where ϕ is the angle between the tangent and the radius vector. 418. Tangential-Polar Form (p, ψ). Again, since we have Area a form suitable for use when the Tangential-Polar (i.e. p, ψ) form of the equation to the curve is given. This gives the sectorial area bounded by the curve and the initial and final radii vectores. 419. Caution. In using the formula care should be taken not to integrate over a point, between the proposed limits, at which the integrand changes sign. -
Nonconservative Extension of Keplerian Integrals and a New Class
MNRAS 000, 1–16 (2016) Preprint 11 October 2018 Compiled using MNRAS LATEX style file v3.0 Nonconservative extension of Keplerian integrals and a new class of integrable system Javier Roa⋆ Space Dynamics Group, Technical University of Madrid, Pza. Cardenal Cisneros 3, Madrid, E-28040, Spain Accepted 2016 August 31. Received 2016 August 25; in original form 2016 June 21 doi:10.1093/mnras/stw2209 ABSTRACT The invariance of the Lagrangian under time translations and rotations in Kepler’s problem yields the conservation laws related to the energy and angular momentum. Noether’s theorem reveals that these same symmetries furnish generalized forms of the first integrals in a special nonconservative case, which approximates various physical models. The system is perturbed by a biparametric acceleration with components along the tangential and normal directions. A similarity transformation reduces the biparametric disturbance to a simpler uniparametric forcing along the velocity vector. The solvability conditionsof this new problem are discussed, and closed-form solutions for the integrable cases are provided. Thanks to the conservation of a generalized energy, the orbits are classified as elliptic, parabolic, and hyperbolic. Kep- lerian orbits appear naturally as particular solutions to the problem. After characterizing the orbits independently, a unified form of the solution is built based on the Weierstrass elliptic functions. The new trajectories involve fundamental curves such as cardioids and logarithmic, sinusoidal, and Cotes’ spirals. These orbits can represent the motion of particles perturbed by solar radiation pressure, of spacecraft with continuous thrust propulsion, and some instances of Schwarzschild geodesics. Finally, the problem is connected with other known integrable systems in celestial mechanics. -
Collected Atos
Mathematical Documentation of the objects realized in the visualization program 3D-XplorMath Select the Table Of Contents (TOC) of the desired kind of objects: Table Of Contents of Planar Curves Table Of Contents of Space Curves Surface Organisation Go To Platonics Table of Contents of Conformal Maps Table Of Contents of Fractals ODEs Table Of Contents of Lattice Models Table Of Contents of Soliton Traveling Waves Shepard Tones Homepage of 3D-XPlorMath (3DXM): http://3d-xplormath.org/ Tutorial movies for using 3DXM: http://3d-xplormath.org/Movies/index.html Version November 29, 2020 The Surfaces Are Organized According To their Construction Surfaces may appear under several headings: The Catenoid is an explicitly parametrized, minimal sur- face of revolution. Go To Page 1 Curvature Properties of Surfaces Surfaces of Revolution The Unduloid, a Surface of Constant Mean Curvature Sphere, with Stereographic and Archimedes' Projections TOC of Explicitly Parametrized and Implicit Surfaces Menu of Nonorientable Surfaces in previous collection Menu of Implicit Surfaces in previous collection TOC of Spherical Surfaces (K = 1) TOC of Pseudospherical Surfaces (K = −1) TOC of Minimal Surfaces (H = 0) Ward Solitons Anand-Ward Solitons Voxel Clouds of Electron Densities of Hydrogen Go To Page 1 Planar Curves Go To Page 1 (Click the Names) Circle Ellipse Parabola Hyperbola Conic Sections Kepler Orbits, explaining 1=r-Potential Nephroid of Freeth Sine Curve Pendulum ODE Function Lissajous Plane Curve Catenary Convex Curves from Support Function Tractrix