Provenance of Jurassic Tethyan Sediments in the HP/UHP Zermatt-Saas Ophiolite, Western Alps

Total Page:16

File Type:pdf, Size:1020Kb

Provenance of Jurassic Tethyan Sediments in the HP/UHP Zermatt-Saas Ophiolite, Western Alps Provenance of Jurassic Tethyan sediments in the HP/UHP Zermatt-Saas ophiolite, western Alps Nancy J. Mahlen† Clark M. Johnson‡ Department of Geology and Geophysics, University of Wisconsin, 1215 West Dayton Street, Madison, Wisconsin 53706, USA Lukas P. Baumgartner§ Institute of Mineralogy and Petrology, BFSH2, CH-1015 Lausanne, Switzerland Brian L. Beard# Department of Geology and Geophysics, University of Wisconsin, 1215 West Dayton Street, Madison, Wisconsin 53706, USA ABSTRACT terranes: one group (Group I) seems to be 1985; McLennan, 1989), Sm-Nd isotope varia- mixing of an old, crustal component, such tions in sedimentary rocks should also faithfully Rubidium-Sr and Sm-Nd isotope data and as the paragneissic basement nappe samples, record their source regions. Further, Sm and Nd rare earth element (REE) concentrations of with metasediments similar to the second are relatively immobile during metamorphic the metasedimentary rocks within the Zer- group (Group II). The source material for events (Green et al., 1969; Jahn, 2000), which matt-Saas (ZS) ophiolite complex of the west- Group II is dominated by homogenization suggests that Sm-Nd isotope systematics may ern Alps are used to investigate element mobil- of the Variscan-like orthogneissic basement be useful in interpretation of more geologically ity and to determine the provenance of the nappe samples. The provenance of Group complex provenance problems. metasediments in order to place constraints I samples is interpreted to be local, where Jurassic rifting of the African/Apulian plates on the precollisional paleogeography of the source nappes must have been proximal to from the European plate followed by Late Juras- Piemont-Ligurian portion of the neo-Tethys the Piemont-Ligurian basin prior to Alpine sic spreading formed the Piemont-Ligurian ocean. Present-day 87Sr/86Sr variations for convergence. The similarity in dispersion basin of the neo-Tethys ocean (e.g., Hunziker, the ZS metasediments scatter about an early of Nd isotope compositions of the metasedi- 1974). Fine-grained Piemont-Ligurian ocean Tertiary Alpine metamorphic age, whereas ments and likely source terranes suggests fl oor and basin sediments, caught in Eocene local nappes that have been interpreted to that the metasediments refl ect deposition in Alpine collisional tectonics, were eventually refl ect African/Apulian and European base- small, isolated basins early in the formation metamorphosed to high-pressure (HP) and ments scatter about a Variscan-like age; this of the Piemont-Ligurian ocean. ultra-high-pressure (UHP) conditions, and the suggests 87Sr/86Sr isotope systematics were Zermatt-Saas ophiolite complex represents one nearly completely homogenized for most of Keywords: Western Alps, Zermatt, metasedi- such unit. Determining the provenance of the the ZS metasediments during early Tertiary ments, Sm/Nd, Rb-Sr, rare earth elements, Piemont-Ligurian basin sediments can provide metamorphism, probably because they were provenance. restrictions on proposed models of restoration relatively wet prior to metamorphism. of European and African/Apulian units prior to In contrast to the Sr isotope data, REE INTRODUCTION the Alpine orogeny. In addition, understanding data and Nd isotope compositions of the the variability of isotopic compositions across a ZS metasediments overlap those of aver- Trace-element compositions, particularly the basin may provide information as to basin size age upper continental crust, average shale, rare earth elements (REEs) and Rb-Sr and Sm- and physiography. Here REE and Rb-Sr and and the local nappes, and Nd model ages of Nd isotope data, are often used for determining Sm-Nd isotope data are reported for metasedi- the ZS metasediments overlap with those provenance and tectonic setting of sedimentary mentary rocks in the Zermatt-Saas ophiolite, of Variscan-age rocks. These relations sug- rocks. Numerous studies have noted that REE and these results are compared with new data gest that the REEs of the ZS metasediments contents are useful indicators of source ter- from various nappe units of the western Alps as were not disturbed during high- to ultra-high ranes in oceanic basins (e.g., McLennan et probable oceanic and continental source regions pressure Alpine metamorphism. Based on al., 1993; Gleason et al., 1995; Ugidos et al., for the sediments. Despite hydrothermal altera- REE data, Nd isotope compositions, and 1997). Enrichment or depletion of light REEs tion during Mesozoic divergence and/or metaso- mixing models, the ZS metasediments com- relative to heavy REEs and the nature of Eu matic alteration during subsequent subduction prise two groups that require distinct source anomalies can provide additional clues to relate and metamorphism, the REEs in the rocks stud- sediments to the bulk compositions of source ied do not appear to have been mobilized. Sm- regions. Because Sm/Nd ratios do not readily Nd isotope systematics of the sedimentary rocks †E-mail: [email protected]. ‡E-mail: [email protected]. experience fractionation during processes such in the ophiolite were subjected to HP/UHP con- §E-mail: [email protected]. as diagenesis, chemical weathering, erosion, ditions, but at temperatures generally less than #E-mail: [email protected]. or sedimentary sorting (Taylor and McLennan, 600 °C, suggesting the measured Nd isotope GSA Bulletin; March/April 2005; v. 117; no. 3/4; p. 530–544; doi: 10.1130/B25545.1; 9 fi gures; 3 tables. For permission to copy, contact [email protected] 530 © 2005 Geological Society of America PROVENANCE OF JURASSIC TETHYAN SEDIMENTS 620000 640000 Saas C Randa Fee Saas Almagell GB 97JA-1 Täsch DB 97JA-4 000 97JA-3 100000 100 97JA-2 Dent Blanche Allalinhorn 96JA-35 Unter a Gabelhorn 96JA-38 Figure 1. Simplifi ed tectonic Zermatt 96JA-46 Mattmark map of the western Alps Pfülwe See depicting major tectonic units: C ZS 1. Continental outer Pen- ninic zone including Grand Gornergrat St. Bernhard (GB) and Com- Matterhorn 97JA-14 bin (C) units. 2. Continental 97JA-16 97JA-12 97JA-13 inner Penninic zone including Monte Rosa (MR) and Gran 97JA-18 Paradiso (not shown on map). 97JA-24 MR Switzerland 3. Piemont-Ligurian remnants Breuil including Zermatt-Saas ophio- Italy Mezzalama lite (ZS). 4. Low- to medium- pressure African/Apulian Dent Blanche (DB) including Arolla 96JA- Lago di Cignana series and Valpelline series (4a). 000 000 80 21 Valtournenche 80 5. High- to ultra-high-pressure 96JA-16, 17 96JA-1, 26 St. Jacques African/Apulian Sesia zone (S) 96JA-30a, b including Sesia equivalent (5a) 01NM-44, 45, C to Valpelline series. Inset is 47b a' cross section a to a′. Modifi ed Champoluc S from Dal Piaz, 1999. Inset Matterhorn 1 3 5 a a' a N DB 2 4 a ZS C 5 km C MR S ZS ZS metasediment sample location thrust sheet NW SE compositions may have been preserved through during latest Cretaceous to early Tertiary col- and fragments of the European margin that were the sedimentary and metamorphic cycles. lision of the European and African/Apulian metamorphosed at high to ultra-high pressures Although the Piemont-Ligurian basin sedi- plates (e.g., Hunziker, 1974; Dal Piaz and Ernst, (e.g., Monte Rosa and Gran Paradiso nappes); ments were subducted to HP/UHP conditions, 1978). Slices of the southeastern margin of the and the Austroalpine zone, which represents the which reset Sr isotopes, REE and Sm-Nd iso- European plate and the northern margin of the African/Apulian margin (e.g., Dent Blanche and tope variations appear to be useful indicators African/Apulian plates were diachronously sub- Sesia zone basement nappes). of provenance for the Zermatt-Saas metasedi- ducted with the Piemont-Ligurian ocean basin to ments. These sediments appear to have been variable temperatures and pressures. The major Geology of the Zermatt-Saas Ophiolite derived entirely from local sources, i.e., the tectonic units of the western Alps are, from present-day nappes, which must have been northwest to southeast (Fig. 1; Dal Piaz and The Zermatt-Saas ophiolite (Fig. 1) comprises exposed adjacent to the Piemont-Ligurian basin Ernst, 1978; Escher et al., 1993): the Helvetic peridotites, serpentinites, eclogitized metagab- in the Jurassic. zone, which represents the European margin; bros and metabasalts that contain local examples the outer Penninic zone, which represents rifted of deformed sheeted dikes and clear pillow struc- GEOLOGIC BACKGROUND European fragments that were metamorphosed tures, and a cover series of calcareous and sili- at low to medium pressures (e.g., Grand St. Ber- ceous metasediments from the Piemont-Ligurian The Alps are a classic continent-continent nhard nappe); the inner Penninic zone, which basin (Bearth, 1967; Dal Piaz and Ernst, 1978; convergent setting, which formed through includes remnants of the Piemont-Ligurian Barnicoat and Fry, 1986). The ocean fl oor of closure of the Piemont-Ligurian ocean basin ocean basin (e.g., the Zermatt-Saas ophiolite) the Piemont-Ligurian basin was largely gabbro, Geological Society of America Bulletin, March/April 2005 531 MAHLEN et al. followed by tholeiitic basalt fl ows and pillow ophiolite complex, although metastable UHP basement complex that is likely of Variscan lavas (Lemoine et al., 1987). The metasedimen- relics are preserved in portions of the ophiolite age but was affected by Alpine metamorphism, tary cover series of the Zermatt-Saas ophiolite (Dal Piaz and Ernst, 1978). These age relations including paragneisses (comparable to the Val- comprises manganese-rich quartzites and an indicate that the Zermatt-Saas ophiolite was rap- pelline series of the Dent Blanche) and Variscan- overlying locally variable sequence of marbles, idly exhumed from peak pressure conditions. age gabbros and granites that are overlain by a metapelites, calc-schists, and micaceous quartz- late Permian to early Triassic mono-metamor- ites that capped the ophiolite sequence prior to Potential Source Terranes phic cover series (Compagnoni et al., 1977; tectonic dismemberment (Bearth and Schwander, Venturini et al., 1996).
Recommended publications
  • 4000 M Peaks of the Alps Normal and Classic Routes
    rock&ice 3 4000 m Peaks of the Alps Normal and classic routes idea Montagna editoria e alpinismo Rock&Ice l 4000m Peaks of the Alps l Contents CONTENTS FIVE • • 51a Normal Route to Punta Giordani 257 WEISSHORN AND MATTERHORN ALPS 175 • 52a Normal Route to the Vincent Pyramid 259 • Preface 5 12 Aiguille Blanche de Peuterey 101 35 Dent d’Hérens 180 • 52b Punta Giordani-Vincent Pyramid 261 • Introduction 6 • 12 North Face Right 102 • 35a Normal Route 181 Traverse • Geogrpahic location 14 13 Gran Pilier d’Angle 108 • 35b Tiefmatten Ridge (West Ridge) 183 53 Schwarzhorn/Corno Nero 265 • Technical notes 16 • 13 South Face and Peuterey Ridge 109 36 Matterhorn 185 54 Ludwigshöhe 265 14 Mont Blanc de Courmayeur 114 • 36a Hörnli Ridge (Hörnligrat) 186 55 Parrotspitze 265 ONE • MASSIF DES ÉCRINS 23 • 14 Eccles Couloir and Peuterey Ridge 115 • 36b Lion Ridge 192 • 53-55 Traverse of the Three Peaks 266 1 Barre des Écrins 26 15-19 Aiguilles du Diable 117 37 Dent Blanche 198 56 Signalkuppe 269 • 1a Normal Route 27 15 L’Isolée 117 • 37 Normal Route via the Wandflue Ridge 199 57 Zumsteinspitze 269 • 1b Coolidge Couloir 30 16 Pointe Carmen 117 38 Bishorn 202 • 56-57 Normal Route to the Signalkuppe 270 2 Dôme de Neige des Écrins 32 17 Pointe Médiane 117 • 38 Normal Route 203 and the Zumsteinspitze • 2 Normal Route 32 18 Pointe Chaubert 117 39 Weisshorn 206 58 Dufourspitze 274 19 Corne du Diable 117 • 39 Normal Route 207 59 Nordend 274 TWO • GRAN PARADISO MASSIF 35 • 15-19 Aiguilles du Diable Traverse 118 40 Ober Gabelhorn 212 • 58a Normal Route to the Dufourspitze
    [Show full text]
  • Zermatter Breithorn 4164 M Und Allalinhorn 4027M 2 X 4000 in Nur 2 Tagen
    Bergschule.ch Alpinschule Tödi CH-7165 Breil/Brigels Telefon +41 55 283 43 82 [email protected] bergschule.ch Zermatter Breithorn 4164 m und Allalinhorn 4027m 2 x 4000 in nur 2 Tagen Das Team der Alpinschule Tödi heisst Sie im wundervollen Gebiet der vergletscherten Gipfel rund um Zermatt und Saas Fee ganz herzlich willkommen. Wir freuen uns, mit Ihnen das Erlebnis dieses einmalig schönen und doch relativ einfachen Hochtouren- Weekends zu erleben. Folgende Infos möchten Ihnen Vorfreude auf Ihre Bergtage aufkommen lassen und Ihnen eine optimale Vorbereitung bieten. Treffpunkt: In Zermatt um 08.15 Uhr bei der Touristinfo (Ausgangs Bahnhof). Verpflegt und startbereit Programm: 1. Tag: Individuelle Anreise und Treff mit unserem Bergführer. Wir empfehlen, bereits am Vorabend anzureisen, damit Sie am Samstag nicht allzu früh aus den Federn müssen und sich etwas an die ungewohnte grosse Höhe akklimatisieren können. Vom Treffunkt aus wandern wir gemeinsam zur Talstation der Klein Matterhorn Seilbahn. Hier erreichen wir ganz locker schwebend bereits 3800 m. Nun beginnt der Aufstieg aus eigener Kraft auf das Breithorn 4164 m mit erhebender Aussicht – der imposante Blick von hier bringt uns das Gebiet der Monte Rosa und der vielen weiteren berühmten Viertausender näher. Aufstieg 350 Höhenmeter in ca. 2 Std. und Abstieg über die gleiche Route zurück zur Seilbahn und hinunter nach Zermatt. Weiterfahrt nach Herbriggen in unsere Unterkunft, das gemütliche Berghotel Bergfreund, wo Rosie uns schon herzlich erwartet. Hier essen und übernachten wir um am nächsten Tag ausgeruht nach Saas Grund zu wechseln. 2. Tag: Voller Tatendrang und erfüllt von den Bergeindrücken des gestrigen Tages fahren wir gestärkt nach ausgiebigem Frühstück nach Saas Fee und zu der Felskinnbahn Seilbahnen und der Metro Alpin-Standseilbahn und gelangen leicht und locker nach Mittelallalin.
    [Show full text]
  • Allalinhorn (4027 M) Hohlaubgrat
    Allalinhorn (4027 m) Hohlaubgrat Hochtour | Walliser Alpen 1050 Hm | insg. 06:30 Std. | Schwierigkeit (5 von 6) Während der Allalinhorn-Normalweg von der Bergstation der Métro alpin fast jede bergsteigerische Schwierigkeit und leider ebenso auch viel von seinem Reiz verloren hat, ist die Tour über den Hohlaubgrat landschaftlich großartig und auch technisch durchaus anspruchsvoll. © Tourentipp.com 2021 Seite 1/3 1 2 3 4 5 6 Schwierigkeit Kondition Gefahrenpotenzial Landschaft Frequentierung Anfahrt: Von Deutschland aus über verschiedene Anfahrtswege ins Rhônetal nach Visp. Mit dem Auto von Visp über Stalden (bis hier auch mit der Bahn) ins Saastal nach Saas Fee (1803m; rund 20 km von Visp). Ausgangspunkt: Saas Fee (1803 m) Route: Hüttenzustieg: Entweder gänzlich zu Fuß von Saas Fee (Chalbermatten) Richtung Plattjen zur Galenalp (P. 2054). Ab hier rechts halten (unter der Seilbahn), immer unter Mittaghorn und Egginer vorbei und zuletzt in südöstlicher Richtung zum Egginer Joch. Hierher auch auf kurzem, ebenen Fußweg von der Mittelstation Felskinn nach Benutzung der Gondelbahn von Saas Fee. Vom Egginer Joch weiter eben nach Südosten auf einer deutlichen Rampe und zuletzt über einen kleinen Aufschwung hinauf zur Britanniahütte (von Saas Fee gut 1200 Hm / 4 Std.; von der Mittelstation Felskinn 50Hm / 40 Min.) Gipfelroute: Von der Britanniahütte führt ein Steig in südwestlicher Richtung abwärts, bis man bei etwa 2950 Meter den Hohlaubgletscher betritt. Nun zunächst in westlicher Richtung hinauf, an einigen Spalten vorbei, bis man sich oberhalb von 3025 Meter mehr südlich wendet und nördlich von P. 3105 zum Blockgrat gelangt. Immer über diesen Grat im Firn oder bei aperen Verhältnissen in leichter Blockkletterei (Vorsicht vor losen Blöcken) hinauf bis zu einem Gratbuckel (etwa 3530 m) und über diesen hinweg nach kurzem Abstieg in einen Sattel.
    [Show full text]
  • The African Mattherhorn : Yes Or No? : a Structural, Geodynamical and Paleogeographical Overview
    The African Mattherhorn : yes or no? : A structural, geodynamical and paleogeographical overview Autor(en): Marthaler, Michel Objekttyp: Article Zeitschrift: Bulletin für angewandte Geologie Band (Jahr): 13 (2008) Heft 2 PDF erstellt am: 25.09.2021 Persistenter Link: http://doi.org/10.5169/seals-226680 Nutzungsbedingungen Die ETH-Bibliothek ist Anbieterin der digitalisierten Zeitschriften. Sie besitzt keine Urheberrechte an den Inhalten der Zeitschriften. Die Rechte liegen in der Regel bei den Herausgebern. Die auf der Plattform e-periodica veröffentlichten Dokumente stehen für nicht-kommerzielle Zwecke in Lehre und Forschung sowie für die private Nutzung frei zur Verfügung. Einzelne Dateien oder Ausdrucke aus diesem Angebot können zusammen mit diesen Nutzungsbedingungen und den korrekten Herkunftsbezeichnungen weitergegeben werden. Das Veröffentlichen von Bildern in Print- und Online-Publikationen ist nur mit vorheriger Genehmigung der Rechteinhaber erlaubt. Die systematische Speicherung von Teilen des elektronischen Angebots auf anderen Servern bedarf ebenfalls des schriftlichen Einverständnisses der Rechteinhaber. Haftungsausschluss Alle Angaben erfolgen ohne Gewähr für Vollständigkeit oder Richtigkeit. Es wird keine Haftung übernommen für Schäden durch die Verwendung von Informationen aus diesem Online-Angebot oder durch das Fehlen von Informationen. Dies gilt auch für Inhalte Dritter, die über dieses Angebot zugänglich sind. Ein Dienst der ETH-Bibliothek ETH Zürich, Rämistrasse 101, 8092 Zürich, Schweiz, www.library.ethz.ch http://www.e-periodica.ch Bull. angew. Geol. Vol. 13/2,2008 S. 11-16 The African Matterhorn: yes or no? – a structural, geodynamical and paleogeographical overview Michel Marthaler1 Summary of a presentation given at the VSP/ASP annual convention, Sion, Switzerland, June 2008. The geological landscape in the Zermatt than a klippe the Dent Blanche nappe), a Region shows that the pyramid of the small remnant of the Lower Austro-Alpine Matterhorn appears as a small continental raft unit, from Apulian or Adiatic) origin.
    [Show full text]
  • New Aspects on the Timing of Deformation Along the South
    Originally published as: Bachmann, R., Glodny, J., Oncken, O., Seifert, W. (2009): Abandonment of the South Penninic-Austroalpine palaeosubduction zone, Central Alps, and shift from subduction erosion to accretion: constraints from Rb/Sr geochronology. - Journal of the Geological Society London, 166, 2, 217-231 DOI: 10.1144/0016-76492008-024. Abandonment of the South Penninic-Austroalpine palaeo-subduction zone, Central Alps, and shift from subduction erosion to accretion: constraints from Rb/Sr geochronology Raik Bachmann Deutsches GeoForschungsZentrum (GFZ), Telegrafenberg, 14473 Potsdam, Germany. [email protected] Present address: Horizon Energy Partners, Prinses Margrietplantsoen 81, 2595 BR The Hague, The Netherlands [email protected] Johannes Glodny Deutsches GeoForschungsZentrum (GFZ), Telegrafenberg, 14473 Potsdam, Germany, [email protected] Onno Oncken Deutsches GeoForschungsZentrum (GFZ), Telegrafenberg, 14473 Potsdam, Germany, [email protected] Wolfgang Seifert Deutsches GeoForschungsZentrum (GFZ), Telegrafenberg, 14473 Potsdam, Germany, [email protected] Corresponding author: Raik Bachmann 1 Abstract We present new age data for the evolution of the suture zone between lower-plate South Penninic and upper-plate Austroalpine units in the Central European Alps. Rb/Sr deformation ages for mylonitized rocks of the South Penninic palaeo-subduction mélange and for deformed Austroalpine basement (Eastern Switzerland) shed light on the pre-Alpine and Alpine deformation history along the suture, as well as on syn-subduction interplate mass transfer. Rb/Sr age data define two age groups. The first group reflects pre-Alpine events within the upper plate basement, with varying degree of resetting by subsequent Alpine overprints. The second group marks the waning of subduction-related deformation along the South Penninic-Austroalpine suture zone, at around 50 Ma, and termination at ~47 Ma.
    [Show full text]
  • The Pre-Alpine Tectonic History of the Austroalpine Continental Basement in the Valpelline Unit (Western Italian Alps)
    Geol. Mag. 150 (1), 2013, pp. 153–172. c Cambridge University Press 2012 153 doi:10.1017/S0016756812000441 The pre-Alpine tectonic history of the Austroalpine continental basement in the Valpelline unit (Western Italian Alps) ∗ PAOLA MANZOTTI † & MICHELE ZUCALI‡§ ∗ Institut für Geologie, Universität Bern, Baltzerstrasse 1+3, 3012 CH-Bern, Switzerland ‡Dipartimento di Scienze della Terra ‘Ardito Desio’, Università degli Studi di Milano, Via Mangiagalli, 34 20133 Milano, Italy §CNR-IDPA – Sezione di Milano, Via Mangiagalli 34 20133, Milano, Italy (Received 28 October 2011; accepted 30 May 2012; first published online 20 August 2012) Abstract – The Valpelline unit is a large slice of continental crust constituting the Austroalpine Dent Blanche nappe (NW Italy). The pre-Alpine evolution of this unit holds important clues about the Palaeozoic crustal structure at the northern margin of the Adria continent, about the history of rifting in the Alpine region, and thus about the thermomechanical conditions that preceded the Alpine convergent evolution. Several stages of the deformation history and of partial re-equilibration were identified, combining meso- and micro-structural analyses with thermobarometry. Reconstructed pre-Alpine P– T–t–d paths demonstrate that the Valpelline unit experienced an early stage at pressures between 4.5 and 6.5 kbar followed by migmatite formation. A subsequent stage reached amphibolite to granulite facies conditions. This stage was associated with the development of the most penetrative fabrics affecting all of the Valpelline lithotypes. The pre-Alpine evolution ended with a weak deformation associated with a local mineral-chemical re-equilibration under greenschist facies conditions at ≈ 4 kbar and T < 450 ◦C.
    [Show full text]
  • Characterizing Permafrost in the Entire European Alps: Spatial Distribution and Ice Content
    Zurich Open Repository and Archive University of Zurich Main Library Strickhofstrasse 39 CH-8057 Zurich www.zora.uzh.ch Year: 2013 Characterizing permafrost in the entire European Alps: spatial distribution and ice content Böckli, Lorenz Posted at the Zurich Open Repository and Archive, University of Zurich ZORA URL: https://doi.org/10.5167/uzh-89504 Dissertation Published Version Originally published at: Böckli, Lorenz. Characterizing permafrost in the entire European Alps: spatial distribution and ice content. 2013, University of Zurich, Faculty of Science. Characterizing Permafrost in the Entire European Alps: Spatial Distribution and Ice Content Dissertation zur Erlangung der Naturwissenschaftlichen Doktorwürde (Dr. sc. nat.) vorgelegt der Mathematisch-naturwissenschaftlichen Fakultät der Universität Zürich von Lorenz Böckli von Winterthur Promotionskomitee Prof. Dr. Wilfried Haeberli (Vorsitz) Dr. Stephan Gruber (Leitung der Dissertation) Dr. Jeannette Nötzli Prof. Dr. Alexander Brenning Zürich 2013 Summary Permafrost is a subsurface phenomenon existing in cold mountain regions. It influences ecosystems, hydrology, mechanical properties of the subsurface and sediment transport. The practical relevance of permafrost research in the European Alps is given by the con- struction and maintenance of infrastructure in permafrost zones and the assessment and prevention of permafrost-related natural hazards. Permafrost is generally invisible at the terrain surface and direct observation via satellite imagery is impossible. Therefore, modeling approaches are required to spatially map permafrost and analyze its charact- eristics. However, mountain permafrost is characterized by a high spatial variability caused by topography, surface and subsurface characteristics, which make observation and modeling of permafrost challenging. The aim of this thesis is to characterize permafrost for the entire Alps using widely applicable methods, which allow comparable permafrost analyses, which are compat- ible between regions.
    [Show full text]
  • Continents in Collision Basil Booth 43
    Continents In Collision Basil Booth Mountains rise, and then they crumble away. Large segments of the earth's crust drift, seemingly aimlessly, about the face of the globe. Continents are in collision, and heave the beds of oceans many km above their original resting place. The ground breaks open and spews out molten rock; this becomes new land. It is upon such land that we now live. Forty years ago a German meteorologist and explorer died on the wastes of the Greenland ice-cap. He was regarded as a crank because he had said that the continents had wandered about the face of the earth driven by unseen forces. Alfred Wegener, the proposer of this theory, was born in Berlin in 1880, the son of an evangelical preacher. He spent much of his academic life writing about meteorology and visited Greenland 3 times before he lost his life in 1930. His ideas were well in advance of his time; he was born, one might say, 30 years too soon. His theory was rejected and scoffed at, yet today we know that he was right. The layman may not easily recognise that the rocks upon the face of the earth had a fiery beginning, but the simple fact is that they did. Since their forma­ tion over 5 000 million years ago they have undergone many changes, some have been remelted, some have been subjected to intense pressures and heat, while others have broken down to form the constituents of yet another rock. These processes have been going on since the formation of the earth; they are going on today and are part of a continuous recycling process.
    [Show full text]
  • Facies and Late Triassic Fossils in the Roisan Zone, Austroalpine Dent Blanche and Mt Mary-Cervino Nappe System, NW Alps
    Swiss J Geosci (2016) 109:69–81 DOI 10.1007/s00015-016-0207-6 Facies and Late Triassic fossils in the Roisan zone, Austroalpine Dent Blanche and Mt Mary-Cervino nappe system, NW Alps 1 1 2 3 Gloria Ciarapica • Leonsevero Passeri • Franco Bonetto • Giorgio Vittorio Dal Piaz Received: 11 August 2015 / Accepted: 7 January 2016 / Published online: 12 February 2016 Ó Swiss Geological Society 2016 Abstract The Roisan zone is a metamorphic cover unit Roisan zone could have been deposited in a more distal exposed along the ductile shear zone between the Dent area. Blanche s.s. and Mont Mary-Cervino Upper Austroalpine outliers, Aosta Valley, north-western Italian Alps. It is Keywords Austroalpine covers Á Sedimentology Á characterized by the occurrence of dolostones, pure mar- Stratigraphy Á Foraminifers Á Dasycladales bles, marbles with quartz, calcirudites and ophiolite-free calcschists. Locally, dolostones preserve alternances of thick massive beds and thinner levels of planar stromato- 1 Introduction lites and other sedimentary structures and textures typical of a carbonate platform. In Mt Grand Pays they contain The Roisan zone is the most extended sedimentary cover unit Dasycladales and foraminifers referable to the Norian. Pure associated to the Austroalpine Dent Blanche and Sesia– marbles and marbles with quartz grains are tentatively Lanzo nappe system, the upper part of the subduction-related referred to the end of Triassic–Early Jurassic, thin-bedded collisional wedge in the northwestern Alps. As shown in marbles and calcirudites to the Early and Middle Jurassic, Fig. 1, classic Argand’s (1908, 1909) Dent Blanche fold- calcschists from Middle Jurassic to Late Cretaceous.
    [Show full text]
  • Insights from the Permian in the Western Alps
    Timing of crustal melting and magma emplacement at different depths: insights from the Permian in the Western Alps Paola Manzotti1, Florence Bégué2, Barbara Kunz3, Daniela Rubatto2,4, Alexey Ulianov2 Universities of Stockholm1, Lausanne2, Milton Keynes3, Bern4 • During the late Palaeozoic, lithospheric thinning in the future Alpine realm caused high- temperature low-to medium pressure metamorphism and partial melting in the lower crust. Permian metamorphism and magmatism are extensively preserved in the Alps (Schuster & Stüwe 2008). • In the Western Alps, Adria-derived slices of continental crust (e.g. Sesia-Dent Blanche nappes) preserve evidence for Permian magmatism and metamorphism. The Dent Blanche nappe displays the best preserved example of Permian magmatism and metamorphism in the Alpine nappe stack in the Western Alps. • This contribution will present an overview on the age and regional distribution of Permian magmatism and metamorphism in the Western Alps and will detail some exceptional examples from the Dent Blanche nappe. • The results will be compared with existing data from the Southern, Central and Eastern Alps and will be used to discuss the Permian evolution in the future Alpine realm. The Arolla Unit in the Dent Blanche is a fragment of upper continental crust, mostly consisting of Permian intrusive bodies (granitoids, diorite and gabbro) that were metamorphosed at upper greenschist facies conditions and deformed into orthogneisses during the Alpine evolution. Undeformed volumes during the Alpine orogeny nicely preserve the Permian structures. Mont Morion biotite-bearing granite (Dent Blanche) cut by a composite dyke. The dyke displays mingling between coexisting felsic and mafic magma. Undeformed coarse-grained gabbro from the Monte Cervino (Dent Blanche).
    [Show full text]
  • The Matterhorn Centenary 7
    THE MATTERHORN CENTENARY 7 THE MATTERHORN CENTENARY (Nine illustrations: nos. I- 9) VEN though the Matterhorn fell with unexpected ease to the first party which seriously pressed an attempt from the Swiss side, the eauty and isolation of the peak and its apparent inaccessibility- the latter confirmed by the lengthening history of frustrated attempts by the Italian ridge made it the most sought after prize in the Alps at the time of the first ascent. It still remains so, in the obvious sense to which the congestion of the Hornli ridge on any fine day in July or August bears witness. It has become a tourist's mountain, as well as a mountaineer's. But the mountaineer, however much he may deplore the fixed ropes and the crowds which swarm up and down them, will still wish to have climbed the Matterhorn. Neither the highest nor the hardest of the great peaks of the Alps, it continues to exercise much the same special fascina­ tion for climbers as it exercised a hundred years ago. July 14 of this year marks the hundredth anniversary of the day when Michel Croz' blouse, fixed to a tent-pole on the summit of the Matter­ horn, was seen 'at Zermatt at the Riffel in the Val Tournanche '; when the watchers in Breuil cried, 'Victory is ours!'; and when, an hour or two later, a sharp-eyed lad in Zermatt ran into the Monte Rosa hotel, saying that he had seen an avalanche fall from the summit of the Matter­ horn onto the Matterhorn glacier, and was reproved for telling idle stories.
    [Show full text]
  • V Klídku a V Pohodě
    Klasické ledovcové výstupy, skialpové túry, horolezectví: v klídku ALLALINHORN 4.027 m 28. 8. 1856 a v pohodě Saaský pastor Johann Joseph Imboden a vůdci Franz Joseph Andenmatten a E. L. Ames Z stě- Alpy nou přes Mittel-Allalin A je tady další část mého povídání. Myslím si, že pro vás bude užitečné doplnit si informa- Z stěnou z Mittel-Allalin – A (B), ce z tohoto cípu krásných hor o další porci. Pokud totiž navštívíte údolí Saastalu, nemůžete, varianta z Felskinnu a přesněji řečeno nesmíte, vynechat právě horskou skupinu Allalin – horskej pánbíček by se Klasická, krásná, krátká a relativně bezpečná na vás mohl totiž naštvat. Blíží se zimní sezóna a právě výstupy a sjezdy z těchto kopečků by ledovcová túra bez větších technických obtíží měly patřit rozhodně mezi vaše cíle. a hlavně bez dlouhého nástupu (sníh, led do 35°), původní cesta. Výborná pro aklimatizaci Allalinhorn myslím, že pokud chcete začít s túrami na další výstupy. Ideální i na skialpy. Tento vý- na čtyřtisícovky, jsou právě tyto vrchol- stup a následný super sjezd vřele doporučuji! ky pro vás nejvhodnější. Pozor na: Navíc tato skupina nabízí i ojedině- orientace v terénu za snížené viditelnosti nebo lou možnost perfektních skialpových při zafoukané stopě záludné ledovcové trhliny a sněhové mosty túr, včetně různě zkombinovaných pře- (obzvlášť pozor na konci léta) chodů. Možná i proto až zde končí slav- ná Haute route (skialpinistický přechod ze Chamonix). Mittel-Allalin Já osobně vděčně využívám některé z těchto vrcholků v zimě i v létě jako výbornou aklimatizaci před dalšími výstupy. Skupina Allalin Skupina Allalin Srdce Wallisu Hlavním a také velmi známým stře- Vrcholky v této skupině mají mnoho diskem údolí Saastalu je malé horské společného.
    [Show full text]