Methanothermobacter – Biokatalysator Für Die Energiewende

Total Page:16

File Type:pdf, Size:1020Kb

Methanothermobacter – Biokatalysator Für Die Energiewende 14 WISSENSCHAFT Mikrobe des Jahres 2021 Methanothermobacter – Biokatalysator für die Energiewende autotrophen, wie Knallgasbakterien und nitri- SEIGO SHIMA, RUDOLF K. THAUER fi zierende Bakterien, benötigen Sauerstoff. MAX-PLANCK-INSTITUT FÜR TERRESTRISCHE MIKROBIOLOGIE, MARBURG Heute gibt es acht beschriebene Methano- thermobacter-Spezies. Sie wurden aus anaero- Methanothermobacter is a thermophilic genus within the kingdom of ben Klärschlämmen, industriellen thermo- philen Biogasanlagen, heißen Quellen oder Euryarchaeota. Chemolithoautotrophic growth on H2 and CO2 at 65 °C is rapid and to high cell concentrations. Champions in this respect are Quellwasser von Gasfeldern isoliert und wachsen alle auf H und CO mit einem Tem- the species M. thermautotrophicus and M. marburgensis, which were 2 2 peraturoptimum um 65 °C. Ihre Genome sind used to elucidate the unique biochemistry of methane formation from ringförmig, 1,6–1,8 ∗ 106 Basenpaare groß H2 and CO2. These two species are presently also being explored as und haben einem DNA-G+C-Gehalt um die biocatalysts in the industrial conversion of electrolytically produced 50 Prozent. Wichtigste Spezies sind M. therma uto trophicus und M. marburgensis H2 to “green” methane. (M. marburgensis wurde zunächst Methano- DOI: 10.1007/s12268-021-1530-8 bacterium thermoautotrophicum, Stamm Mar- © Die Autoren 2021 burg, genannt [2]). ó In einer Kläranlage in Urbana, Illinois, handelt [1, 2], die wie ein Bakterium aussieht Beide Spezies vermehren sich exponentiell USA beginnt diese Geschichte. Aus dem (Abb. 1, [3]). mit Verdoppelungszeiten von rund zwei anaeroben Schlamm isolierten Gregory Zei- Die Entdeckung von M. thermautotrophicus Stunden zu höheren Zelldichten als alle kus und Ralph Wolfe 1972 eine hitzeliebende 1972 war ein Meilenstein, weil sie erstmals anderen bisher bekannten Methanbildner. Mikrobe, die in Abwesenheit von Sauerstoff zeigte, dass auch strikte Anaerobier bei Tem- Deshalb gelten sie als Modellorganismen für aus Wasserstoff (H2) und CO2 Methan (CH4, peraturen von 65 °C optimal wachsen kön- Untersuchungen der Biochemie der Metha- Biogas oder Erdgas) bildet [1, 2]. Sie wächst nen; alle damals bekannten extrem Thermo- nogenese aus H2 und CO2 [4, 5]. Sie dienen bei 65 °C optimal. Das Isolat wurde zunächst philen – wie Bacillus acidocaldarius und die als Biokatalysatoren in Pilotanlagen zur Methanobacterium thermoautotrophicum und Gattungen Thermus, Thermoplasma und Sul- Umsetzung von H2 und CO2 zu Methan für später Methanothermobacter thermautotrophi- folobus – benötigen Sauerstoff zum Leben. energetische Zwecke. cus benannt, da es sich um eine wärmelie- Sie zeigte ferner, dass chemotrophe Mikro- Methanothermobacter sind Archaea bende (thermophile), nur von CO2 als Kohlen- ben auch ohne Sauerstoff autotroph leben stoffquelle lebende (autotrophe) Mikrobe können; alle damals beschriebenen Chemo- Ende der 1970er-Jahre erkannte Karl Woese, dass es zwei Arten von Prokaryoten gibt: Bacte ria und Archaea, die nur sehr entfernt AB miteinander verwandt sind. Methanothermo- bacter und alle anderen anaeroben Methan- bildner gehören zu den Archaea. Dazu passt der frühe Befund, dass M. thermautotrophicus eine Gram-positive Zellwand ohne den Wand- baustoff Murein hat und deshalb nicht durch Penicillin im Wachstum gehemmt wird. Anstatt aus Murein besteht die Zellwand von M. thermautotrophicus aus einem mehr- schichtigen Pseudomurein-Sacculus. Auch die Beschaffenheit der Cytoplasmamembran (aus Isoprenoidlipiden) und der Aufbau der ˚ Abb. 1: Methanothermobacter thermautotrophicus sind unbewegliche krumme Stäbchen. RNA-Polymerase deuteten früh darauf hin, A, elektronenmikroskopische Aufnahme des patentierten M. thermautotrophicus-Stamms, den dass M. thermautotrophicus kein Bakterium, die Firma Electrochaea als Biokatalysator verwendet. (Foto (bearbeitet): Andreas Klingl, LMU sondern ein Archaeon ist. München) B, fl uoreszenzmikroskopische Aufnahme einer planktonischen M. thermautotrophicus- Die Gattung Methanothermobacter gehört Zelle nach Anfärben mit AlexaFluor®-488 [3]. Methanothermobacter heftet sich mit feinen Härchen (Fimbriae) an Oberfl ächen an. (mit freundlicher Genehmigung aus [3]) zur Familie der Methanobacteriaceae, die wie- derum zu der Ordnung der Methanobacte- BIOspektrum | 01.21 | 27. Jahrgang 15 riales gehört, eine von inzwischen acht methanogenen Ordnungen im Reich der Euryarchaeota. AB Energie und Kohlenstoff nur aus H2 und CO2 Die farblosen unbeweglichen Archaea leben optimal bei etwa 65 °C, pH 7 und niedrigem Salzgehalt auf H2 und CO2 als einzigen Ener- gie- und Kohlenstoffquellen. Die meisten Spezies wachsen in rein mineralischem Medium ohne Zusätze von Vitaminen, Ami- nosäuren oder Hefeextrakt. Methanothermo- bacter sind bezüglich ihres Energiestoffwech- sels lithotroph (anorganischer Elektronendo- nator) und bezüglich ihres Baustoffwechsels autotroph (Zellkohlenstoff aus CO ). 2 ˚ Die Cytoplasmamembran von Methano- Abb. 2: Schematische Darstellung des Energiestoffwechsels (A) und des autotrophen Baustoff- wechsels (B) von Methanothermobacter bei Wachstum auf H2 und CO2. In der Berechnung der thermobacter ist für H2, CO2 und Methan benötigten Menge ATP für die Synthese von 72 g Zellen aus 3 CO2 wurde angenommen, dass die durchlässig, nicht aber für Zucker, Amino- Zellen zu 50 % aus Kohlenstoff bestehen und dass der theoretische ATP-Wachstumsertrag 5 g säuren, Pyruvat und Acetat, für die es auch Zellen/mol ATP ist. Der Wachstumsertrag pro mol Methan wurde für M. marburgensis zu 2,5 g keine Transportsysteme gibt. Es fehlen Enzy- Zellen/mol Methan bestimmt [5]. MFR: Methanofuran; H4MPT: Tetrahydromethanopterin; HS-CoM: Coenzym M; HS-CoB: Coenzym B; F : Coenzym F ; pFd: Polyferredoxin, das pro me, die diese Verbindungen in der Zelle ver- 420 420 [4Fe4S]-Cluster jeweils ein Elektron überträgt; Acs: Acetyl-CoA-Synthase/Decarbonylase; ATPase: stoffwechseln könnten. Infolgedessen gibt es ATP-Synthetase; Coo: Kohlenmonoxid-Dehydrogenase; Eha und Ehb: energiekonservierende [NiFe]- für Methanothermobacter keine Alternativen Hydrogenasen; Frh: F420-reduzierende [NiFe]-Hydrogenase; Fwd und Fmd: Wolfram- bzw. Molyb- zur Methanbildung aus H2 und CO2 als Ener- dän-abhängige Formylmethanofuran-Dehydrogenase; Hmd: [Fe]-Hydrogenase; Mcr und Mrt: Methyl-Coenzym M-Reduktase; Mtr: Methyltransferase; Mvh-Hdr: Methylviologen-reduzierender giequelle und zur autotrophen CO2-Fixie- rung. Methanothermobacter sind daher obli- [NiFe]-Hydrogenase-Heterodisulfi d-Reduktase-Komplex. gat lithoautotroph, allerdings mit einer Ein- schränkung: Einige Stämme können nämlich Oxidationsstufe +4) zu Methan (–4) erfolgt nosarcinales ist der Kopplungsmechanismus Ameisensäure (Formiat) anstelle von H2 und über Formyl-MFR (+2), Formyl-H4MPT (+2), wesentlich anders. Während im Energiestoff- CO2 zum Wachstum verwenden, wobei aller- Methenyl-H4MPT (+2), Methylen-H4MPT (0), wechsel von Methanothermobacter die ender- dings die Reduktion der Ameisensäure zu Methyl-H4MPT (–2) und Methyl-Coenzym M gone Reduktion von Polyferredoxin (pFd) mit Methan über CO2 läuft. (–2) als Zwischenprodukte. Reduziertes Poly- H2 an die exergone Reduktion von CoM-S-S- 2– Als Stickstoffquelle verwendet die Mikrobe ferredoxin (pFdred ), F420H2 und HS-CoB die- CoB mit H2 durch Flavin-basierte Elektronen- ausschließlich NH3 und als Schwefelquelle nen dabei als Elek tronendonatoren, die ihrer- bifurkation gekoppelt ist (Abb. 2A, [8]), erfolgt ausschließlich H2S. Als Spurenelemente seits durch H2 re-reduziert werden. diese Kopplung in Methanosarcina-Spezies benötigt sie Eisen, Kobalt, Nickel, Molybdän Die bei der Reduktion von CO2 zu Methan chemiosmotisch [5]. und/oder Wolfram, nicht aber Mangan, Kupfer freiwerdende Energie wird zum Aufbau eines und Selen [6]. Wie alle Lebewesen brauchen elektrochemischen Na+-Potenzials verwen- Der Nickelbedarf war eine Zufalls- Methanothermobacter auch Kalium- und det, das seinerseits die endergone Synthese entdeckung Magne siumionen zum Wachstum. Methan- von ATP (Abb. 2A) und die endergone Reduk- Bei Wachstumsversuchen mit M. marburgen- bildung und Wachstum dieser Archaea sind tion von Polyferredoxin (pFd) mit H2 treibt sis beobachteten Peter Schönheit et al. 1979 von Na triumionen abhängig, obwohl Methano- (Abb. 2B, [7]). zufällig, dass Kulturen in Rührfermentern thermobacter keine marinen Organismen sind. Im Falle des Baustoffwechsels wird CO2 zu mit Anteilen aus Edelstahl besser wachsen Kohlenmonoxid (CO) (+2) reduziert, das mit als solche in Fermentern ohne Edelstahlan- Natriumionen für den Stoffwechsel Methyl-H4MPT (–2) (aus dem Energiestoff- teile [6]. Analysen des Edelstahls ergab eine Der Energie- und Baustoffwechsel von Metha- wechsel) und Coenzym A zu Acetyl-CoA Zusammensetzung aus Eisen, Nickel und nothermobacter sind in Abbildung 2 skizziert reagiert, das wiederum reduktiv zu Pyruvat Chrom. Es stellte sich schnell heraus, dass [5, 7]. Am Stoffwechsel sind sechs Co enzyme carboxyliert wird. Von Pyruvat aus werden Nickel das Wachstum beschleunigte, was beteiligt, die erstmals in Methanothermobac- ATP-abhängig fast alle Zellbausteine synthe- eine große Überraschung war. Damals glaub- ter entdeckt wurden. Es handelt sich dabei tisiert (Abb. 2B). te man noch, dass Nickel keine biologische + um die C1-tragenden Coenzyme Methanofu- Der Na -abhängige Energiestoffwechsel von Funktion in Mikroorganismen hat. Dass ran (MFR), Tetrahydromethanopterin CO2 und H2 zu Methan, wie er in Abbildung Methanothermobacter-Spezies zuvor über- (H4MPT) und Coenzym M (HS-CoM) und die 2A aufgezeichnet ist, fi ndet sich mit kleineren
Recommended publications
  • Methanobrevibacter Cuticularis Sp
    APPLIED AND ENVIRONMENTAL MICROBIOLOGY, Oct. 1996, p. 3620–3631 Vol. 62, No. 10 0099-2240/96/$04.0010 Copyright q 1996, American Society for Microbiology Physiological Ecology of Methanobrevibacter cuticularis sp. nov. and Methanobrevibacter curvatus sp. nov., Isolated from the Hindgut of the Termite Reticulitermes flavipes JARED R. LEADBETTER AND JOHN A. BREZNAK* Department of Microbiology and Center for Microbial Ecology, Michigan State University, East Lansing, Michigan 48824-1101 Received 11 January 1996/Accepted 15 July 1996 Two morphologically distinct, H2- and CO2-utilizing methanogens were isolated from gut homogenates of the subterranean termite, Reticulitermes flavipes (Kollar) (Rhinotermitidae). Strain RFM-1 was a short straight rod (0.4 by 1.2 mm), whereas strain RFM-2 was a slightly curved rod (0.34 by 1.6 mm) that possessed polar fibers. Their morphology, gram-positive staining reaction, resistance to cell lysis by chemical agents, and narrow range of utilizable substrates were typical of species belonging to the family Methanobacteriaceae. Analysis of the nearly complete sequences of the small-subunit rRNA-encoding genes confirmed this affiliation and supported their recognition as new species of Methanobrevibacter: M. cuticularis (RFM-1) and M. curvatus (RFM-2). The per cell rates of methanogenesis by strains RFM-1 and RFM-2 in vitro, taken together with their in situ population densities (ca. 106 cells z gut21; equivalent to 109 cells z ml of gut fluid21), could fully account for the rate of methane emission by the live termites. UV epifluorescence and electron microscopy confirmed that RFM-1- and RFM-2-type cells were the dominant methanogens in R.
    [Show full text]
  • Review Article: Inhibition of Methanogenic Archaea by Statins As a Targeted Management Strategy for Constipation and Related Disorders
    Alimentary Pharmacology and Therapeutics Review article: inhibition of methanogenic archaea by statins as a targeted management strategy for constipation and related disorders K. Gottlieb*, V. Wacher*, J. Sliman* & M. Pimentel† *Synthetic Biologics, Inc., Rockville, SUMMARY MD, USA. † Gastroenterology, Cedars-Sinai Background Medical Center, Los Angeles, CA, USA. Observational studies show a strong association between delayed intestinal transit and the production of methane. Experimental data suggest a direct inhibitory activity of methane on the colonic and ileal smooth muscle and Correspondence to: a possible role for methane as a gasotransmitter. Archaea are the only con- Dr K. Gottlieb, Synthetic Biologics, fi Inc., 9605 Medical Center Drive, rmed biological sources of methane in nature and Methanobrevibacter Rockville, MD 20850, USA. smithii is the predominant methanogen in the human intestine. E-mail: [email protected] Aim To review the biosynthesis and composition of archaeal cell membranes, Publication data archaeal methanogenesis and the mechanism of action of statins in this context. Submitted 8 September 2015 First decision 29 September 2015 Methods Resubmitted 7 October 2015 Narrative review of the literature. Resubmitted 20 October 2015 Accepted 20 October 2015 Results EV Pub Online 11 November 2015 Statins can inhibit archaeal cell membrane biosynthesis without affecting This uncommissioned review article was bacterial numbers as demonstrated in livestock and humans. This opens subject to full peer-review. the possibility of a therapeutic intervention that targets a specific aetiologi- cal factor of constipation while protecting the intestinal microbiome. While it is generally believed that statins inhibit methane production via their effect on cell membrane biosynthesis, mediated by inhibition of the HMG- CoA reductase, there is accumulating evidence for an alternative or addi- tional mechanism of action where statins inhibit methanogenesis directly.
    [Show full text]
  • Supporting Information
    Supporting Information Lozupone et al. 10.1073/pnas.0807339105 SI Methods nococcus, and Eubacterium grouped with members of other Determining the Environmental Distribution of Sequenced Genomes. named genera with high bootstrap support (Fig. 1A). One To obtain information on the lifestyle of the isolate and its reported member of the Bacteroidetes (Bacteroides capillosus) source, we looked at descriptive information from NCBI grouped firmly within the Firmicutes. This taxonomic error was (www.ncbi.nlm.nih.gov/genomes/lproks.cgi) and other related not surprising because gut isolates have often been classified as publications. We also determined which 16S rRNA-based envi- Bacteroides based on an obligate anaerobe, Gram-negative, ronmental surveys of microbial assemblages deposited near- nonsporulating phenotype alone (6, 7). A more recent 16S identical sequences in GenBank. We first downloaded the gbenv rRNA-based analysis of the genus Clostridium defined phylo- files from the NCBI ftp site on December 31, 2007, and used genetically related clusters (4, 5), and these designations were them to create a BLAST database. These files contain GenBank supported in our phylogenetic analysis of the Clostridium species in the HGMI pipeline. We thus designated these Clostridium records for the ENV database, a component of the nonredun- species, along with the species from other named genera that dant nucleotide database (nt) where 16S rRNA environmental cluster with them in bootstrap supported nodes, as being within survey data are deposited. GenBank records for hits with Ͼ98% these clusters. sequence identity over 400 bp to the 16S rRNA sequence of each of the 67 genomes were parsed to get a list of study titles Annotation of GTs and GHs.
    [Show full text]
  • Development of the Equine Hindgut Microbiome in Semi-Feral and Domestic Conventionally-Managed Foals Meredith K
    Tavenner et al. Animal Microbiome (2020) 2:43 Animal Microbiome https://doi.org/10.1186/s42523-020-00060-6 RESEARCH ARTICLE Open Access Development of the equine hindgut microbiome in semi-feral and domestic conventionally-managed foals Meredith K. Tavenner1, Sue M. McDonnell2 and Amy S. Biddle1* Abstract Background: Early development of the gut microbiome is an essential part of neonate health in animals. It is unclear whether the acquisition of gut microbes is different between domesticated animals and their wild counterparts. In this study, fecal samples from ten domestic conventionally managed (DCM) Standardbred and ten semi-feral managed (SFM) Shetland-type pony foals and dams were compared using 16S rRNA sequencing to identify differences in the development of the foal hindgut microbiome related to time and management. Results: Gut microbiome diversity of dams was lower than foals overall and within groups, and foals from both groups at Week 1 had less diverse gut microbiomes than subsequent weeks. The core microbiomes of SFM dams and foals had more taxa overall, and greater numbers of taxa within species groups when compared to DCM dams and foals. The gut microbiomes of SFM foals demonstrated enhanced diversity of key groups: Verrucomicrobia (RFP12), Ruminococcaceae, Fusobacterium spp., and Bacteroides spp., based on age and management. Lactic acid bacteria Lactobacillus spp. and other Lactobacillaceae genera were enriched only in DCM foals, specifically during their second and third week of life. Predicted microbiome functions estimated computationally suggested that SFM foals had higher mean sequence counts for taxa contributing to the digestion of lipids, simple and complex carbohydrates, and protein.
    [Show full text]
  • Susceptibility of Archaea to Antimicrobial Agents: Applications to Clinical Microbiology
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Elsevier - Publisher Connector REVIEW 10.1111/j.1469-0691.2012.03913.x Susceptibility of archaea to antimicrobial agents: applications to clinical microbiology S. Khelaifia and M. Drancourt Unite´ de Recherche sur les Maladies Infectieuses et Tropicales Emergentes, UMR CNRS 6236 IRD 3R198, Me´diterrane´e Infection, Faculte´ de Me´decine, Aix-marseille-Universite´, Marseille, France Abstract We herein review the state of knowledge regarding the in vitro and in vivo susceptibility of archaea to antimicrobial agents, including some new molecules. Indeed, some archaea colonizing the human microbiota have been implicated in diseases such as periodontopathy. Archaea are characterized by their broad-spectrum resistance to antimicrobial agents. In particular, their cell wall lacks peptidoglycan, making them resistant to antimicrobial agents interfering with peptidoglycan biosynthesis. Archaea are, however, susceptible to the pro- tein synthesis inhibitor fusidic acid and imidazole derivatives. Also, squalamine, an antimicrobial agent acting on the cell wall, proved effective against human methanogenic archaea. In vitro susceptibility data could be used to design protocols for the decontamination of complex microbiota and the selective isolation of archaea in anaerobic culture. Keywords: Antimicrobial agent, archaea, methanogenic archaea, microbiota, susceptibility testing Article published online: 23 May 2012 Clin Microbiol Infect 2012; 18: 841–848 Corresponding author: M. Drancourt, Unite´ des Rickettsies, Fa- culte´ de Me´decine, 27, Boulevard Jean Moulin-Cedex 5, France E-mail: [email protected] Methanogenic archaea (herein referred to as methano- Introduction gens) are the sole organisms producing methane from H2 +CO2 [6].
    [Show full text]
  • Brian W. Waters
    INVESTIGATION OF 2-OXOACID OXIDOREDUCTASES IN METHANOCOCCUS MARIPALUDIS AND LARGE-SCALE GROWTH OF M. MARIPALUDIS by BRIAN W. WATERS (Under the direction of Dr. William B. Whitman) ABSTRACT With the emergence of Methanococcus maripaludis as a genetic model for methanogens, it becomes imperative to devise inexpensive yet effective ways to grow large numbers of cells for protein studies. Chapter 2 details methods that were used to cut costs of growing M. maripaludis in large scale. Also, large scale growth under different conditions was explored in order to find the conditions that yield the most cells. Chapter 3 details the phylogenetic analysis of 2-oxoacid oxidoreductase (OR) homologs from M. maripaludis. ORs are enzymes that catalyze the oxidative decarboxylation of 2-oxoacids to their acyl-CoA derivatives in many prokaryotes. Also in chapter 3, a specific OR homolog in M. maripaludis, an indolepyruvate oxidoreductase (IOR), was mutagenized, and the mutant was characterized. PCR and Southern hybridization analysis showed gene replacement. A no-growth phenotype on media containing aromatic amino acid derivatives was found. INDEX WORDS: Methanococcus maripaludis, fermentor, 2-oxoacid oxidoreductase, indolepyruvate oxidoreductase INVESTIGATION OF 2-OXOACID OXIDOREDUCTASES IN METHANOCOCCUS MARIPALUDIS AND LARGE-SCALE GROWTH OF M. MARIPALUDIS by BRIAN W. WATERS B.S., The University of Georgia,1999 A Thesis Submitted to the Graduate Faculty of The University of Georgia in Partial Fulfillment of the Requirements for the Degree MASTER OF SCIENCE ATHENS, GEORGIA 2002 © 2002 Brian W. Waters All Rights Reserved INVESTIGATION OF 2-OXOACID OXIDOREDUCTASES IN METHANOCOCCUS MARIPALUDIS AND LARGE-SCALE GROWTH OF M. MARIPALUDIS by BRIAN W.
    [Show full text]
  • Methanogens Diversity During Anaerobic Sewage Sludge Stabilization and the Effect of Temperature
    processes Article Methanogens Diversity during Anaerobic Sewage Sludge Stabilization and the Effect of Temperature Tomáš Vítˇez 1,2, David Novák 3, Jan Lochman 3,* and Monika Vítˇezová 1,* 1 Department of Experimental Biology, Faculty of Science, Masaryk University, 62500 Brno, Czech Republic; [email protected] 2 Department of Agricultural, Food and Environmental Engineering, Faculty of AgriSciences, Mendel University, 61300 Brno, Czech Republic 3 Department of Biochemistry, Faculty of Science, Masaryk University, 62500 Brno, Czech Republic; [email protected] * Correspondence: [email protected] (J.L.); [email protected] (M.V.); Tel.: +420-549-495-602 (J.L.); Tel.: +420-549-497-177 (M.V.) Received: 29 June 2020; Accepted: 10 July 2020; Published: 12 July 2020 Abstract: Anaerobic sludge stabilization is a commonly used technology. Most fermenters are operated at a mesophilic temperature regime. Modern trends in waste management aim to minimize waste generation. One of the strategies can be achieved by anaerobically stabilizing the sludge by raising the temperature. Higher temperatures will allow faster decomposition of organic matter, shortening the retention time, and increasing biogas production. This work is focused on the description of changes in the community of methanogenic microorganisms at different temperatures during the sludge stabilization. At higher temperatures, biogas contained a higher percentage of methane, however, there was an undesirable accumulation of ammonia in the fermenter. Representatives of the hydrogenotrophic genus Methanoliea were described at all temperatures tested. At temperatures up to 50 ◦C, a significant proportion of methanogens were also formed by acetoclastic representatives of Methanosaeta sp. and acetoclastic representatives of the order Methanosarcinales.
    [Show full text]
  • 1 Structure and Function of the Methanogenic Microbial Communities in Soils from 1 Flooded Rice and Upland Soybean Fields from S
    *Manuscript with continous line numbering Click here to view linked References 1 Structure and function of the methanogenic microbial communities in soils from 2 flooded rice and upland soybean fields from Sanjiang Plain, NE China 3 4 Marcela Hernándeza,c*, Ralf Conrada, Melanie Klosea, Ke Mab, Yahai Lub 5 6 a Max Planck Institute for Terrestrial Microbiology, Karl-von-Frisch-Str. 10, 35043 7 Marburg, Germany 8 b College of Resources and Environmental Sciences, China Agricultural University, Beijing, 9 China 10 c Centre for Biological Sciences, University of Southampton, Southampton, SO17 1BJ 11 United Kingdom 12 13 14 15 16 17 18 *Corresponding author. Marcela Hernández: Centre for Biological Sciences, University of 19 Southampton, Southampton, SO17 1BJ United Kingdom. Tel.: +44 (0) 23 8059 4291. E- 20 mail address: [email protected] 21 1 22 Abstract 23 About 50 years ago, most of the natural wetlands in northeast China, the Sanjiang plain, 24 were converted to either flooded rice fields or to upland soybean fields. After the 25 conversion, natural wetland soils were either managed as artificial wetland or as drained 26 upland resulting in soil microbial community changes. The purpose of our study was to 27 understand how methanogenic microbial communities and their functions had changed in 28 the two different soils upon conversion, and whether these communities now exhibit 29 different resistance/resilience to drying and rewetting. Therefore, we determined function, 30 abundance and composition of the methanogenic archaeal and bacterial communities in two 31 soils reclaimed from a Carex wetland 25 years ago.
    [Show full text]
  • Article Mode, Which Adds to a Better and Living Conditions of Microorganisms in the Atmosphere Understanding of the Overall Atmospheric Microbiome
    Biogeosciences, 15, 4205–4214, 2018 https://doi.org/10.5194/bg-15-4205-2018 © Author(s) 2018. This work is distributed under the Creative Commons Attribution 4.0 License. Community composition and seasonal changes of archaea in coarse and fine air particulate matter Jörn Wehking1,2, Daniel A. Pickersgill1,2, Robert M. Bowers3,4, David Teschner1,2, Ulrich Pöschl2, Janine Fröhlich-Nowoisky2, and Viviane R. Després1,2 1Institute of Molecular Physiology, Johannes Gutenberg University, Johannes-von-Müller-Weg 6, 55128 Mainz, Germany 2Max Planck Institute for Chemistry, P.O. Box 3060, 55020 Mainz, Germany 3DOE Joint Genome Institute, Walnut Creek, CA, USA 4University of Colorado, Ecology and Evolutionary Biology, Boulder, CO, USA Correspondence: Viviane R. Després ([email protected]) and Jörn Wehking ([email protected]) Received: 1 December 2017 – Discussion started: 14 December 2017 Revised: 11 June 2018 – Accepted: 15 June 2018 – Published: 11 July 2018 Abstract. Archaea are ubiquitous in terrestrial and marine narchaeaceae, Nitrososphaeraceae, Methanosarcinales, Ther- environments and play an important role in biogeochemical moplasmata, and the genus Nitrosopumilus as the dominating cycles. Although air acts as the primary medium for their taxa. dispersal among different habitats, their diversity and abun- The seasonal dynamics of methanogenic Euryarchaeota dance is not well characterized. The main reason for this point to anthropogenic activities, such as fertilization of agri- lack of insight is that archaea are difficult to culture, seem cultural fields with biogas substrates or manure, as sources of to be low in number in the atmosphere, and have so far been airborne archaea. This study gains a deeper insight into the difficult to detect even with molecular genetic approaches.
    [Show full text]
  • Adaptation Studies and Proteomic Analysis of Carboxidotrophic Methanogens
    Adaptation Studies and Proteomic Analysis of Carboxidotrophic Methanogens Ricardo Afonso Gonçalves Pereira Thesis to obtain the Master of Science Degree in Biological Engineering Supervisors: Prof. Diana Zita Machado de Sousa Prof. Miguel Nobre Parreira Cacho Teixeira Examination Committee Chairperson: Prof. Arsénio do Carmo Sales Mendes Fialho Supervisor: Prof. Miguel Nobre Parreira Cacho Teixeira Members of the Committee: Prof. Nuno Gonçalo Pereira Mira December 2014 Page | ii Abstract Carbon monoxide (CO) is generated by a variety of natural and anthropogenic processes. Nevertheless, CO is only present at trace amounts in the atmosphere, which is partly due to its utilisation by a wide range of diverse prokaryotes, both aerobic and anaerobic. Organisms able to autotrophically grow on CO, i.e. to use CO as carbon and electron source, are designated carboxydotrophs. Anaerobic carboxydotrophs are particularly interesting for biotechnological applications because they can produce added-value compounds, such as hydrogen, methane, fatty- acids and alcohols. CO is one of the main compounds of synthesis gas (or syngas) - product resulting from the gasification of carbonaceous sources (e.g. lignocellulosic biomass and wastes). In this way, syngas can be used by carboxydotrophs as a sustainable source for the production of chemicals and/or biofuels. The present thesis focused on the study of methanogens for the production of methane from CO and CO/H2 mixtures as sole substrate/electron donor. Several methanogenic species were tested for their ability to metabolise CO and/or CO/H2 and the mechanisms and requirements for CO tolerance and oxidation were studied. The physiological response of these archaea to the presence of CO was detailed and the previously unreported carboxidotrophic ability for Methanothermobacter marburgensis was demonstrated.
    [Show full text]
  • MICRO-ORGANISMS and RUMINANT DIGESTION: STATE of KNOWLEDGE, TRENDS and FUTURE PROSPECTS Chris Mcsweeney1 and Rod Mackie2
    BACKGROUND STUDY PAPER NO. 61 September 2012 E Organización Food and Organisation des Продовольственная и cельскохозяйственная de las Agriculture Nations Unies Naciones Unidas Organization pour организация para la of the l'alimentation Объединенных Alimentación y la United Nations et l'agriculture Наций Agricultura COMMISSION ON GENETIC RESOURCES FOR FOOD AND AGRICULTURE MICRO-ORGANISMS AND RUMINANT DIGESTION: STATE OF KNOWLEDGE, TRENDS AND FUTURE PROSPECTS Chris McSweeney1 and Rod Mackie2 The content of this document is entirely the responsibility of the authors, and does not necessarily represent the views of the FAO or its Members. 1 Commonwealth Scientific and Industrial Research Organisation, Livestock Industries, 306 Carmody Road, St Lucia Qld 4067, Australia. 2 University of Illinois, Urbana, Illinois, United States of America. This document is printed in limited numbers to minimize the environmental impact of FAO's processes and contribute to climate neutrality. Delegates and observers are kindly requested to bring their copies to meetings and to avoid asking for additional copies. Most FAO meeting documents are available on the Internet at www.fao.org ME992 BACKGROUND STUDY PAPER NO.61 2 Table of Contents Pages I EXECUTIVE SUMMARY .............................................................................................. 5 II INTRODUCTION ............................................................................................................ 7 Scope of the Study ...........................................................................................................
    [Show full text]
  • Variations in the Two Last Steps of the Purine Biosynthetic Pathway in Prokaryotes
    GBE Different Ways of Doing the Same: Variations in the Two Last Steps of the Purine Biosynthetic Pathway in Prokaryotes Dennifier Costa Brandao~ Cruz1, Lenon Lima Santana1, Alexandre Siqueira Guedes2, Jorge Teodoro de Souza3,*, and Phellippe Arthur Santos Marbach1,* 1CCAAB, Biological Sciences, Recoˆ ncavo da Bahia Federal University, Cruz das Almas, Bahia, Brazil 2Agronomy School, Federal University of Goias, Goiania,^ Goias, Brazil 3 Department of Phytopathology, Federal University of Lavras, Minas Gerais, Brazil Downloaded from https://academic.oup.com/gbe/article/11/4/1235/5345563 by guest on 27 September 2021 *Corresponding authors: E-mails: [email protected]fla.br; [email protected]. Accepted: February 16, 2019 Abstract The last two steps of the purine biosynthetic pathway may be catalyzed by different enzymes in prokaryotes. The genes that encode these enzymes include homologs of purH, purP, purO and those encoding the AICARFT and IMPCH domains of PurH, here named purV and purJ, respectively. In Bacteria, these reactions are mainly catalyzed by the domains AICARFT and IMPCH of PurH. In Archaea, these reactions may be carried out by PurH and also by PurP and PurO, both considered signatures of this domain and analogous to the AICARFT and IMPCH domains of PurH, respectively. These genes were searched for in 1,403 completely sequenced prokaryotic genomes publicly available. Our analyses revealed taxonomic patterns for the distribution of these genes and anticorrelations in their occurrence. The analyses of bacterial genomes revealed the existence of genes coding for PurV, PurJ, and PurO, which may no longer be considered signatures of the domain Archaea. Although highly divergent, the PurOs of Archaea and Bacteria show a high level of conservation in the amino acids of the active sites of the protein, allowing us to infer that these enzymes are analogs.
    [Show full text]