Bovine Digital Dermatitis: Natural Lesion Development and Experimental Induction Adam C

Total Page:16

File Type:pdf, Size:1020Kb

Bovine Digital Dermatitis: Natural Lesion Development and Experimental Induction Adam C Iowa State University Capstones, Theses and Graduate Theses and Dissertations Dissertations 2015 Bovine digital dermatitis: natural lesion development and experimental induction Adam C. Krull Iowa State University Follow this and additional works at: https://lib.dr.iastate.edu/etd Part of the Animal Sciences Commons, Microbiology Commons, and the Veterinary Medicine Commons Recommended Citation Krull, Adam C., "Bovine digital dermatitis: natural lesion development and experimental induction" (2015). Graduate Theses and Dissertations. 14540. https://lib.dr.iastate.edu/etd/14540 This Dissertation is brought to you for free and open access by the Iowa State University Capstones, Theses and Dissertations at Iowa State University Digital Repository. It has been accepted for inclusion in Graduate Theses and Dissertations by an authorized administrator of Iowa State University Digital Repository. For more information, please contact [email protected]. Bovine Digital Dermatitis: Natural lesion development and experimental induction by Adam C. Krull A dissertation submitted to the graduate faculty in partial fulfillment of the requirements for the degree of DOCTOR OF PHILOSOPHY Major: Veterinary Microbiology Program of Study Committee: Paul J. Plummer, Major Professor Gregory J. Phillips Jan K. Shearer Patrick J. Gorden Grant A. Dewell Iowa State University Ames, Iowa 2015 Copyright © Adam C. Krull, 2015. All rights reserved. ii TABLE OF CONTENTS Page ACKNOWLEDGMENTS ..................................................................................... iv ABSTRACT .......................................................................................................... v CHAPTER 1 GENERAL INTRODUCTION .................................................... 1 Introduction .................................................................................................... 1 Thesis Organization ......................................................................................... 2 Literature Review ............................................................................................ 3 Prevalence and Economic Impact of Digital Dermatitis .............................. 4 DD Morphology – Macroscopic and Microscopic ...................................... 5 Etiology of Digital Dermatitis .................................................................... 7 Treatment of Digital Dermatitis ................................................................. 22 Prevention of Digital Dermatitis ................................................................ 23 Significance of Research ................................................................................. 24 References .................................................................................................... 24 CHAPTER 2 DIGITAL DERMATITIS: NATURAL LESION PROGRESSION AND REGRESSION IN HOLSTEIN CATTLE OVER THREE YEARS .............. 32 Abstract .................................................................................................... 33 Introduction .................................................................................................... 34 Materials and Methods .................................................................................... 36 Results .................................................................................................... 40 Discussion .................................................................................................... 53 Acknowledgments ........................................................................................... 60 References .................................................................................................... 60 CHAPTER 3 DEEP SEQUENCING ANALYSIS REVEALS THE TEMPORAL MICOROBIOTA CHANGES ASSOSIATED WITH THE DEVELOPMENT OF BOVINE DIGITAL DERMATITIS ...................................................................... 63 Abstract .................................................................................................... 64 Background .................................................................................................... 65 Materials and Methods .................................................................................... 67 Results .................................................................................................... 75 Discussion .................................................................................................... 92 Acknowledgments ........................................................................................... 100 References .................................................................................................... 100 iii Appendix A .................................................................................................... 106 CHAPTER 4 A HIGHLY EFFECTIVE PROTOCOL FOR THE RAPID AND CONSISTENT INDUCTION OF DIGITAL DERMATITIS IN HOLSTEIN CALVES .................................................................................................... 123 Abstract .................................................................................................... 124 Introduction .................................................................................................... 124 Materials and Methods .................................................................................... 128 Results .................................................................................................... 135 Discussion .................................................................................................... 146 Acknowledgments ........................................................................................... 158 References .................................................................................................... 158 Appendix B .................................................................................................... 162 CHAPTER 5 CONCLUSIONS AND FUTURE RESEARCH........................... 170 Summary and Conclusions .............................................................................. 170 Recommendations for Future Research ............................................................ 172 References ..................................................................................................... 174 iv ACKNOWLEDGMENTS I would like to thank my committee chair, Paul Plummer, and my committee members, Gregory Phillips, Jan Shearer, Patrick Gorden, and Grant Dewell for their guidance and support throughout the course of this research. In addition, I would also like to thank my friends, colleagues, the department faculty and staff for their encouragement and support over the last five years. A special thanks to my wife and colleague, Amanda Kreuder-Krull, for her support and recommendations in all aspects of trial design, implementation, and interpretation of results. I want to also offer my appreciation all of the student’s that were involved in these projects, especially Cory Haglund, Michael Slattery, Tim Kruse, Lance Dahlquist, Mackenzie Dickson Chris Rock, and Laura Bro. Thanks also to the technical support staff of the Iowa State Veterinary Diagnostic Laboratory histopathology laboratory as well as to Dr. Gregory Stevenson for the microscopic photography. I would also like to thank the ISU Dairy Farm, ISU LIDIF, and ARS staff for their assistance in sample collection and animal management. Funds for this research project were provided by Boehringer Ingelheim Vetmedica Inc. and Iowa State University startup funds. v ABSTRACT Bovine Digital Dermatitis (DD) is a leading cause of lameness in dairy cattle in the US with more than 70% of herds affected. Despite 40 years of research, the definitive etiologic agent(s) associated with the disease process is unknown. While clinical lesions have been well described, little is known about the macroscopic, microscopic, and bacterial changes associated with the early stages of lesion development from normal skin to clinical lesions. The goal of this dissertation was to describe the temporal changes associated with lesion development in Holstein dairy cattle, particularly early stage lesions, and develop a model for lesion induction. By following a cohort of Holstein dairy cows for a three year period, several important epidemiologic findings were recognized. In the absence of control measures, DD lesions developed at a rate of 4 lesions per 100 cow feet-months, with the average time for a lesion to develop being 133 days. From the recognition of the macroscopic changes that preceded clinical DD lesions, a novel scoring system was developed. While 20% of the feet observations had clinical DD lesions, an additional 55% of observations had lesions that were indicative of early DD lesion development. Biopsies from these different stages of lesion development were submitted for metagenomic analysis using next generation sequencing. The bacterial microbiota of these biopsies was found to progress through a systematic series of changes that correlate with the macroscopic lesion scoring system with the microbiota of each stage being statistically different from other stages. As one of the major goals for these studies was to gain a better understanding of the etiology of disease, an experimental model was needed to test candidate pathogens. Four preliminary studies were conducted to optimize conditions and methodologies for induction of DD lesions that led to a vi final consensus protocol that was able to induce
Recommended publications
  • The 2014 Golden Gate National Parks Bioblitz - Data Management and the Event Species List Achieving a Quality Dataset from a Large Scale Event
    National Park Service U.S. Department of the Interior Natural Resource Stewardship and Science The 2014 Golden Gate National Parks BioBlitz - Data Management and the Event Species List Achieving a Quality Dataset from a Large Scale Event Natural Resource Report NPS/GOGA/NRR—2016/1147 ON THIS PAGE Photograph of BioBlitz participants conducting data entry into iNaturalist. Photograph courtesy of the National Park Service. ON THE COVER Photograph of BioBlitz participants collecting aquatic species data in the Presidio of San Francisco. Photograph courtesy of National Park Service. The 2014 Golden Gate National Parks BioBlitz - Data Management and the Event Species List Achieving a Quality Dataset from a Large Scale Event Natural Resource Report NPS/GOGA/NRR—2016/1147 Elizabeth Edson1, Michelle O’Herron1, Alison Forrestel2, Daniel George3 1Golden Gate Parks Conservancy Building 201 Fort Mason San Francisco, CA 94129 2National Park Service. Golden Gate National Recreation Area Fort Cronkhite, Bldg. 1061 Sausalito, CA 94965 3National Park Service. San Francisco Bay Area Network Inventory & Monitoring Program Manager Fort Cronkhite, Bldg. 1063 Sausalito, CA 94965 March 2016 U.S. Department of the Interior National Park Service Natural Resource Stewardship and Science Fort Collins, Colorado The National Park Service, Natural Resource Stewardship and Science office in Fort Collins, Colorado, publishes a range of reports that address natural resource topics. These reports are of interest and applicability to a broad audience in the National Park Service and others in natural resource management, including scientists, conservation and environmental constituencies, and the public. The Natural Resource Report Series is used to disseminate comprehensive information and analysis about natural resources and related topics concerning lands managed by the National Park Service.
    [Show full text]
  • Comparative Genomics of the Genus Porphyromonas Identifies Adaptations for Heme Synthesis Within the Prevalent Canine Oral Species Porphyromonas Cangingivalis
    GBE Comparative Genomics of the Genus Porphyromonas Identifies Adaptations for Heme Synthesis within the Prevalent Canine Oral Species Porphyromonas cangingivalis Ciaran O’Flynn1,*, Oliver Deusch1, Aaron E. Darling2, Jonathan A. Eisen3,4,5, Corrin Wallis1,IanJ.Davis1,and Stephen J. Harris1 1 The WALTHAM Centre for Pet Nutrition, Waltham-on-the-Wolds, United Kingdom Downloaded from 2The ithree Institute, University of Technology Sydney, Ultimo, New South Wales, Australia 3Department of Evolution and Ecology, University of California, Davis 4Department of Medical Microbiology and Immunology, University of California, Davis 5UC Davis Genome Center, University of California, Davis http://gbe.oxfordjournals.org/ *Corresponding author: E-mail: ciaran.ofl[email protected]. Accepted: November 6, 2015 Abstract Porphyromonads play an important role in human periodontal disease and recently have been shown to be highly prevalent in canine mouths. Porphyromonas cangingivalis is the most prevalent canine oral bacterial species in both plaque from healthy gingiva and at University of Technology, Sydney on January 17, 2016 plaque from dogs with early periodontitis. The ability of P. cangingivalis to flourish in the different environmental conditions char- acterized by these two states suggests a degree of metabolic flexibility. To characterize the genes responsible for this, the genomes of 32 isolates (including 18 newly sequenced and assembled) from 18 Porphyromonad species from dogs, humans, and other mammals were compared. Phylogenetic trees inferred using core genes largely matched previous findings; however, comparative genomic analysis identified several genes and pathways relating to heme synthesis that were present in P. cangingivalis but not in other Porphyromonads. Porphyromonas cangingivalis has a complete protoporphyrin IX synthesis pathway potentially allowing it to syn- thesize its own heme unlike pathogenic Porphyromonads such as Porphyromonas gingivalis that acquire heme predominantly from blood.
    [Show full text]
  • I RESEARCH DISSERTATION for Msc Degree in Life Sciences Submitted
    INVESTIGATION OF TICK-BORNE PATHOGENS RESISTANCE MARKERS USING NEXT GENERATION SEQUENCING RESEARCH DISSERTATION for MSc degree in Life Sciences Submitted to the DEPARTMENT OF LIFE AND CONSUMER SCIENCES UNIVERSITY OF SOUTH AFRICA by AUBREY D CHIGWADA Student No: 61366943 SUPERVISOR: DR TM MASEBE CO-SUPERVISOR: DR NO MAPHOLI JULY 2021 i DECLARATION Name: Aubrey Dickson Chigwada Student number: 61366943 Degree: Master of Science in Life Sciences Dissertation title: INVESTIGATION OF TICK-BORNE PATHOGENS RESISTANCE MARKERS USING NEXT GENERATION SEQUENCING I, Aubrey D Chigwada, declare that investigation of tick-borne pathogens resistance markers using next-generation sequencing is my work, and sources I have used have been acknowledged by complete references. I submit this thesis for a Master of Science in life science at the college of agriculture and environmental science at the University of South Africa and have not been submitted to any other university. JULY 2021 -------------------------------- --------------------------- Aubrey Dickson Chigwada Date ii ACKNOWLEDGEMENTS Firstly, I would like to thank God almighty for the strength to carry on and a gift of life. Words cannot express my deepest gratitude to my supervisor Dr. TM Masebe for her professional guidance, encouragement, support, corrections, instructions, patience, and technical skills thought- out this work. I am forever indebted to your mentorship; you are a role model and an inspiration to me. I would like to extend my sincere appreciation to my Co-supervisor Dr. NO Mapholi for her insightful comments and suggestions. To the woman in research funds used for this project, I am grateful. Much gratitude to Dr. Ramganesh Selvarajan for his mentorship and training from the basics to the actual Miseq sequencing, which made it possible to sequence for this work.
    [Show full text]
  • The Microbiome of the Footrot Lesion in Merino Sheep Is Characterized by a Persistent Bacterial Dysbiosis T ⁎ Andrew S
    Veterinary Microbiology 236 (2019) 108378 Contents lists available at ScienceDirect Veterinary Microbiology journal homepage: www.elsevier.com/locate/vetmic The microbiome of the footrot lesion in Merino sheep is characterized by a persistent bacterial dysbiosis T ⁎ Andrew S. McPherson, Om P. Dhungyel, Richard J. Whittington Farm Animal Health, Sydney School of Veterinary Science, Faculty of Science, The University of Sydney, 425 Werombi Rd, Camden, New South Wales, 2570, Australia ARTICLE INFO ABSTRACT Keywords: Footrot is prevalent in most sheep-producing countries; the disease compromises sheep health and welfare and Footrot has a considerable economic impact. The disease is the result of interactions between the essential causative Merino agent, Dichelobacter nodosus, and the bacterial community of the foot, with the pasture environment and host Sheep resistance influencing disease expression. The Merino, which is the main wool sheep breed in Australia, is Microbiome particularly susceptible to footrot. We characterised the bacterial communities on the feet of healthy and footrot- Dichelobacter nodosus affected Merino sheep across a 10-month period via sequencing and analysis of the V3-V4 regions of the bacterial 16S ribosomal RNA gene. Distinct bacterial communities were associated with the feet of healthy and footrot- affected sheep. Infection with D. nodosus appeared to trigger a shift in the composition of the bacterial com- munity from predominantly Gram-positive, aerobic taxa to predominantly Gram-negative, anaerobic taxa. A total of 15 bacterial genera were preferentially abundant on the feet of footrot-affected sheep, several of which have previously been implicated in footrot and other mixed bacterial diseases of the epidermis of ruminants.
    [Show full text]
  • Tracking Reservoirs of Antimicrobial Resistance Genes in a Complex Microbial Community Using Metagenomic Hi-C: the Case of Bovine Digital Dermatitis
    antibiotics Article Tracking Reservoirs of Antimicrobial Resistance Genes in a Complex Microbial Community Using Metagenomic Hi-C: The Case of Bovine Digital Dermatitis Ashenafi F. Beyi 1 , Alan Hassall 2, Gregory J. Phillips 1 and Paul J. Plummer 1,2,3,* 1 Veterinary Microbiology and Preventive Medicine, Iowa State University, Ames, IA 50011, USA; [email protected] (A.F.B.); [email protected] (G.J.P.) 2 Veterinary Diagnostic and Production Animal Medicine, Iowa State University, Ames, IA 50011, USA; [email protected] 3 National Institute of Antimicrobial Resistance Research and Education, Ames, IA 50010, USA * Correspondence: [email protected] Abstract: Bovine digital dermatitis (DD) is a contagious infectious cause of lameness in cattle with unknown definitive etiologies. Many of the bacterial species detected in metagenomic analyses of DD lesions are difficult to culture, and their antimicrobial resistance status is largely unknown. Recently, a novel proximity ligation-guided metagenomic approach (Hi-C ProxiMeta) has been used to identify bacterial reservoirs of antimicrobial resistance genes (ARGs) directly from microbial communities, without the need to culture individual bacteria. The objective of this study was to track tetracycline resistance determinants in bacteria involved in DD pathogenesis using Hi-C. A pooled sample of macerated tissues from clinical DD lesions was used for this purpose. Metagenome deconvolution Citation: Beyi, A.F.; Hassall, A.; ≥ Phillips, G.J.; Plummer, P.J. Tracking using ProxiMeta resulted in the creation of 40 metagenome-assembled genomes with 80% complete Reservoirs of Antimicrobial genomes, classified into five phyla. Further, 1959 tetracycline resistance genes and ARGs conferring Resistance Genes in a Complex resistance to aminoglycoside, beta-lactams, sulfonamide, phenicol, lincosamide, and erythromycin Microbial Community Using were identified along with their bacterial hosts.
    [Show full text]
  • Thi Na Utaliblat in Un Minune Talk
    THI NA UTALIBLATUS010064900B2 IN UN MINUNE TALK (12 ) United States Patent ( 10 ) Patent No. : US 10 , 064 ,900 B2 Von Maltzahn et al . ( 45 ) Date of Patent: * Sep . 4 , 2018 ( 54 ) METHODS OF POPULATING A (51 ) Int. CI. GASTROINTESTINAL TRACT A61K 35 / 741 (2015 . 01 ) A61K 9 / 00 ( 2006 .01 ) (71 ) Applicant: Seres Therapeutics, Inc. , Cambridge , (Continued ) MA (US ) (52 ) U . S . CI. CPC .. A61K 35 / 741 ( 2013 .01 ) ; A61K 9 /0053 ( 72 ) Inventors : Geoffrey Von Maltzahn , Boston , MA ( 2013. 01 ); A61K 9 /48 ( 2013 . 01 ) ; (US ) ; Matthew R . Henn , Somerville , (Continued ) MA (US ) ; David N . Cook , Brooklyn , (58 ) Field of Classification Search NY (US ) ; David Arthur Berry , None Brookline, MA (US ) ; Noubar B . See application file for complete search history . Afeyan , Lexington , MA (US ) ; Brian Goodman , Boston , MA (US ) ; ( 56 ) References Cited Mary - Jane Lombardo McKenzie , Arlington , MA (US ); Marin Vulic , U . S . PATENT DOCUMENTS Boston , MA (US ) 3 ,009 ,864 A 11/ 1961 Gordon - Aldterton et al. 3 ,228 ,838 A 1 / 1966 Rinfret (73 ) Assignee : Seres Therapeutics , Inc ., Cambridge , ( Continued ) MA (US ) FOREIGN PATENT DOCUMENTS ( * ) Notice : Subject to any disclaimer , the term of this patent is extended or adjusted under 35 CN 102131928 A 7 /2011 EA 006847 B1 4 / 2006 U .S . C . 154 (b ) by 0 days. (Continued ) This patent is subject to a terminal dis claimer. OTHER PUBLICATIONS ( 21) Appl . No. : 14 / 765 , 810 Aas, J ., Gessert, C . E ., and Bakken , J. S . ( 2003) . Recurrent Clostridium difficile colitis : case series involving 18 patients treated ( 22 ) PCT Filed : Feb . 4 , 2014 with donor stool administered via a nasogastric tube .
    [Show full text]
  • Genome-Based Taxonomic Classification Of
    ORIGINAL RESEARCH published: 20 December 2016 doi: 10.3389/fmicb.2016.02003 Genome-Based Taxonomic Classification of Bacteroidetes Richard L. Hahnke 1 †, Jan P. Meier-Kolthoff 1 †, Marina García-López 1, Supratim Mukherjee 2, Marcel Huntemann 2, Natalia N. Ivanova 2, Tanja Woyke 2, Nikos C. Kyrpides 2, 3, Hans-Peter Klenk 4 and Markus Göker 1* 1 Department of Microorganisms, Leibniz Institute DSMZ–German Collection of Microorganisms and Cell Cultures, Braunschweig, Germany, 2 Department of Energy Joint Genome Institute (DOE JGI), Walnut Creek, CA, USA, 3 Department of Biological Sciences, Faculty of Science, King Abdulaziz University, Jeddah, Saudi Arabia, 4 School of Biology, Newcastle University, Newcastle upon Tyne, UK The bacterial phylum Bacteroidetes, characterized by a distinct gliding motility, occurs in a broad variety of ecosystems, habitats, life styles, and physiologies. Accordingly, taxonomic classification of the phylum, based on a limited number of features, proved difficult and controversial in the past, for example, when decisions were based on unresolved phylogenetic trees of the 16S rRNA gene sequence. Here we use a large collection of type-strain genomes from Bacteroidetes and closely related phyla for Edited by: assessing their taxonomy based on the principles of phylogenetic classification and Martin G. Klotz, Queens College, City University of trees inferred from genome-scale data. No significant conflict between 16S rRNA gene New York, USA and whole-genome phylogenetic analysis is found, whereas many but not all of the Reviewed by: involved taxa are supported as monophyletic groups, particularly in the genome-scale Eddie Cytryn, trees. Phenotypic and phylogenomic features support the separation of Balneolaceae Agricultural Research Organization, Israel as new phylum Balneolaeota from Rhodothermaeota and of Saprospiraceae as new John Phillip Bowman, class Saprospiria from Chitinophagia.
    [Show full text]
  • Protease Activities of Vaginal Porphyromonas Species Disrupt Coagulation and Extracellular Matrix in the Cervicovaginal Niche
    bioRxiv preprint doi: https://doi.org/10.1101/2021.07.07.447795; this version posted July 7, 2021. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 1 Protease activities of vaginal Porphyromonas species disrupt coagulation and 2 extracellular matrix in the cervicovaginal niche 3 4 5 Karen V. Lithgow1, Vienna C.H. Buchholz1*, Emily Ku1, Shaelen Konschuh1, Ana D’Aubeterre1†, and Laura 6 K. Sycuro1,2,3,4,# 7 8 9 1Department of Microbiology, Immunology and Infectious Diseases, University of Calgary, Calgary, AB, 10 Canada 11 2Snyder Institute for Chronic Diseases, University of Calgary, Calgary, AB, Canada 12 3Alberta Children’s Hospital Research Institute, University of Calgary, Calgary, AB, Canada 13 4International Microbiome Centre, University of Calgary, Calgary, AB, Canada 14 15 16 #Corresponding author: Laura Sycuro, [email protected] 17 *Present affiliation: 18 Faculty of Medicine & Dentistry, University of Alberta, Edmonton, AB, Canada 19 †Present affiliation: 20 Department of Biological Sciences, University of Alberta, Edmonton, AB, Canada 21 22 Running Title: Protease activity of vaginal Porphyromonas species 23 24 Abstract: 240 words 25 Importance: 141 words 26 Main Text: 7540 words bioRxiv preprint doi: https://doi.org/10.1101/2021.07.07.447795; this version posted July 7, 2021. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 27 Abstract 28 Porphyromonas asaccahrolytica and Porphyromonas uenonis are frequently isolated from the human 29 vagina and are linked to bacterial vaginosis and preterm labour.
    [Show full text]
  • Meta-Analysis of Bovine Digital Dermatitis Microbiota Reveals Distinct Microbial Community Structures Associated with Lesions
    ORIGINAL RESEARCH published: 16 July 2021 doi: 10.3389/fcimb.2021.685861 Meta-Analysis of Bovine Digital Dermatitis Microbiota Reveals Distinct Microbial Community Structures Associated With Lesions Ben Caddey and Jeroen De Buck* Department of Production Animal Health, Faculty of Veterinary Medicine, University of Calgary, Calgary, AB, Canada Bovine digital dermatitis (DD) is a significant cause of infectious lameness and economic losses in cattle production across the world. There is a lack of a consensus across different 16S metagenomic studies on DD-associated bacteria that may be potential pathogens of the disease. The goal of this meta-analysis was to identify a consistent group of DD-associated bacteria in individual DD lesions across studies, regardless of experimental design choices including sample collection and preparation, hypervariable region sequenced, and sequencing platform. A total of 6 studies were included in this Edited by: fi Paul Plummer, meta-analysis. Raw sequences and metadata were identi ed on the NCBI sequence read Iowa State University, United States archive and European nucleotide archive. Bacterial community structures were Reviewed by: investigated between normal skin and DD skin samples. Random forest models were David Alt, generated to classify DD status based on microbial composition, and to identify taxa that United States Department of Agriculture (USDA), United States best differentiate DD status. Among all samples, members of Treponema, Mycoplasma, Michelle B. Visser, Porphyromonas, and Fusobacterium were consistently identified in the majority of DD University at Buffalo, United States lesions, and were the best genera at differentiating DD lesions from normal skin. Individual *Correspondence: fi fl fi Jeroen De Buck study and 16S hypervariable region sequenced had signi cant in uence on nal DD lesion [email protected] microbial composition (P < 0.05).
    [Show full text]
  • Porphyromonas Spp. Have an Extensive
    Porphyromonas spp. have an extensive host range in ill and healthy individuals and an unexpected environmental distribution: A systematic review and meta-analysis Luis Acuña-Amador, Frédérique Barloy-Hubler To cite this version: Luis Acuña-Amador, Frédérique Barloy-Hubler. Porphyromonas spp. have an extensive host range in ill and healthy individuals and an unexpected environmental distribution: A systematic review and meta-analysis. Anaerobe, Elsevier Masson, 2020, 66, pp.102280. 10.1016/j.anaerobe.2020.102280. hal-02974793 HAL Id: hal-02974793 https://hal.archives-ouvertes.fr/hal-02974793 Submitted on 16 Nov 2020 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. 1 Porphyromonas spp. have an extensive host range in ill and healthy individuals and an 2 unexpected environmental distribution: a systematic review and meta-analysis. 3 4 Luis Acuña-Amadora,* and Frédérique Barloy-Hublerb 5 6 aLaboratorio de Investigación en Bacteriología Anaerobia, Centro de Investigación en 7 Enfermedades Tropicales, Facultad de Microbiología, Universidad de Costa Rica, San José, 8 Costa Rica 9 bInstitut de Génétique et Développement de Rennes, IGDR-CNRS, UMR6290, Université de 10 Rennes 1, Rennes, France 11 * [email protected], +506 2511-8616 1 12 ABSTRACT 13 Studies on the anaerobic bacteria Porphyromonas, mainly focused on P.
    [Show full text]
  • 79493C7788c18ce2e14c5a36e8
    GBE Comparative Genomics of the Genus Porphyromonas Identifies Adaptations for Heme Synthesis within the Prevalent Canine Oral Species Porphyromonas cangingivalis Ciaran O’Flynn1,*, Oliver Deusch1, Aaron E. Darling2, Jonathan A. Eisen3,4,5, Corrin Wallis1,IanJ.Davis1,and Stephen J. Harris1 1The WALTHAM Centre for Pet Nutrition, Waltham-on-the-Wolds, United Kingdom 2The ithree Institute, University of Technology Sydney, Ultimo, New South Wales, Australia 3Department of Evolution and Ecology, University of California, Davis 4Department of Medical Microbiology and Immunology, University of California, Davis 5UC Davis Genome Center, University of California, Davis *Corresponding author: E-mail: ciaran.ofl[email protected]. Accepted: November 6, 2015 Abstract Porphyromonads play an important role in human periodontal disease and recently have been shown to be highly prevalent in canine mouths. Porphyromonas cangingivalis is the most prevalent canine oral bacterial species in both plaque from healthy gingiva and plaque from dogs with early periodontitis. The ability of P. cangingivalis to flourish in the different environmental conditions char- acterized by these two states suggests a degree of metabolic flexibility. To characterize the genes responsible for this, the genomes of 32 isolates (including 18 newly sequenced and assembled) from 18 Porphyromonad species from dogs, humans, and other mammals were compared. Phylogenetic trees inferred using core genes largely matched previous findings; however, comparative genomic analysis identified several genes and pathways relating to heme synthesis that were present in P. cangingivalis but not in other Porphyromonads. Porphyromonas cangingivalis has a complete protoporphyrin IX synthesis pathway potentially allowing it to syn- thesize its own heme unlike pathogenic Porphyromonads such as Porphyromonas gingivalis that acquire heme predominantly from blood.
    [Show full text]
  • Genome-Based Taxonomic Classification of Bacteroidetes
    Lawrence Berkeley National Laboratory Recent Work Title Genome-Based Taxonomic Classification of Bacteroidetes. Permalink https://escholarship.org/uc/item/2fs841cf Journal Frontiers in microbiology, 7(DEC) ISSN 1664-302X Authors Hahnke, Richard L Meier-Kolthoff, Jan P García-López, Marina et al. Publication Date 2016 DOI 10.3389/fmicb.2016.02003 Peer reviewed eScholarship.org Powered by the California Digital Library University of California ORIGINAL RESEARCH published: 20 December 2016 doi: 10.3389/fmicb.2016.02003 Genome-Based Taxonomic Classification of Bacteroidetes Richard L. Hahnke 1 †, Jan P. Meier-Kolthoff 1 †, Marina García-López 1, Supratim Mukherjee 2, Marcel Huntemann 2, Natalia N. Ivanova 2, Tanja Woyke 2, Nikos C. Kyrpides 2, 3, Hans-Peter Klenk 4 and Markus Göker 1* 1 Department of Microorganisms, Leibniz Institute DSMZ–German Collection of Microorganisms and Cell Cultures, Braunschweig, Germany, 2 Department of Energy Joint Genome Institute (DOE JGI), Walnut Creek, CA, USA, 3 Department of Biological Sciences, Faculty of Science, King Abdulaziz University, Jeddah, Saudi Arabia, 4 School of Biology, Newcastle University, Newcastle upon Tyne, UK The bacterial phylum Bacteroidetes, characterized by a distinct gliding motility, occurs in a broad variety of ecosystems, habitats, life styles, and physiologies. Accordingly, taxonomic classification of the phylum, based on a limited number of features, proved difficult and controversial in the past, for example, when decisions were based on unresolved phylogenetic trees of the 16S rRNA gene sequence. Here we use a large collection of type-strain genomes from Bacteroidetes and closely related phyla for Edited by: assessing their taxonomy based on the principles of phylogenetic classification and Martin G.
    [Show full text]