^^.^-3 Causal Diagrams for Empirical Research C^-J-H Di^^I^)
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Philosophy of Science and Philosophy of Chemistry
Philosophy of Science and Philosophy of Chemistry Jaap van Brakel Abstract: In this paper I assess the relation between philosophy of chemistry and (general) philosophy of science, focusing on those themes in the philoso- phy of chemistry that may bring about major revisions or extensions of cur- rent philosophy of science. Three themes can claim to make a unique contri- bution to philosophy of science: first, the variety of materials in the (natural and artificial) world; second, extending the world by making new stuff; and, third, specific features of the relations between chemistry and physics. Keywords : philosophy of science, philosophy of chemistry, interdiscourse relations, making stuff, variety of substances . 1. Introduction Chemistry is unique and distinguishes itself from all other sciences, with respect to three broad issues: • A (variety of) stuff perspective, requiring conceptual analysis of the notion of stuff or material (Sections 4 and 5). • A making stuff perspective: the transformation of stuff by chemical reaction or phase transition (Section 6). • The pivotal role of the relations between chemistry and physics in connection with the question how everything fits together (Section 7). All themes in the philosophy of chemistry can be classified in one of these three clusters or make contributions to general philosophy of science that, as yet , are not particularly different from similar contributions from other sci- ences (Section 3). I do not exclude the possibility of there being more than three clusters of philosophical issues unique to philosophy of chemistry, but I am not aware of any as yet. Moreover, highlighting the issues discussed in Sections 5-7 does not mean that issues reviewed in Section 3 are less im- portant in revising the philosophy of science. -
Graphical Models for Discrete and Continuous Data Arxiv:1609.05551V3
Graphical Models for Discrete and Continuous Data Rui Zhuang Department of Biostatistics, University of Washington and Noah Simon Department of Biostatistics, University of Washington and Johannes Lederer Department of Mathematics, Ruhr-University Bochum June 18, 2019 Abstract We introduce a general framework for undirected graphical models. It generalizes Gaussian graphical models to a wide range of continuous, discrete, and combinations of different types of data. The models in the framework, called exponential trace models, are amenable to estimation based on maximum likelihood. We introduce a sampling-based approximation algorithm for computing the maximum likelihood estimator, and we apply this pipeline to learn simultaneous neural activities from spike data. Keywords: Non-Gaussian Data, Graphical Models, Maximum Likelihood Estimation arXiv:1609.05551v3 [math.ST] 15 Jun 2019 1 Introduction Gaussian graphical models (Drton & Maathuis 2016, Lauritzen 1996, Wainwright & Jordan 2008) describe the dependence structures in normally distributed random vectors. These models have become increasingly popular in the sciences, because their representation of the dependencies is lucid and can be readily estimated. For a brief overview, consider a 1 random vector X 2 Rp that follows a centered normal distribution with density 1 −x>Σ−1x=2 fΣ(x) = e (1) (2π)p=2pjΣj with respect to Lebesgue measure, where the population covariance Σ 2 Rp×p is a symmetric and positive definite matrix. Gaussian graphical models associate these densities with a graph (V; E) that has vertex set V := f1; : : : ; pg and edge set E := f(i; j): i; j 2 −1 f1; : : : ; pg; i 6= j; Σij 6= 0g: The graph encodes the dependence structure of X in the sense that any two entries Xi;Xj; i 6= j; are conditionally independent given all other entries if and only if (i; j) 2= E. -
Aristotle's Anticommunism Author(S): Darrell Dobbs Source: American Journal of Political Science, Vol
Aristotle's Anticommunism Author(s): Darrell Dobbs Source: American Journal of Political Science, Vol. 29, No. 1 (Feb., 1985), pp. 29-46 Published by: Midwest Political Science Association Stable URL: http://www.jstor.org/stable/2111210 Accessed: 10/12/2010 23:50 Your use of the JSTOR archive indicates your acceptance of JSTOR's Terms and Conditions of Use, available at http://www.jstor.org/page/info/about/policies/terms.jsp. JSTOR's Terms and Conditions of Use provides, in part, that unless you have obtained prior permission, you may not download an entire issue of a journal or multiple copies of articles, and you may use content in the JSTOR archive only for your personal, non-commercial use. Please contact the publisher regarding any further use of this work. Publisher contact information may be obtained at http://www.jstor.org/action/showPublisher?publisherCode=mpsa. Each copy of any part of a JSTOR transmission must contain the same copyright notice that appears on the screen or printed page of such transmission. JSTOR is a not-for-profit service that helps scholars, researchers, and students discover, use, and build upon a wide range of content in a trusted digital archive. We use information technology and tools to increase productivity and facilitate new forms of scholarship. For more information about JSTOR, please contact [email protected]. Midwest Political Science Association is collaborating with JSTOR to digitize, preserve and extend access to American Journal of Political Science. http://www.jstor.org Aristotle'sAnticommunism DarrellDobbs, Universityof Houston This essayexamines Aristotle's critical review of Plato's Republic,the focus of whichreview is restricted,surprisingly, to Socrates'communistic political institutions; Aristotle hardly men- tionsany of theother important themes developed in thedialogue. -
Introduction: the New Metaphysics of Time Over the Last Several Years
History and Theory, Virtual Issue 1 (August 2012) © Wesleyan University 2012 ISSN: 1468-2303 INTRODUCTION: THE NEW METAPHYSICS OF TIME ETHAN KLEINBERG Over the last several years, the editors of History and Theory have tracked a growing trend evident not only in the articles published in our pages but also in manuscripts submitted to the journal as well as articles published in other venues. In the broadest strokes, this trend can be described as a response to the perceived limitations of a discourse predicated on language, rhetoric, and the question of representation. Whether one subscribes to the idea that historians and theorists of history took a “linguistic turn” in the 1980s,1 an increasing number of articles and monographs have taken issue with the general influence of French “post- structuralism” or “postmodernism,” with constructivism, and specifically with the work of Hayden White. These works seek to address the perceived faults of an overemphasis on the issues of “language” and representation that has obscured or misdirected the goal of actually addressing the past by perpetually worrying over how we might go about that task. Combined with the growing interest in material culture, the ways of science, and the nature of the body, it is hard to doubt the return to the real. But what strikes us as most interesting about this trend is the way that some of these theorists have sought to move beyond the emphasis on language and representation not by returning to a crude variant of objectivism or empiricism but by re-examining our relationship to the past and the past’s very nature and by attempting to construct a new metaphysics of time. -
1 the University of Chicago the Harris School of Public
THE UNIVERSITY OF CHICAGO THE HARRIS SCHOOL OF PUBLIC POLICY PPHA 421: APPLIED ECONOMETRICS II Spring 2016: Mondays and Wednesdays 10:30 – 11:50 pm, Room 140C Instructor: Professor Koichiro Ito 157 Harris School [email protected] Office hours: Mondays 3-4pm TA: Katherine Goulde: [email protected] Course Description The goal of this course is for students to learn a set of statistical tools and research designs that are useful in conducting high-quality empirical research on topics in applied microeconomics and related fields. Since most applied economic research examines questions with direct policy implications, this course will focus on methods for estimating causal effects. This course differs from many other econometrics courses in that it is oriented towards applied practitioners rather than future econometricians. It therefore emphasizes research design (relative to statistical technique) and applications (relative to theoretical proofs), though it covers some of each. Prerequisites PPHA42000 (Applied Econometrics I) is the prerequisite for this course. Students should be familiar with graduate school level probability and statistics, matrix algebra, and the classical linear regression model at the level of PPHA420. In the Economics department, the equivalent level of preparation would be the 1st year Ph.D. econometrics coursework. In general, I do not recommend taking this course if you have not taken PPHA420: Applied Econometrics I or a Ph.D. level econometrics coursework. This course is a core course for Ph.D. students and MACRM students at Harris School. Those who are not in the Harris Ph.D. program, the MACRM program, or the economics Ph.D. program need permission from the instructor to take the course. -
Graphical Models
Graphical Models Michael I. Jordan Computer Science Division and Department of Statistics University of California, Berkeley 94720 Abstract Statistical applications in fields such as bioinformatics, information retrieval, speech processing, im- age processing and communications often involve large-scale models in which thousands or millions of random variables are linked in complex ways. Graphical models provide a general methodology for approaching these problems, and indeed many of the models developed by researchers in these applied fields are instances of the general graphical model formalism. We review some of the basic ideas underlying graphical models, including the algorithmic ideas that allow graphical models to be deployed in large-scale data analysis problems. We also present examples of graphical models in bioinformatics, error-control coding and language processing. Keywords: Probabilistic graphical models; junction tree algorithm; sum-product algorithm; Markov chain Monte Carlo; variational inference; bioinformatics; error-control coding. 1. Introduction The fields of Statistics and Computer Science have generally followed separate paths for the past several decades, which each field providing useful services to the other, but with the core concerns of the two fields rarely appearing to intersect. In recent years, however, it has become increasingly evident that the long-term goals of the two fields are closely aligned. Statisticians are increasingly concerned with the computational aspects, both theoretical and practical, of models and inference procedures. Computer scientists are increasingly concerned with systems that interact with the external world and interpret uncertain data in terms of underlying probabilistic models. One area in which these trends are most evident is that of probabilistic graphical models. -
Donald Rubin Three-Day Course in Causality 5 to 7 February 2020 At
Donald Rubin Three-day Course in Causality 5 to 7 February 2020 at Waldhotel Doldenhorn, Kandersteg About the Course Most questions in social and biomedical sciences are causal in nature: what would happen to individuals, or to groups, if part of their environment were changed? In the course, the world-renowned expert Donald Rubin (Prof. em. Harvard) presents statistical methods for studying such questions. The course will follow his book Causal Inference for Statistics, Social, and Biomedical Sciences (Cambridge University Press, 2016) and starts with the notion of potential outcomes, each corresponding to the outcome that would be realized if a subject were exposed to a particular treatment or regime. In this approach, causal effects are comparisons of such potential outcomes. The fundamental problem of causal inference is that we can only observe one of the potential outcomes for a particular subject. Prof. Rubin will discuss how randomized experiments allow us to assess causal effects and then turn to observational studies. They lay out the assumptions needed for causal inference and describe the leading analysis methods, including matching, propensity-score methods, and instrumental variables. Many detailed applications will be shown, with special focus on practical aspects for the empirical researcher. About the Lecturer Donald B. Rubin is Professor Emeritus of Statistics, Harvard University, where he has been professor from 1984 to 2018 and department chair for fifteen years. Since 2018 he is professor at the Yau Mathematical Sciences Center, Tsinghua University, China, and Murray Shusterman Senior Research Fellow at the Department of Statistical Science, Fox School of Business, Temple University, Philadelphia. -
Theory with Applications to Voting and Deliberation Experiments!
Randomized Evaluation of Institutions: Theory with Applications to Voting and Deliberation Experiments Yves Atchadey and Leonard Wantchekonz June 24, 2009 Abstract We study causal inference in randomized experiments where the treatment is a decision making process or an institution such as voting, deliberation or decentralized governance. We provide a statistical framework for the estimation of the intrinsic e¤ect of the institution. The proposed framework builds on a standard set-up for estimating causal e¤ects in randomized experiments with noncompliance (Hirano-Imbens-Rubin-Zhou [2000]). We use the model to re- analyze the e¤ect of deliberation on voting for programmatic platforms in Benin (Wantchekon [2008]), and provide practical suggestions for the implementation and analysis of experiments involving institutions. 1 Introduction Randomized experiments are a widely accepted approach to infer causal relations in statis- tics and the social sciences. The idea dates back at least to Neyman (1923) and Fisher (1935) and has been extended by D. Rubin and coauthors (Rubin (1974), Rubin (1978), Rosenbaum and Rubin (1983)) to observational studies and to other more general experimental designs. In this approach, causality is de…ned in terms of potential outcomes. The causal e¤ect of a treatment, say Treatment 1 (compared to another treatment, Treatment 0) on the variable Y and on the statistical unit i is de…ned as Y i(1) Y i(0) (or its expected value) where Y i(j) is the value we would observe on unit i if it receives Treatment j. The estimation of this e¤ect is problematic because unit i cannot be given both Treatment 1 and Treatment 0. -
Visualizing Research Collaboration in Statistical Science: a Scientometric
University of Nebraska - Lincoln DigitalCommons@University of Nebraska - Lincoln Library Philosophy and Practice (e-journal) Libraries at University of Nebraska-Lincoln 9-13-2019 Visualizing Research Collaboration in Statistical Science: A Scientometric Perspective Prabir Kumar Das Library, Documentation & Information Science Division, Indian Statistical Institute, 203 B T Road, Kolkata - 700108, [email protected] Follow this and additional works at: https://digitalcommons.unl.edu/libphilprac Part of the Library and Information Science Commons Das, Prabir Kumar, "Visualizing Research Collaboration in Statistical Science: A Scientometric Perspective" (2019). Library Philosophy and Practice (e-journal). 3039. https://digitalcommons.unl.edu/libphilprac/3039 Viisualliiziing Research Collllaborattiion iin Sttattiisttiicall Sciience:: A Sciienttomettriic Perspecttiive Prrabiirr Kumarr Das Sciienttiiffiic Assssiissttantt – A Liibrrarry,, Documenttattiion & IInfforrmattiion Sciience Diiviisiion,, IIndiian Sttattiisttiicall IInsttiittutte,, 203,, B.. T.. Road,, Kollkatta – 700108,, IIndiia,, Emaiill:: [email protected] Abstract Using Sankhyā – The Indian Journal of Statistics as a case, present study aims to identify scholarly collaboration pattern of statistical science based on research articles appeared during 2008 to 2017. This is an attempt to visualize and quantify statistical science research collaboration in multiple dimensions by exploring the co-authorship data. It investigates chronological variations of collaboration pattern, nodes and links established among the affiliated institutions and countries of all contributing authors. The study also examines the impact of research collaboration on citation scores. Findings reveal steady influx of statistical publications with clear tendency towards collaborative ventures, of which double-authored publications dominate. Small team of 2 to 3 authors is responsible for production of majority of collaborative research, whereas mega-authored communications are quite low. -
Arxiv:1805.08845V4 [Stat.ML] 10 Jul 2021 Outcomes Such As Images, Sequences, and Graphs
Counterfactual Mean Embeddings Krikamol Muandet∗ [email protected] Max Planck Institute for Intelligent Systems Tübingen, Germany Motonobu Kanagaway [email protected] Data Science Department, EURECOM Sophia Antipolis, France Sorawit Saengkyongam [email protected] University of Copenhagen Copenhagen, Denmark Sanparith Marukatat [email protected] National Electronics and Computer Technology Center National Science and Technology Development Agency Pathumthani, Thailand Abstract Counterfactual inference has become a ubiquitous tool in online advertisement, recommen- dation systems, medical diagnosis, and econometrics. Accurate modelling of outcome distri- butions associated with different interventions—known as counterfactual distributions—is crucial for the success of these applications. In this work, we propose to model counter- factual distributions using a novel Hilbert space representation called counterfactual mean embedding (CME). The CME embeds the associated counterfactual distribution into a reproducing kernel Hilbert space (RKHS) endowed with a positive definite kernel, which allows us to perform causal inference over the entire landscape of the counterfactual distri- bution. Based on this representation, we propose a distributional treatment effect (DTE) which can quantify the causal effect over entire outcome distributions. Our approach is nonparametric as the CME can be estimated under the unconfoundedness assumption from observational data without requiring any parametric assumption about the underlying dis- tributions. We also establish a rate of convergence of the proposed estimator which depends on the smoothness of the conditional mean and the Radon-Nikodym derivative of the un- derlying marginal distributions. Furthermore, our framework allows for more complex arXiv:1805.08845v4 [stat.ML] 10 Jul 2021 outcomes such as images, sequences, and graphs. -
Kant's Doctrine of Schemata
Kant’s Doctrine of Schemata By Joseph L. Hunter Thesis submitted to the faculty of Virginia Polytechnic Institute and State University in partial fulfillment of the requirements for the degree of MASTERS OF ARTS IN PHILOSOPHY APPROVED: _______________________________ Eric Watkins, Chair _______________________________ _______________________________ Roger Ariew Joseph C. Pitt August 25, 1999 Blacksburg, Virginia Keywords: Kant, Schemata, Experience, Knowledge, Categories, Construction, Mathematics. i Kant’s Doctrine of Shemata Joseph L. Hunter (ABSTRACT) The following is a study of what may be the most puzzling and yet, at the same time, most significant aspect of Kant’s system: his theory of schemata. I will argue that Kant’s commentators have failed to make sense of this aspect of Kant’s philosophy. A host of questions have been left unanswered, and the doctrine remains a puzzle. While this study is not an attempt to construct a complete, satisfying account of the doctrine, it should be seen as a step somewhere on the road of doing so, leaving much work to be done. I will contend that one way that we may shed light on Kant’s doctrine of schemata is to reconsider the manner in which Kant employs schemata in his mathematics. His use of the schemata there may provide some inkling into the nature of transcendental schemata and, in doing so, provide some hints at how the transcendental schemata allow our representations of objects to be subsumed under the pure concepts of the understanding. In many ways, then, the aims of the study are modest: instead of a grand- scale interpretation of Kant's philosophy, a detailed textual analysis and interpretation are presented of his doctrine of schemata. -
The Neyman-Rubin Model of Causal Inference and Estimation Via Matching Methods∗
The Neyman-Rubin Model of Causal Inference and Estimation via Matching Methods∗ Forthcoming in The Oxford Handbook of Political Methodology, Janet Box-Steffensmeier, Henry Brady, and David Collier, eds. Jasjeet S. Sekhon † 11/16/2007 (15:57) ∗I thank Henry Brady, Wendy Tam Cho, David Collier and Roc´ıo Titiunik for valuable comments on earlier drafts, and David Freedman, Walter R. Mebane, Jr., Donald Rubin and Jonathan N. Wand for many valuable discussions on these topics. All errors are my responsibility. †Associate Professor, Travers Department of Political Science, Survey Research Center, UC Berkeley. [email protected], HTTP://sekhon.berkeley.edu/, 510.642.9974. “Correlation does not imply causation” is one of the most repeated mantras in the social sciences, but its full implications are sobering and often ignored. The Neyman-Rubin model of causal inference helps to clarify some of the issues which arise. In this chapter, the model is briefly described, and some consequences of the model are outlined for both quantitative and qualitative research. The model has radical implications for work in the social sciences given current practices. Matching methods, which are usually motivated by the Neyman-Rubin model, are reviewed and their properties discussed. For example, applied researchers are often surprised to learn that even if the selection on observables assumption is satisfied, the commonly used matching methods will generally make even linear bias worse unless specific and often implausible assumptions are satisfied. Some of the intuition of matching methods, such as propensity score matching, should be familiar to social scientists because they share many features with Mill’s methods, or canons, of inference.