Simms, M.J. 2008A. Licheneering Around Ireland
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Diptera: Calyptratae)
Systematic Entomology (2020), DOI: 10.1111/syen.12443 Protein-encoding ultraconserved elements provide a new phylogenomic perspective of Oestroidea flies (Diptera: Calyptratae) ELIANA BUENAVENTURA1,2 , MICHAEL W. LLOYD2,3,JUAN MANUEL PERILLALÓPEZ4, VANESSA L. GONZÁLEZ2, ARIANNA THOMAS-CABIANCA5 andTORSTEN DIKOW2 1Museum für Naturkunde, Leibniz Institute for Evolution and Biodiversity Science, Berlin, Germany, 2National Museum of Natural History, Smithsonian Institution, Washington, DC, U.S.A., 3The Jackson Laboratory, Bar Harbor, ME, U.S.A., 4Department of Biological Sciences, Wright State University, Dayton, OH, U.S.A. and 5Department of Environmental Science and Natural Resources, University of Alicante, Alicante, Spain Abstract. The diverse superfamily Oestroidea with more than 15 000 known species includes among others blow flies, flesh flies, bot flies and the diverse tachinid flies. Oestroidea exhibit strikingly divergent morphological and ecological traits, but even with a variety of data sources and inferences there is no consensus on the relationships among major Oestroidea lineages. Phylogenomic inferences derived from targeted enrichment of ultraconserved elements or UCEs have emerged as a promising method for resolving difficult phylogenetic problems at varying timescales. To reconstruct phylogenetic relationships among families of Oestroidea, we obtained UCE loci exclusively derived from the transcribed portion of the genome, making them suitable for larger and more integrative phylogenomic studies using other genomic and transcriptomic resources. We analysed datasets containing 37–2077 UCE loci from 98 representatives of all oestroid families (except Ulurumyiidae and Mystacinobiidae) and seven calyptrate outgroups, with a total concatenated aligned length between 10 and 550 Mb. About 35% of the sampled taxa consisted of museum specimens (2–92 years old), of which 85% resulted in successful UCE enrichment. -
Fauna and Flora Before Rutland Water Mike Griffin Introduction
Fauna and Flora before RW 7/10/07 13:14 Page 1 Chapter 23 Fauna and Flora before Rutland Water Mike Griffin Introduction The Rutland Natural History Society (RNHS) was formed by a small group of enthusiasts in February 1965 with William (Dusty) Miller as its first Chairman and Roy Hunter as Secretary. Thus, when the construction of Rutland Water was approved by Parliament in 1970, the RNHS realised the importance of undertaking a detailed survey of fauna and flora in that area of the Gwash Valley to be flooded, before it was lost for ever. The original proposal for a survey was made by Dr Erica Hutton who was a founder member of the RNHS and its Chairperson from 1974-77. It was recognised that the major influences on fauna and flora would be the earth-moving activities, especially in the vicinity of the dam and the main basin, the clearance of trees and hedges, the demolition of houses and other buildings and, finally, the rising water levels as the reservoir filled. The RNHS’s aim was to complete at least one full survey in advance of any of these activities. Over much of the reservoir area, this aim was achieved for birds, insects and plants. Further surveys continued where possible during the construction period. Vegetation clearance commenced in early autumn 1971 in the dam area close to Empingham, before any surveys began. However, this affected only a relatively small part of the total area covered by the reservoir project. The last areas to be cleared, in early 1974, were the east part of Barnsdale Wood and that part of Burley Wood along the diverted A606. -
They Walk Among Us: the Rise of Citizen Science
August 2016 Journal of the Institution of Environmental Sciences The rise of citizen science THEY WALK AMONG US THE RISE OF CITIZEN SCIENCE EDITORIAL CONTENTS > CASE STUDY 12 Bat Detective: citizen science for eco-acoustic biodiversity monitoring Rory Gibb, Oisin Mac Aodha, and Kate E. Jones describe how improvements Citizen science – in technology are enabling the public to assist in monitoring global bat populations using sound. a research revolution? CASE STUDY 18 The impact of citizen science on research about artificial light at night nvironmental science lags way behind the traditional example, but citizen scientists do not have to work outdoors. Sibylle Schroer, Oscar Corcho and Franz Hölker highlight the negative impact sciences in prestige and resources. Whilst quasi- Non-specialists have been trained to scan satellite imagery of artificial light at night and how society can help to reduce it. professional physicists and chemists were securing for wildebeests in the Serengeti, penguins in the Antarctic, E and African migrant groups affected by environmental endowments for prestigious societies in the seventeenth FEATURE 42 century, environmental science remained principally catastrophes who require emergency aid. Building a new biodiversity data infrastructure the province of rural clergymen, and later, of Victorian to support citizen science ladies who collected flowers. There were exceptions – For research scientists wanting access to national scale Rachel Stroud and Ella Vogel introduce the new and emerging, Atlas of monitoring, these new enthusiasts are a bonus, and for the distinguished tradition of thousands of amateur Living Scotland, as the future template for UK wide data infrastructure for many participants the educational benefits are immediately biodiversity. -
List of Vascular Plants Endemic to Britain, Ireland and the Channel Islands 2020
British & Irish Botany 2(3): 169-189, 2020 List of vascular plants endemic to Britain, Ireland and the Channel Islands 2020 Timothy C.G. Rich Cardiff, U.K. Corresponding author: Tim Rich: [email protected] This pdf constitutes the Version of Record published on 31st August 2020 Abstract A list of 804 plants endemic to Britain, Ireland and the Channel Islands is broken down by country. There are 659 taxa endemic to Britain, 20 to Ireland and three to the Channel Islands. There are 25 endemic sexual species and 26 sexual subspecies, the remainder are mostly critical apomictic taxa. Fifteen endemics (2%) are certainly or probably extinct in the wild. Keywords: England; Northern Ireland; Republic of Ireland; Scotland; Wales. Introduction This note provides a list of vascular plants endemic to Britain, Ireland and the Channel Islands, updating the lists in Rich et al. (1999), Dines (2008), Stroh et al. (2014) and Wyse Jackson et al. (2016). The list includes endemics of subspecific rank or above, but excludes infraspecific taxa of lower rank and hybrids (for the latter, see Stace et al., 2015). There are, of course, different taxonomic views on some of the taxa included. Nomenclature, taxonomic rank and endemic status follows Stace (2019), except for Hieracium (Sell & Murrell, 2006; McCosh & Rich, 2018), Ranunculus auricomus group (A. C. Leslie in Sell & Murrell, 2018), Rubus (Edees & Newton, 1988; Newton & Randall, 2004; Kurtto & Weber, 2009; Kurtto et al. 2010, and recent papers), Taraxacum (Dudman & Richards, 1997; Kirschner & Štepànek, 1998 and recent papers) and Ulmus (Sell & Murrell, 2018). Ulmus is included with some reservations, as many taxa are largely vegetative clones which may occasionally reproduce sexually and hence may not merit species status (cf. -
The Maria Curie-Skłodowska University Botanical Garden in Lublin As a Refuge of the Moths (Lepidoptera: Heterocera) Within the City
Acta Biologica 23/2016 | www.wnus.edu.pl/ab | DOI: 10.18276/ab.2016.23-02 | strony 15–34 The Maria Curie-Skłodowska University Botanical Garden in Lublin as a refuge of the moths (Lepidoptera: Heterocera) within the city Łukasz Dawidowicz,1 Halina Kucharczyk2 Department of Zoology, Maria Curie-Skłodowska University, Akademicka 19, 20-033 Lublin, Poland 1 e-mail: [email protected] 2 e-mail: [email protected] Keywords biodiversity, urban fauna, faunistics, city, species composition, rare species, conservation Abstract In 2012 and 2013, 418 species of moths at total were recorded in the Botanical Garden of the Maria Curie-Skłodowska University in Lublin. The list comprises 116 species of Noctuidae (26.4% of the Polish fauna), 116 species of Geometridae (28.4% of the Polish fauna) and 63 species of other Macrolepidoptera representatives (27.9% of the Polish fauna). The remaining 123 species were represented by Microlepidoptera. Nearly 10% of the species were associated with wetland habitats, what constitutes a surprisingly large proportion in such an urbanised area. Comparing the obtained data with previous studies concerning Polish urban fauna of Lepidoptera, the moths assemblages in the Botanical Garden were the most similar to the one from the Natolin Forest Reserve which protects the legacy of Mazovian forests. Several recorded moths appertain to locally and rarely encountered species, as Stegania cararia, Melanthia procellata, Pasiphila chloerata, Eupithecia haworthiata, Horisme corticata, Xylomoia graminea, Polychrysia moneta. In the light of the conducted studies, the Botanical Garden in Lublin stands out as quite high biodiversity and can be regarded as a refuge for moths within the urban limits of Lublin. -
Lepidoptera of North America 5
Lepidoptera of North America 5. Contributions to the Knowledge of Southern West Virginia Lepidoptera Contributions of the C.P. Gillette Museum of Arthropod Diversity Colorado State University Lepidoptera of North America 5. Contributions to the Knowledge of Southern West Virginia Lepidoptera by Valerio Albu, 1411 E. Sweetbriar Drive Fresno, CA 93720 and Eric Metzler, 1241 Kildale Square North Columbus, OH 43229 April 30, 2004 Contributions of the C.P. Gillette Museum of Arthropod Diversity Colorado State University Cover illustration: Blueberry Sphinx (Paonias astylus (Drury)], an eastern endemic. Photo by Valeriu Albu. ISBN 1084-8819 This publication and others in the series may be ordered from the C.P. Gillette Museum of Arthropod Diversity, Department of Bioagricultural Sciences and Pest Management Colorado State University, Fort Collins, CO 80523 Abstract A list of 1531 species ofLepidoptera is presented, collected over 15 years (1988 to 2002), in eleven southern West Virginia counties. A variety of collecting methods was used, including netting, light attracting, light trapping and pheromone trapping. The specimens were identified by the currently available pictorial sources and determination keys. Many were also sent to specialists for confirmation or identification. The majority of the data was from Kanawha County, reflecting the area of more intensive sampling effort by the senior author. This imbalance of data between Kanawha County and other counties should even out with further sampling of the area. Key Words: Appalachian Mountains, -
Checklists of Protected and Threatened Species in Ireland
ISSN 1393 – 6670 N A T I O N A L P A R K S A N D W I L D L I F E S ERVICE CHECKLISTS OF PROTECTED AND THREATENED SPECIES IN IRELAND Brian Nelson, Sinéad Cummins, Loraine Fay, Rebecca Jeffrey, Seán Kelly, Naomi Kingston, Neil Lockhart, Ferdia Marnell, David Tierney and Mike Wyse Jackson I R I S H W I L D L I F E M ANUAL S 116 National Parks and Wildlife Service (NPWS) commissions a range of reports from external contractors to provide scientific evidence and advice to assist it in its duties. The Irish Wildlife Manuals series serves as a record of work carried out or commissioned by NPWS, and is one means by which it disseminates scientific information. Others include scientific publications in peer reviewed journals. The views and recommendations presented in this report are not necessarily those of NPWS and should, therefore, not be attributed to NPWS. Front cover, small photographs from top row: Coastal heath, Howth Head, Co. Dublin, Maurice Eakin; Red Squirrel Sciurus vulgaris, Eddie Dunne, NPWS Image Library; Marsh Fritillary Euphydryas aurinia, Brian Nelson; Puffin Fratercula arctica, Mike Brown, NPWS Image Library; Long Range and Upper Lake, Killarney National Park, NPWS Image Library; Limestone pavement, Bricklieve Mountains, Co. Sligo, Andy Bleasdale; Meadow Saffron Colchicum autumnale, Lorcan Scott; Barn Owl Tyto alba, Mike Brown, NPWS Image Library; A deep water fly trap anemone Phelliactis sp., Yvonne Leahy; Violet Crystalwort Riccia huebeneriana, Robert Thompson Main photograph: Short-beaked Common Dolphin Delphinus delphis, -
Unitary Or Unified Taxonomy?
Published online 23 March 2004 Unitary or unified taxonomy? Malcolm J. Scoble Department of Entomology, The Natural History Museum, Cromwell Road, London SW7 5BD, UK ([email protected]) Taxonomic data form a substantial, but scattered, resource. The alternative to such a fragmented system is a ‘unitary’ one of preferred, consensual classifications. For effective access and distribution the (Web) revision for a given taxon would be established at a single Internet site. Although all the international codes of nomenclature currently preclude the Internet as a valid medium of publication, elements of unitary taxonomy (UT) still exist in the paper system. Much taxonomy, unitary or not, already resides on the Web. Arguments for and against adopting a unitary approach are considered and a resolution is attempted. Rendering taxonomy essentially Web-based is as inevitable as it is desirable. Apparently antithetical to the UT proposal is the view that in reality multiple classifications of the same taxon exist, since different taxonomists often hold different concepts of their taxa: a single name may apply to many different (frequently overlapping) circumscriptions and more than one name to a single taxon. However, novel means are being developed on single Internet sites to retain the diversity of multiple concepts for taxa, providing hope that taxonomy may become established as a Web-based information discipline that will unify the discipline and facilitate data access. Keywords: unitary taxonomy; Web revisions; taxonomy; Internet; multiple classifications 1. INTRODUCTION of ‘the field of taxoinformatics’ was another of Ashbur- ner’s concerns. Progress will surely need continued and If taxonomy were ever to be funded in proportion to the much expanded engagement with the Internet as the fast amount it is discussed, there might be less concern about evolving medium for providing access to information cur- its purported decline. -
Jordan Beans RA RMO Dir
Importation of Fresh Beans (Phaseolus vulgaris L.), Shelled or in Pods, from Jordan into the Continental United States A Qualitative, Pathway-Initiated Risk Assessment February 14, 2011 Version 2 Agency Contact: Plant Epidemiology and Risk Analysis Laboratory Center for Plant Health Science and Technology United States Department of Agriculture Animal and Plant Health Inspection Service Plant Protection and Quarantine 1730 Varsity Drive, Suite 300 Raleigh, NC 27606 Pest Risk Assessment for Beans from Jordan Executive Summary In this risk assessment we examined the risks associated with the importation of fresh beans (Phaseolus vulgaris L.), in pods (French, green, snap, and string beans) or shelled, from the Kingdom of Jordan into the continental United States. We developed a list of pests associated with beans (in any country) that occur in Jordan on any host based on scientific literature, previous commodity risk assessments, records of intercepted pests at ports-of-entry, and information from experts on bean production. This is a qualitative risk assessment, as we express estimates of risk in descriptive terms (High, Medium, and Low) rather than numerically in probabilities or frequencies. We identified seven quarantine pests likely to follow the pathway of introduction. We estimated Consequences of Introduction by assessing five elements that reflect the biology and ecology of the pests: climate-host interaction, host range, dispersal potential, economic impact, and environmental impact. We estimated Likelihood of Introduction values by considering both the quantity of the commodity imported annually and the potential for pest introduction and establishment. We summed the Consequences of Introduction and Likelihood of Introduction values to estimate overall Pest Risk Potentials, which describe risk in the absence of mitigation. -
State of Nature in the Peak District What We Know About the Key Habitats and Species of the Peak District
Nature Peak District State of Nature in the Peak District What we know about the key habitats and species of the Peak District Penny Anderson 2016 On behalf of the Local Nature Partnership Contents 1.1 The background .............................................................................................................................. 4 1.2 The need for a State of Nature Report in the Peak District ............................................................ 6 1.3 Data used ........................................................................................................................................ 6 1.4 The knowledge gaps ....................................................................................................................... 7 1.5 Background to nature in the Peak District....................................................................................... 8 1.6 Habitats in the Peak District .......................................................................................................... 12 1.7 Outline of the report ...................................................................................................................... 12 2 Moorlands .............................................................................................................................................. 14 2.1 Key points ..................................................................................................................................... 14 2.2 Nature and value .......................................................................................................................... -
Conservation and Management of Eastern Big-Eared Bats a Symposium
Conservation and Management of Eastern Big-eared Bats A Symposium y Edited b Susan C. Loeb, Michael J. Lacki, and Darren A. Miller U.S. Department of Agriculture Forest Service Southern Research Station General Technical Report SRS-145 DISCLAIMER The use of trade or firm names in this publication is for reader information and does not imply endorsement by the U.S. Department of Agriculture of any product or service. Papers published in these proceedings were submitted by authors in electronic media. Some editing was done to ensure a consistent format. Authors are responsible for content and accuracy of their individual papers and the quality of illustrative materials. Cover photos: Large photo: Craig W. Stihler; small left photo: Joseph S. Johnson; small middle photo: Craig W. Stihler; small right photo: Matthew J. Clement. December 2011 Southern Research Station 200 W.T. Weaver Blvd. Asheville, NC 28804 Conservation and Management of Eastern Big-eared Bats: A Symposium Athens, Georgia March 9–10, 2010 Edited by: Susan C. Loeb U.S Department of Agriculture Forest Service Southern Research Station Michael J. Lacki University of Kentucky Darren A. Miller Weyerhaeuser NR Company Sponsored by: Forest Service Bat Conservation International National Council for Air and Stream Improvement (NCASI) Warnell School of Forestry and Natural Resources Offield Family Foundation ContEntS Preface . v Conservation and Management of Eastern Big-Eared Bats: An Introduction . 1 Susan C. Loeb, Michael J. Lacki, and Darren A. Miller Distribution and Status of Eastern Big-eared Bats (Corynorhinus Spp .) . 13 Mylea L. Bayless, Mary Kay Clark, Richard C. Stark, Barbara S. -
Biology of Blue Butterfly Lampides Boeticus (L.) on Field Pea
20062--Manisha 31 July-2020 Indian Journal of Entomology Online published (Preview) DoI No.: BIOLOGY OF BLUE BUTTERFLY LAMPIDES BOETICUS (L.) ON FIELD PEA Manisha*, Tarun Verma, Gulshan Kumar and Roshan Lal Department of Entomology, College of Agriculture, Chaudhary Charan Singh Haryana Agriculture University, Hisar 125004 *Email: [email protected] (corresponding author) ABSTRACT Biology of blue butterfly,Lampides boeticus (L.) (Lepidopera: Lycaenidae) was studied on field pea variety HFP 529 under laboratory conditions (26±1ºC; 60-70% RH). It was observed that 14 eggs/ female were laid singly on twigs, flowers and pods. Pre-oviposition, oviposition, postoviposition and incubation periods were from 1 to 2, 2 to 3, 2 to 3 and 2 to 3 days, respectively. Mean larval period was 2.5, 2.6, 3.3 and 3.6 days for 1st, 2nd, 3rd and 4th instars, respectively, with total larval duration of 12 days. Prepupal and pupal period was 2.22 and 8.00 days, respectively. The mean longevity of male and female was 8.0 and 9.5 days, respectively. Total life cycle varied from 29 to 35 days. Key words: Blue butterfly, Lampides boeticus, field pea,Pisum sativum, biology, longevity, oviposition, larval period, instars, pupal period Field pea, Pisum sativum is an important grain 70% RH). Sufficient numbers of larvae of L. boeticus legume crop in India cultivated in rabi season and in were collected from the field pea variety HFP 529 Haryana, it is grown in 15.56 thousand ha and production and reared in petri dishes lined with a blotting paper is 135.15 mt (Anonymous, 2018).