Developing a Vehicle Hydroplaning Simulation Using Abaqus and Carsim
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
What You Need to Know About Mounting Radial Tires on Classic Vehicle Rims
What You Need to Know About Mounting Radial Tires on Classic Vehicle Rims Over the past 100 years, tires, and the wheels that support them, have gone through significant changes as a result of technical innovations in design, technology and materials. No single factor affects the handling and safety of a car’s ride more than the tire and the wheel it is mounted on and how the two work together as a unit. One nagging question that has been the subject of a lot of anecdotal evidence, speculation, and even more widespread rumor is whether rims designed for Bias ply tires can handle the stresses placed on them by Radial ply tires. And the answer is - it depends. It depends on how the rim was originally designed and built as well as whether the rim has few enough cycles on it, and how it has been driven. But most importantly it depends upon the construction of the tire and how it transmits the vehicle's load to where the rubber meets the road. In this paper, we want to educate you on the facts - not the wives tales or just plain bad information - about how Bias and Radial tires differ in working with the rim to provide a safe ride. Why is there a possible rim concern between Radial and Bias Tires? The fitting of radial tires, to wheels and rims originally designed for bias tires, is an application that may result in rim durability issues. Even same-sized bias and radial tires stress a rim differently, despite their nearly identical dimensions. -
MICHELIN® X® TWEEL® TURF™ the Airless Radial Tire™ & Wheel Assembly
MICHELIN® X® TWEEL® TURF™ The Airless Radial Tire™ & wheel assembly. Designed for use on zero turn radius mowers. ✓ NO MAINTENANCE ✓ NO COMPROMISE ✓ NO DOWNTIME MICHELIN® X® TWEEL® TURF™ No Maintenance – MICHELIN® X® TWEEL® TURF™ is one single unit, replacing the current tire/wheel/valve assembly. Once they are bolted on, there is no air pressure to maintain, and the common problem of unseated beads is completely eliminated. No Compromise – MICHELIN X TWEEL TURF has a consistent hub height which ensures the mower deck produces an even cut, while the full-width poly-resin spokes provide excellent lateral stability for outstanding side hill performance. The unique design of the spokes helps dampen the ride for enhanced operator comfort, even when navigating over curbs and other bumps. High performance compounds and an effi cient contact patch offer a long wear life that is two to three times that of a pneumatic tire at equal tread depth. No Downtime – MICHELIN X TWEEL TURF performs like a pneumatic tire, but without the risk and costly downtime associated with fl at tires and unseated beads. Zero degree belts and proprietary design provide great lateral stiffness, while resisting damage Multi-directional and absorbing impacts. tread pattern is optimized to provide excellent side hill stability and prevent turf High strength, damage. poly-resin spokes carry the load and absorb impacts, while damping the ride and providing a unique energy transfer that Michelin’s reduces “bounce.” proprietary Comp10 Cable™ forms a semi-rigid “shear beam”, Heavy gauge and allows the steel with 4 bolt load to hang hub pattern fi ts from the top. -
Tubeless-Ready Bead Tire Instructions Say Goodbye to Cold
TUBELESS-READY BEAD TIRE INSTRUCTIONS SAY GOODBYE TO COLD. SAY HELLO TO COMFORT. INTENDED USE 45North is built on real-world needs and knowledge. Our collection Studded tires: winter commuting, fatbiking and winter delivers unrivaled comfort and control through advanced technical off-road cycling. design and effective use of materials. We have more people who Fatbike tires: for bicycles that accommodate a 26 x 3.7" or larger ride more miles in colder weather than anywhere on the planet. tire, for winter off-road cycling. Enjoy. NOTE: 45North Studded tires are not intended for long-haul loaded WARNING: CYCLING CAN BE DANGEROUS. touring on pavement. BICYCLE PRODUCTS SHOULD BE INSTALLED AND SERVICED BY A PROFESSIONAL MECHANIC. NEVER MODIFY YOUR RIM COMPATIBILITY BICYCLE OR ACCESSORIES. READ AND FOLLOW ALL PRODUCT WARNING: Standard bead 45North tires are not tubeless ready. INSTRUCTIONS AND WARNINGS INCLUDING INFORMATION ON THE MANUFACTURER’S WEBSITE. INSPECT YOUR BICYCLE Tire Width Outside Rim Width BEFORE EVERY RIDE. ALWAYS WEAR A HELMET. 30mm 20–25mm WARNING: Tires are a part of your bike that will wear out with 35mm 20–25mm use. Tires may pick up foreign objects such as glass or road debris that will puncture the tire and inner tube, causing a loss of air 38mm 20–28mm pressure and reduced ability to control or stop the bike, which 54mm (2.1") 25–35mm could lead to a crash resulting in serious injury or death. Before each ride check to ensure that your tires are in good condition, 60mm (2.35") 25–40mm properly seated on the rim, and properly inflated. -
RELATIONSHIPS BETWEEN LANE CHANGE PERFORMANCE and OPEN- LOOP HANDLING METRICS Robert Powell Clemson University, [email protected]
Clemson University TigerPrints All Theses Theses 1-1-2009 RELATIONSHIPS BETWEEN LANE CHANGE PERFORMANCE AND OPEN- LOOP HANDLING METRICS Robert Powell Clemson University, [email protected] Follow this and additional works at: http://tigerprints.clemson.edu/all_theses Part of the Engineering Mechanics Commons Please take our one minute survey! Recommended Citation Powell, Robert, "RELATIONSHIPS BETWEEN LANE CHANGE PERFORMANCE AND OPEN-LOOP HANDLING METRICS" (2009). All Theses. Paper 743. This Thesis is brought to you for free and open access by the Theses at TigerPrints. It has been accepted for inclusion in All Theses by an authorized administrator of TigerPrints. For more information, please contact [email protected]. RELATIONSHIPS BETWEEN LANE CHANGE PERFORMANCE AND OPEN-LOOP HANDLING METRICS A Thesis Presented to the Graduate School of Clemson University In Partial Fulfillment of the Requirements for the Degree Master of Science Mechanical Engineering by Robert A. Powell December 2009 Accepted by: Dr. E. Harry Law, Committee Co-Chair Dr. Beshahwired Ayalew, Committee Co-Chair Dr. John Ziegert Abstract This work deals with the question of relating open-loop handling metrics to driver- in-the-loop performance (closed-loop). The goal is to allow manufacturers to reduce cost and time associated with vehicle handling development. A vehicle model was built in the CarSim environment using kinematics and compliance, geometrical, and flat track tire data. This model was then compared and validated to testing done at Michelin’s Laurens Proving Grounds using open-loop handling metrics. The open-loop tests conducted for model vali- dation were an understeer test and swept sine or random steer test. -
Fall-2016-All-Pages
MCGEE COMPANY SINCE 1951 Denver • Salt Lake Automotive Service Equipment Albuquerque • Dallas Tire Service Supplies 1-800-525-8888 Retreading Equipment & Supplies www.McGeeCompany.com Passenger/Truck/OTR EXPIRES 1/31/17 All prices are F.O.B. our warehouse unless otherwise specified. Lease figures are PRICES SUBJECT TO CHANGE approximate and subject to change. VISA AND MASTERCARD ACCEPTED 1/2” Drive Super Duty Air Impact Wrench #MTK Pouch • 2” extended anvil $25.95 • Handle exhaust Includes: 1 ea GA115 Gauge • Free speed: 8000 RPM 20- 120 PSI • Maximum torque: 600 ft./lbs. 1 ea MK White Markal • Proven design and the most popular 1 ea 1246D Flip Socket 3/4-13/16 Thin Wall configuration in the tire service industry 1 ea 1291DT Flip Socket 19mm-21mm 1 ea 595TM Trend Depth Gauge • Powered by the durable and high performing twin 1 ea TL620 Core Tool hammer mechanism 153-23120 • Net weight: 5.6 lbs. 5LD74 empty pouch available! $119.95 Made in Taiwan Largest stock of tire chains in the Ascot No. McGee No. Description Rocky Mountain Area! 153-23120 15323120 1/2” Drive Air Impact Wrench - 2” Extended Anvil M Series Ascot No. McGee No. Description Price Wide Base Truck Autosock DUO Tractor Chains Safety Inflator Gauge. 12” Hose With Dual Cam Chains Foot Chuck. 10 To 120 PSI. Available 6ft, 9ft, & 477-00001 1406M $39.95 12ft hose Double Seal Cap • A time, money and labor saving alternative to common valve caps Prema Combi Repairs • Reduce pressure check time by 65% • Designed for high pressure truck tire service • Easy and • Inflate, deflate or gauge directly thru the DS-1 saving fast for time during inflation and pressure checks repairing tire with injury in Now approved by crown area UPS and Ryder. -
MICHELIN® X® TWEEL Warranty Overview
MICHELIN® TWEEL® Airless radial tire Warranty Guide Contents MICHELIN® Tweel® Tire Warranty Overview ............................................................................. 3–4 Common Warranty Specifi cations ...............................................................................................5 Parts of a Tweel® Airless Radial Tire .............................................................................................5 Examination Tools .......................................................................................................................6 MICHELIN® X® TWEEL® SSL AIRLESS RADIAL TIRES Technical Specifi cations: MICHELIN® X® Tweel® SSL Tires .............................................................6 MICHELIN® X® Tweel® SSL Tire Torque Specs and Retreading .......................................................7 Tweel® SSL Tire Warranty vs. Wear Guide ..............................................................................8–12 MICHELIN® X® TWEEL® TURF AIRLESS RADIAL TIRES Technical Specifi cations: MICHELIN® X® Tweel® Turf Tires ...........................................................13 Tweel® Turf Tire Proper Installation Instructions ..........................................................................13 Tweel® Turf Tire Warranty vs. Wear Guide ........................................................................... 14–17 MICHELIN® X® TWEEL® CASTERS Technical Specifi cations: MICHELIN® X® Tweel® Casters..............................................................17 Tweel® Caster Warranty -
Modeling Tire Blow-Out in Roadside Hardware Simulations Using Ls-Dyna
Proceedings of IMECE’03 2003 ASME International Mechanical Engineering Congress & Exposition Washington, D.C., November 16-21, 2003 IMECE2003-55057 MODELING TIRE BLOW-OUT IN ROADSIDE HARDWARE SIMULATIONS USING LS-DYNA Fabio Orengo, Graduate Research Assistant, Malcolm H. Ray, Ph. D., Associate Professor Worcester Polytechnic Institute, 100 Institute Road, Worcester, MA 01605 Chuck A. Plaxico, Ph.D. Senior Research Engineer Battelle Memorial Institute, 505 King Avenue Columbus, Ohio 43201 ABSTRACT impact with other structures, such as roadside hardware, where Often when vehicles interact with roadside hardware like the tires are only one aspect of many intricate parts that must be guardrails, bridge rails and curbs, the interaction between the modeled. roadside hardware and the tire causes the tire to lose its air seal In most cases, the simulation of vehicle impact into and "blow-out". Once the seal between the rim and rubber tire roadside hardware has been approached using relatively simple is lost, the tire deflates. The behavior of the deflated tire is models, where the particular aspects of the tire structure were much different than the behavior of an inflated tire such that not reproduced. Typically, the tire has been modeled with when this behavior is observed in real world crashes or in full- isotropic membrane elements (thin shells) which may be scale crash tests, the vehicle kinematics are strongly coupled to effective when the dynamics of the tire are negligible. A more the behavior of the deflated tire. Accounting for this behavior realistic model is needed when the tire interacts significantly in LS-DYNA models is crucial in many types of roadside with other elements of the roadside environment, for instance, hardware simulations since the forces generated by the deflated in those conditions where the tire directly plays an important tire often introduce instability into the vehicle that can cause role in the vehicle kinematics and stability. -
Automotive Engineering II Lateral Vehicle Dynamics
INSTITUT FÜR KRAFTFAHRWESEN AACHEN Univ.-Prof. Dr.-Ing. Henning Wallentowitz Henning Wallentowitz Automotive Engineering II Lateral Vehicle Dynamics Steering Axle Design Editor Prof. Dr.-Ing. Henning Wallentowitz InstitutFürKraftfahrwesen Aachen (ika) RWTH Aachen Steinbachstraße7,D-52074 Aachen - Germany Telephone (0241) 80-25 600 Fax (0241) 80 22-147 e-mail [email protected] internet htto://www.ika.rwth-aachen.de Editorial Staff Dipl.-Ing. Florian Fuhr Dipl.-Ing. Ingo Albers Telephone (0241) 80-25 646, 80-25 612 4th Edition, Aachen, February 2004 Printed by VervielfältigungsstellederHochschule Reproduction, photocopying and electronic processing or translation is prohibited c ika 5zb0499.cdr-pdf Contents 1 Contents 2 Lateral Dynamics (Driving Stability) .................................................................................4 2.1 Demands on Vehicle Behavior ...................................................................................4 2.2 Tires ...........................................................................................................................7 2.2.1 Demands on Tires ..................................................................................................7 2.2.2 Tire Design .............................................................................................................8 2.2.2.1 Bias Ply Tires.................................................................................................11 2.2.2.2 Radial Tires ...................................................................................................12 -
The World's Most Beautiful And... Best Performing Custom Designed Tires
WelcomeWelcome ToTo TheThe World’sWorld’s MostMost BeautifulBeautiful and...and... BestBest PerformingPerforming CustomCustom DesignedDesigned TiresTires Bill Chapman Founder Diamond Back Classics I know what you are thinking! The tires on Bill’s Corvette are not correct. It’s not a show car-it is for my enjoyment. That’s the beauty of Diamond Back-you can get what’s period correct or you can get what you like. Custom whitewalls are not a problem. I offer many correct styles for the 60’s and 70’s cars or if you want something special, just let us know. My 2009 catalog features 16 product lines from 13” to 22” and anything in between. That’s more product than all the competitor’s combined. I’m also introducing two new top end product lines-the Diamond Back MX and the Diamond Back III. Both are built in North America by Michelin, the world’s most recognized tire manufacturer. If you’re going to spend over $200 per tire why not get the very best? Prices on the rest of my products will have a small increase and some will remain unchanged. Check out my warranty. It is the most solid, easy to understand warranty in the industry. My new extended warranty for $4.75 per tire is a smart move to protect your investment. As the year of the Great Recession begins, my goal remains unchanged-build the best looking, best performing product at a fair price. Thanks for all of your support! Confused and concerned about using radial tires on older rims? Get the facts .. -
Portable Tire Blaster and Air Tank
Portable Tire Blaster and Air Tank Owner's Manual MODEL #: EA05-TB EA10-TB THIS INSTRUCTION MANUAL CONTAINS IMPORTANT SAFETY INFORMATION. READ CAREFULLY AND UNDERSTAND ALL INFORMATION BEFORE OPERATING THIS TOOL. SAVE THIS MANUAL FOR FUTURE REFERENCE. MAXIMUM PRESSURE 150 PSI. RECOMMENDED OPERATING PRESSURE 85-150 PSI. *OVERFILLING MAY RESULT IN DEATH OR SERIOUS INJURY* FILL THIS TANK ONLY FROM A SERVICE STATION OR SIMILAR LOW PRESSURE, -150-PSI AIR COMPRESS- OR *REPLACE FILLER VALVES, AIR HOSE, GAUGE WITH LIKE FITTING. DEFLATE TANK BEFORE REMOVING FITTING. DISCHARGE TANK WHEN NOT IN USE. EAR PROTECTION RECOMMENDED. *WEAR SAFETY GLASSES* THIS PRODUCT CONTAINS CHEMICALS KNOW TO THE STATE OF CALIFORNIA TO CAUSE CANCER AND BIRTH DEFECTS OR OTHER REPRODUCTIVE HARM. WASH HANDS THOROUGHLY AFTER HANDLING. DO NOT REMOVE OR DEFACE THIS LABEL WARNING: Do not store or transport a charged tank. Do not discharge the device towards anyone. Do not clean a tire with a flammable solvent before using this device. Do not subject the tank to any stress or impact that might weaken it. TIRE BLASTER / AIR TANK COMPONENT DRAWING 1 Air Tank 7 ASME Check Valve 2 Quick Connect Male 8 Pressure Gauge 3 1/4" Ball valve 9 1.5" Ball Valve 4 1/4" Elbow 10 Lock Nut 5 Hand Grip 11 Tire Blaster Tube w/ Flange 6 Air Hose with Chuck Page 2 DESCRIPTION The EAGLE PORTABLE TIRE BLASTER and AIR TANK uses compressed air to properly seat the bead on Auto, ATV, and Truck tires. Please read the following instructions below before proceeding with tool operation. -
Correct Tires for 1953-82 Corvettes
FULL OF HOT AIR Correct tires for 1953-82 Corvettes he subject of correct tires for your vintage Corvette can sometimes be an overwhelming subject. Finding an original NOS (New Old Stock) tire or, T heaven forbid, a full set of four plus a spare for some early Corvettes can be next to impossible, even with the internet and the vast number of parts ads in many ma- jor magazines. There are still some original tires out there, with these tires usually be- ing found in old tire warehouses or stumbled upon when a large car parts collection is liq- uidated. In either case, the sometimes-long search can be quite frustrating. The fact of the matter is that the types and sizes of tires that were used on Corvettes from 1953 through 1982 are quite varied in BF Goodrich Wide Whitewall construction and size. In addition, the us- the originals. It should be mentioned here age was somewhat varied from year to year that the DOT (Department of Transportation) dependent on the options that could be or- markings that are required to be on all repro- dered on the car. It should be stated here duction tires were not in use when the origi- that most Corvettes driven today do not car- nal tires were manufactured for most early ry the original tires they were delivered with to Corvettes. This is one quick way to discern if the dealership. Tire technology has changed the tire you are about to buy from an individ- dramatically over the last 40+ years and ual or dealer is an original or a new reproduc- most Corvette owners who drive their car on tion. -
Hydroplaning Analysis for Tire Rolling Over Water Film with Various Thicknesses Using the LS-DYNA Fluid-Structure Interactive Scheme
Copyright © 2009 Tech Science Press CMC, vol.11, no.1, pp.33-58, 2009 Hydroplaning Analysis for Tire Rolling over Water Film with Various Thicknesses Using the LS-DYNA Fluid-Structure Interactive Scheme Syh-Tsang Jenq1;2 and Yuen-Sheng Chiu2 Abstract: Current work studies the transient hydroplaning behavior of 200 kPa inflated pneumatic radial tires with various types of tread patterns. Tires were nu- merically loaded with a quarter car weight of 4 kN, and then accelerated from rest rolling over a water film with a thickness of 5, 10 and 15 mm on top of a flat pavement. Tire structure is composed of outer rubber tread and inner fiber rein- forcing composite layers. The Mooney-Rivlin constitutive law and the classical laminated theory (CLT) were, respectively, used to describe the mechanical be- havior of rubber material and composite reinforcing layers. The tire hydroplaning phenomenon was analyzed by the commercial finite element code - LS-DYNA. The Arbitrary Lagrangian & Eulerian (ALE) formulation was adopted to depict the fluid-structure interaction (FSI) behavior. Three different tire tread patterns, i.e. the smooth (blank) tread pattern and the 9 and 18 mm wide longitudinally-grooved tread patterns, were constructed to perform the current transient hydroplaning anal- ysis. Simulated dynamic normal contact force and hydroplaning velocity of tire with a prescribed smooth tread pattern were obtained. The computed results were in good agreement with the numerical and test results given by Okano, et al. (2001) for tire running over 10 mm thick water fluid film. In addition, dynamic contact force of a smooth tread pattern tire rolling on a dry flat pavement was also found to be close to the result reported by Nakajima, et al.