A Scalable Packetised Radio Astronomy Imager

Total Page:16

File Type:pdf, Size:1020Kb

A Scalable Packetised Radio Astronomy Imager A Scalable Packetised Radio Astronomy Imager by Jason Ryan Manley Thesis presented for the degree of DOCTOR OF PHILOSOPHY in the Department of Electrical Engineering, Faculty of Engineering and the Built Environment at the University of Cape Town February 2014 Supervisor: Professor M Inggs University of Cape Town The copyright of this thesis vests in the author. No quotation from it or information derived from it is to be published without full acknowledgement of the source. The thesis is to be used for private study or non- commercial research purposes only. Published by the University of Cape Town (UCT) in terms of the non-exclusive license granted to UCT by the author. University of Cape Town Abstract Modern radio astronomy telescopes the world over require digital back-ends. The complexity of these systems depends on many site-specific factors, in- cluding the number of antennas, beams and frequency channels and the bandwidth to be processed. With the increasing popularity for ever larger interferometric arrays, the processing requirements for these back-ends have increased significantly. While the techniques for building these back-ends are well understood, every installation typically still takes many years to develop as the instruments use highly specialised, custom hardware in order to cope with the demanding engineering requirements. Modern technology has enabled reprogrammable FPGA-based process- ing boards, together with packet-based switching techniques, to perform all the digital signal processing requirements of a modern radio telescope array. The various instruments used by radio telescopes are functionally very dif- ferent, but the component operations remain remarkably similar and many share core functionalities. Generic processing platforms are thus able to share signal processing libraries and can acquire different personalities to perform different functions simply by reprogramming them and rerouting the data appropriately. Furthermore, Ethernet-based packet-switched networks are highly flexible and scalable, enabling the same instrument design to be scaled to larger installations simply by adding additional processing nodes and larger network switches. The ability of a packetised network to transfer data to arbitrary processing nodes, along with these nodes' reconfigurability, allows for unrestrained partitioning of designs and resource allocation. This thesis describes the design and construction of the first working radio astronomy imaging instrument hosted on Ethernet-interconnected re- programmable FPGA hardware. I attempt to establish an optimal packetised architecture for the most popular instruments with particular attention to the core array functions of correlation and beamforming. Emphasis is placed on requirements for South Africa's MeerKAT array. A demonstration system is constructed and deployed on the KAT-7 array, MeerKAT's prototype. This research promises reduced instrument development time, lower costs, improved reliability and closer collaboration between telescope design teams. Acknowledgements I would like to thank the following people for their assistance and support: Dan Werthimer for being a lighthouse in the fog of instrument specifi- cations. Your insight and guidance is legendary. Also, thank you for the opportunity to work with the energetic CASPER team and to your family, Mary-Kate and Willy, for hosting me in Berkeley. The late Don Backer for always making time in his busy schedule to advise me and for providing me with the opportunity to participate in the PAPER experiment. I will forever remember him fondly. Aaron Parsons for the groundwork of the CASPER correlator and his insights and novel solutions to engineering problems. The rest of the CASPER, RAL and BWRC teams at UC Berkeley for providing much of the infrastructure that made this project possible and for keeping me entertained during my nearly two years at BWRC. Thank you to the talented and dedicated DBE engineering team at SKA- SA: Francois Kapp for making the ROACH board a reality and for his en- couraging leadership of the team. Andrew Martens and Paul Prozesky for their help with the KAT-7 F-engines and beamformer implementations and for assisting with software when I was under time pressure. Mark Welz for his unending patience with me and my Linux questions. Ruby van Rooyen for her help with quantisation and PFB analysis simulations and, together with Alec Rust, for performing the KAT-7 ATP. Sias Malan for his willingness to help with journal papers and ongoing enthusiasm for the project. Dave George for the underlying ROACH infrastructure and ROACH-2. Etienne Bauermeister for the KATADC and MeerKAT high speed digital samplers. Adam, Henno, Luzuko, Phil, Shanly, SimonR, SimonX, Wesley, Vaughn and the others for always lending a helping hand when it was needed. SKA-SA's System Engineers, Adriaan, Paul and Warnich, thank you for your help in specifying the requirements for the KAT-7 and MeerKAT systems. Alan Langman for introducing me to the SKA-SA project. To my family: thank you for their unending support and encouragement and especially to my mother for all the proofreading! To my supervisor, Professor Michael Inggs, for his faith in me and the free reign to complete this project in my own time. Declaration This document and all of its contents represent my own work unless otherwise stated. I acknowledge that all contributions made by others have been cited and referenced. I have not, and will never allow this work to be copied by anyone with the intention of submitting it as their own work. Furthermore, I acknowledge that plagiarism is wrong and declare that this project represents my own work. Jason Manley 13th of February 2014 Glossary ADC Analogue to Digital Converter. ALMA The Atacama Large Millimeter Array located in Chile. AIPY Astronomical Interferometry in PYthon; An imaging package by Aaron Parsons, used primarily by PAPER. ASIAA The Academia Sinica Institute of Astronomy and Astrophysics in Taiwan. ASIC Application-Specific Integrated Circuit; a piece of electronic circuitry designed for a single purpose and contained within a single chip. ASKAP The Australian Square Kilometer Array Pathfinder located in the Mid-west region of Western Australia. ATA The Allen Telescope Array in Hat Creek, United States of America. ATP Acceptance Test Procedure. In System Engineering, a list of instruc- tions for executing an Acceptance Test, to verify the correct operation of a component, to ensure that it meets its specification. This test is typically run on each device off a production line before being placed into service. Backplane A backplane interconnect is one that uses a printed circuit board (PCB) to connect multiple other PCBs (as opposed to cables). For example, multiple processing cards that need to communicate with one another can slot into a single larger backplane, rather than multiple cables connecting to- and from- each one. v ATP Acceptance Test Procedure. A System Engineering term for a docu- ment that describes test routines to be run during an acceptance test. See also ATR. ATR Acceptance Test Report. A System Engineering term for a document containing the results of an acceptance test. See also ATP. Baseline Refers to a pair of antennas in an array. BEE2 The second-generation Berkeley Emulation Engine. An FPGA-based hardware computing platform. BRAM Block Random Access Memory; the FPGA's onchip memory. BWRC The Berkeley Wireless Research Centre, a UCB venture together with a number of industry partners. CARMA The Combined Array for Research in Millimeter-wave Astronomy in Cedar Flat, California, United States of America. CASPER The Center for Astronomy Signal Processing and Electronics Re- search, a research group at the University of California, Berkeley. CfA Centre for Astrophysics, a collaboration of Harvard College Observa- tory (HCO) and Smithsonian Astrophysical Observatory (SAO) and home to Harvard's Department of Astronomy. Corner-turn A matrix transpose operation. CPLD A Complex Programmable Logic Device, a device typically used to interconnect other onboard devices with simple combinatorial and se- quential logic. Typically less complex than an FPGA with reduced functionality. ROACH's CPLD interconnects the PPC, FPGA and SD-card busses amongst others. CW Continuous wave signal (a sine or co-sine tone). DBE Digital Back-End. The real-time digital processing system of a radio receiver. vi DDC Digital Down Converter. The digital equivalent of an analogue het- erodyne mixer and filter. DDR Double Data Rate. The ability to transfer data on the leading and the falling edges of a clock cycle. EVLA The Expanded Very Large Array, New Mexico, United States of America. FASR The Frequency Agile Solar Radiotelescope at the Owens Valley Radio Observatory in California, United States of America. FIR Finite Impulse Response; usually a reference to a digital filter imple- mentation who's response to a signal of finite duration is also finite, before returning to zero. As opposed to IIR. FPGA Field Programmable Gate Array; A reprogrammable device able to perform boolean logical and mathematical operations. FX Correlator A correlator who's order of operation is to first perform data channellisation (typically through the use of an FFT) followed by the multiplication operation (see also XF correlator). GMRT The Giant Metre-wave Radio Telescope north of Pune in India. IBOB The Internet Break-out Board; An FPGA-based processing board designed by CASPER. It was originally designed to digitise data and retransmit it into an Ethernet network for processing by BEE2s and thus has limited compute ability. IETF The Internet Engineering Task Force, responsible for a number of Internet protocol standards definitions. IIR filter Infinite Impulse Response; a filter design that employs internal feedback such that its response to a finite input signal may continue to be non-zero infinitely. As opposed to FIR. KAT-7 The first phase of the MeerKAT telescope. This initial deployment, comprising 7 dishes, was completed in 2010. See also MeerKAT vii LEDA The Large Aperture Experiment to Detect the Dark Ages, a project currently utilising the LWA.
Recommended publications
  • (LWA): a Large HF/VHF Array for Solar Physics, Ionospheric Science, and Solar Radar
    The Long Wavelength Array (LWA): A Large HF/VHF Array for Solar Physics, Ionospheric Science, and Solar Radar A Ground-Based Instrument Paper for the 2010 NRC Decadal Survey of Solar and Space Physics Lee J Rickard, Joseph Craig, Gregory B. Taylor, Steven Tremblay, and Christopher Watts University of New Mexico, Albuquerque, NM 87131 Namir E. Kassim, Tracy Clarke, Clayton Coker, Kenneth Dymond, Joseph Helmboldt, Brian C. Hicks, Paul Ray, and Kenneth P. Stewart Naval Research Laboratory, Washington, DC 20375 Jacob M. Hartman NRC Research Associate, in residence at Naval Research Laboratory Stephen M. White AFRL, Kirtland AFB, Albuquerque, NM 87117 Paul Rodriguez Consultant, Washington, DC 20375 Steve Ellingson and Chris Wolfe Virginia Tech, Blacksburg, VA 24060 Robert Navarro and Joseph Lazio NASA Jet Propulsion Laboratory, Pasadena, CA 91109 Charles Cormier and Van Romero New Mexico Institute of Mining & Technology, Socorro, NM 87801 Fredrick Jenet University of Texas, Brownsville, TX 78520 and the LWA Consortium Executive Summary The Long Wavelength Array (LWA), currently under construction in New Mexico, will be an imaging HF/VHF interferometer providing a new approach for studying the Sun-Earth environment from the surface of the sun through the Earth’s ionosphere [1]. The LWA will be a powerful tool for solar physics and space weather investigations, through its ability to characterize a diverse range of low- frequency, solar-related emissions, thereby increasing our understanding of particle acceleration and shocks in the solar atmosphere along with their impact on the Sun-Earth environment. As a passive receiver the LWA will directly detect Coronal Mass Ejections (CMEs) in emission, and indirectly through the scattering of cosmic background sources.
    [Show full text]
  • Wikipedia, the Free Encyclopedia
    SKA newsletter Volume 21 - April 2011 The Square Kilometre Array Exploring the Universe with the world’s largest radio telescope www.skatelescope.org Please click the relevant section title to skip to that section 03 Project news 04 From the SPDO 05 SKA science 08 Engineering update 10 Site characterisation 12 Outreach update 14 Industry participation 17 News from around the world 18 Africa 20 Australia and New Zealand 23 Canada 25 China 28 Europe 31 India 33 US 35 Future meetings and events Project news Project news 04 From the SPDO Crucial steps for the SKA project were At its first meeting on 2 April, the Founding taken in the last week of March 2011. A Board decided that the location of the SKA Founding Board was created with the Project Office (SPO) will be at the Jodrell aim of establishing a legal entity for the Bank Observatory near Manchester in the project by the time of the SKA Forum in UK. This decision followed a competitive Canada in early July, as well as agreeing bidding process in which a number of the resourcing of the Project Execution excellent proposals were evaluated in an Plan for the Pre-construction Phase international review process. The SPO, which from 2012 to 2015. The Founding Board is hoped to grow to 60 people over the next replaces the Agencies SKA Group with four years, will supersede the SPDO currently immediate effect. Prof John Womersley based at the University of Manchester. The from the UK’s Science and Technology physical move to a new building at Jodrell Facilities Council (STFC) was elected Bank Observatory is scheduled for mid-2012.
    [Show full text]
  • A Scalable Correlator Architecture Based on Modular FPGA Hardware, Reuseable Gateware, and Data Packetization
    A Scalable Correlator Architecture Based on Modular FPGA Hardware, Reuseable Gateware, and Data Packetization Aaron Parsons, Donald Backer, and Andrew Siemion Astronomy Department, University of California, Berkeley, CA [email protected] Henry Chen and Dan Werthimer Space Science Laboratory, University of California, Berkeley, CA Pierre Droz, Terry Filiba, Jason Manley1, Peter McMahon1, and Arash Parsa Berkeley Wireless Research Center, University of California, Berkeley, CA David MacMahon, Melvyn Wright Radio Astronomy Laboratory, University of California, Berkeley, CA ABSTRACT A new generation of radio telescopes is achieving unprecedented levels of sensitiv- ity and resolution, as well as increased agility and field-of-view, by employing high- performance digital signal processing hardware to phase and correlate large numbers of antennas. The computational demands of these imaging systems scale in proportion to BMN 2, where B is the signal bandwidth, M is the number of independent beams, and N is the number of antennas. The specifications of many new arrays lead to demands in excess of tens of PetaOps per second. To meet this challenge, we have developed a general purpose correlator architecture using standard 10-Gbit Ethernet switches to pass data between flexible hardware mod- ules containing Field Programmable Gate Array (FPGA) chips. These chips are pro- grammed using open-source signal processing libraries we have developed to be flexible, arXiv:0809.2266v3 [astro-ph] 17 Mar 2009 scalable, and chip-independent. This work reduces the time and cost of implement- ing a wide range of signal processing systems, with correlators foremost among them, and facilitates upgrading to new generations of processing technology.
    [Show full text]
  • LOFAR Detections of Low-Frequency Radio Recombination Lines Towards Cassiopeia A
    A&A 551, L11 (2013) Astronomy DOI: 10.1051/0004-6361/201221001 & c ESO 2013 Astrophysics Letter to the Editor LOFAR detections of low-frequency radio recombination lines towards Cassiopeia A A. Asgekar1,J.B.R.Oonk1,S.Yatawatta1,2, R. J. van Weeren3,1,8, J. P. McKean1,G.White4,38, N. Jackson25, J. Anderson32,I.M.Avruch15,2,1, F. Batejat11, R. Beck32,M.E.Bell35,18,M.R.Bell29, I. van Bemmel1,M.J.Bentum1, G. Bernardi2,P.Best7,L.Bîrzan3, A. Bonafede6,R.Braun37, F. Breitling30,R.H.vandeBrink1, J. Broderick18, W. N. Brouw1,2, M. Brüggen6,H.R.Butcher1,9, W. van Cappellen1, B. Ciardi29,J.E.Conway11,F.deGasperin6, E. de Geus1, A. de Jong1,M.deVos1,S.Duscha1,J.Eislöffel28, H. Falcke10,1,R.A.Fallows1, C. Ferrari20, W. Frieswijk1, M. A. Garrett1,3, J.-M. Grießmeier23,36, T. Grit1,A.W.Gunst1, T. E. Hassall18,25, G. Heald1, J. W. T. Hessels1,13,M.Hoeft28, M. Iacobelli3,H.Intema3,31,E.Juette34, A. Karastergiou33 , J. Kohler32, V. I. Kondratiev1,27, M. Kuniyoshi32, G. Kuper1,C.Law24,13, J. van Leeuwen1,13,P.Maat1,G.Macario20,G.Mann30, S. Markoff13, D. McKay-Bukowski4,12,M.Mevius1,2, J. C. A. Miller-Jones5,13 ,J.D.Mol1, R. Morganti1,2, D. D. Mulcahy32, H. Munk1,M.J.Norden1,E.Orru1,10, H. Paas22, M. Pandey-Pommier16,V.N.Pandey1,R.Pizzo1, A. G. Polatidis1,W.Reich32, H. Röttgering3, B. Scheers13,19, A. Schoenmakers1,J.Sluman1,O.Smirnov1,14,17, C. Sobey32, M. Steinmetz30,M.Tagger23,Y.Tang1, C.
    [Show full text]
  • ASTRONET ERTRC Report
    Radio Astronomy in Europe: Up to, and beyond, 2025 A report by ASTRONET’s European Radio Telescope Review Committee ! 1!! ! ! ! ERTRC report: Final version – June 2015 ! ! ! ! ! ! 2!! ! ! ! Table of Contents List%of%figures%...................................................................................................................................................%7! List%of%tables%....................................................................................................................................................%8! Chapter%1:%Executive%Summary%...............................................................................................................%10! Chapter%2:%Introduction%.............................................................................................................................%13! 2.1%–%Background%and%method%............................................................................................................%13! 2.2%–%New%horizons%in%radio%astronomy%...........................................................................................%13! 2.3%–%Approach%and%mode%of%operation%...........................................................................................%14! 2.4%–%Organization%of%this%report%........................................................................................................%15! Chapter%3:%Review%of%major%European%radio%telescopes%................................................................%16! 3.1%–%Introduction%...................................................................................................................................%16!
    [Show full text]
  • Heliograph of the UTR-2 Radio Telescope
    HELIOGRAPH OF THE UTR-2 RADIO TELESCOPE A. A. Stanislavsky,∗ A. A. Koval, A. A. Konovalenko and E. P. Abranin Institute of Radio Astronomy, 4 Chervonopraporna St., 61002 Kharkiv, Ukraine March 27, 2018 Abstract The broadband analog-digital heliograph based on the UTR-2 radio telescope is described in detail. This device operates by employing the parallel-series principle when five equi-spaced array pattern beams which scan the given radio source (e.g. solar corona) are simultaneously shaped. As a result, the obtained image presents a frame of 5 × 8 pixels with the space resolution 25 ′× 25 ′ at 25 MHz. Each pixel corresponds to the signal from the appropriate pattern beam. The most essential heliograph component is its phase shift module for fast sky scanning by pencil- shape antenna beams. Its design, as well as its switched cable lengths calculation procedure, are presented, too. Each heliogram is formed in the actual heliograph just arXiv:1112.1044v1 [astro-ph.IM] 5 Dec 2011 by using this phase shifter. Every pixel of a signal received from the corresponding antenna pattern beam is the cross-correlation dynamic spectrum (time-frequency- intensity) measured in real time with the digital spectrum processor. This new generation heliograph gives the solar corona images in the frequency range 8-32 MHz with the frequency resolution 4 kHz, time resolution to 1 ms, and dynamic range about 90 dB. The heliographic observations of radio sources and solar corona made in summer of 2010 are demonstrated as examples. ∗e-mail: [email protected] 1 INTRODUCTION 2 1 Introduction Comprehensive information on the physical processes that accompany solar activity can be obtained only with engaging of an extensive scope of obser- vation means.
    [Show full text]
  • Transients at Long Wavelengths
    TransientsTransients atat LongLong WavelengthsWavelengths Long Wavelength Array Joseph Lazio (Naval Research Laboratory) Scott Hyman (Sweet Briar College) Paul Ray (Naval Research Laboratory) Namir Kassim (Naval Research Laboratory) James Cordes (Cornell University & NAIC) GCRTGCRT J1745J1745--30093009 Long Wavelength Array DiscoveryDiscovery A monitoring campaign of the Galactic center λ≈1 meter Roughly 20 epochs more on the way Time samplings from ~ 1 week to 1 decade Observations with – Very Large Array (most) – Giant Metrewave Radio Telescope LaRosa et al. 2000 GCRTGCRT J1745J1745--30093009 Long Wavelength Array VerificationVerification Split data in wavelength? Still present Split data in time? Bursts! » 5 bursts detected » ~ 10 min. duration » ~ 77 min. periodicity » 6th burst later found in data from another epoch RadioRadio TransientsTransients Long Wavelength Array WhyWhy Look?Look? Why look in the Galactic center? High stellar density – Globular clusters harbor many interesting pulsar systems – Globular cluster “on steriods” – High likelihood of exchange interactions, close encounters Concentration of X-ray transients toward Galactic center Hints that Galactic center may host transients – A1742-28 – Galactic Center Transient (GCT) – GCRT J1746-2757 – XTE 1748-288 – CXOGC J174540.0-290031 RadioRadio TransientsTransients Long Wavelength Array WhyWhy Look?Look? Transient ≡ burst, flare, pulse, etc. < 1 mon. in duration Transients can probe – Particle acceleration – Strong field gravity – Nuclear equation of state – Intervening media – Cosmological star formation history? – Physics beyond the Standard Model? – ET civilizations? Radio sky is poorly probed for (radio-selected) transients! Radio photons easy to make 1 keV ~ 109 1-meter wavelength photons KnownKnown ClassesClasses ofof RadioRadio Long Wavelength Array TransientsTransients Ultra-high energy cosmic rays – Radio pulses upon impact with atmosphere QuickTime™ and a YUV420 codec decompressor – Discovered at 44 MHz are needed to see this picture.
    [Show full text]
  • Multi-Frequency Scatter Broadening Evolution of Pulsars-II. Scatter
    Draft version May 7, 2019 Typeset using LATEX preprint style in AASTeX61 MULTI-FREQUENCY SCATTER BROADENING EVOLUTION OF PULSARS - II. SCATTER BROADENING OF NEARBY PULSARS M.A. Krishnakumar,1,2,3,4 Yogesh Maan,5 B.C. Joshi,3 and P.K. Manoharan2,3 1Fakult¨at f¨ur Physik, Universit¨at Bielefeld, Postfach 100131, D-33501 Bielefeld, Germany 2Radio Astronomy Centre, NCRA-TIFR, Udagamandalam, India 3National Centre for Radio Astrophysics, Tata Institute of Fundamental Research, Pune, India 4Bharatiar University, Coimbatore, India 5ASTRON, Netherlands Institute for Radio Astronomy, Oude Hoogeveensedijk 4, 7991 PD, Dwingeloo, The Netherlands Submitted to ApJ ABSTRACT We present multi-frequency scatter broadening evolution of 29 pulsars observed with the LOw Frequency ARray (LOFAR) and Long Wavelength Array (LWA). We conducted new observations using LOFAR Low Band Antennae (LBA) as well as utilized the archival data from LOFAR and LWA. This study has increased the total of all multi-frequency or wide-band scattering measurements −3 up to a dispersion measure (DM) of 150 pc cm by 60%. The scatter broadening timescale (τsc) measurements at different frequencies are often combined by scaling them to a common reference frequency of 1 GHz. Using our data, we show that the τsc–DM variations are best fitted for reference frequencies close to 200–300 MHz, and scaling to higher or lower frequencies results in significantly more scatter in data. We suggest that this effect might indicate a frequency dependence of the scatter broadening scaling index (α). However, a selection bias due to our chosen observing frequencies can not be ruled out with the current data set.
    [Show full text]
  • Science with the Long Wavelength Array
    Exploring the Last Electromagnetic Frontier •• • • • with the Long Wavelength Array Namir E. Kassim1, A.S. Cohen1, P.C. Crane1, R. Duffin1, C.A. Gross1, B. C. Hicks1, W.M. Lane1, J. Lazio1, E. J. Polisensky1, P. S. Ray1, K. Stewart1, K.W. Weiler1, T. E. Clarke2, The University of New Mexico H.R. Schmitt2, J. M. Hartman3, J.F. Helmboldt3, J. Craig4, W. Gerstle4, Y. Pihlstrom4, L.J. Rickard4, G.B. Taylor4, S.W. Ellingson5, L.R. D’Addario6, R. Navarro6 1NRL, 2NRL/Interferometrics, 3NRL/NRC, 4UNM, 5VA Tech, 6JPL http://lwa.unm.edu Vision: Nearly three decades ago, the VLA first opened the cm-wavelength radio sky to detailed study. Recently, the VLA 74 MHz system has provided the first sub-arcminute resolu- tion view of the meter-wavelength radio universe. This technical innovation has inspired an emerging group of much more powerful instruments, including the Long Wavelength Array (LWA), the Low Frequency Array (LOFAR), and the Murchison Widefield Array (MWA). Located in New Mexico near the VLA, the LWA will be a versatile, user-oriented electronic array which will open the 20-80 MHz frequency range to detailed exploration. With a collecting area approaching a million square meters (at 20 MHz), the 400 km LWA’s milli-Jansky sensitivity and arc-second resolution will surpass, by 2-3 orders of magnitude, the imaging power of previous low frequency interferometers. Because it will explore one of the last and most poorly investigated regions of the spectrum, the potential for unexpected new discoveries is high. Pathfinder LWA Science with the Long Wavelength Demonstrator Array Pathfinder LWA science programs were initiated in 2007 near the center of the VLA with the Long Wavelength Demonstrator Array (LWDA - below left).
    [Show full text]
  • LOFAR 150-Mhz Observations of SS 433 and W 50
    MNRAS 475, 5360–5377 (2018) doi:10.1093/mnras/sty081 Advance Access publication 2018 January 12 LOFAR 150-MHz observations of SS 433 and W 50 J. W. Broderick,1,2,3‹ R. P. Fender,1,2 J. C. A. Miller-Jones,4 S. A. Trushkin,5,6 A. J. Stewart,1,2 G. E. Anderson,1,4 T. D. Staley,1,2 K. M. Blundell,1 M. Pietka,1 S. Markoff,7 A. Rowlinson,3,7 J. D. Swinbank,8 A. J. van der Horst,9 M. E. Bell,10,11 R. P. Breton,12 D. Carbone,7 S. Corbel,13,14 J. Eisloffel,¨ 15 H. Falcke,16,3 J.-M. Grießmeier,17,14 J. W. T. Hessels,3,7 V. I. Kondratiev,3,18 C. J. Law,19 G. J. Molenaar,7,20 M. Serylak,21,22 B. W. Stappers,12 J. van Leeuwen,3,7 R. A. M. J. Wijers,7 R. Wijnands,7 M. W. Wise3,7 and P. Zarka23,14 Affiliations are listed at the end of the paper Accepted 2017 December 21. Received 2017 December 21; in original form 2017 May 25 ABSTRACT We present Low-Frequency Array (LOFAR) high-band data over the frequency range 115–189 MHz for the X-ray binary SS 433, obtained in an observing campaign from 2013 February to 2014 May. Our results include a deep, wide-field map, allowing a detailed view of the surrounding supernova remnant W 50 at low radio frequencies, as well as a light curve for SS 433 determined from shorter monitoring runs.
    [Show full text]
  • Instruments on Large Optical Telescopes--A Case Study
    Submitted to PASP Preprint typeset using LATEX style emulateapj v. 5/2/11 INSTRUMENTS ON LARGE OPTICAL TELESCOPES { A CASE STUDY S. R. Kulkarni Caltech Optical Observatories 249-17 California Institute of Technology, Pasadena, CA 91108 (Dated: June 29, 2016) Submitted to PASP ABSTRACT In the distant past, telescopes were known, first and foremost, for the sizes of their apertures. However, the astronomical output of a telescope is determined by both the size of the aperture as well as the capabilities of the attached instruments. Advances in technology (not merely those related to astronomical detectors) are now enabling astronomers to build extremely powerful instruments to the extent that instruments have now achieved importance comparable or even exceeding the usual importance accorded to the apertures of the telescopes. However, the cost of successive generations of instruments has risen at a rate noticeably above that of the rate of inflation. Indeed, the cost of instruments, when spread over their prime lifetime, can be a significant expense for observatories. Here, given the vast sums of money now being expended on optical telescopes and their instrumentation, I argue that astronomers must undertake \cost-benefit" analysis for future planning. I use the scientific output of the first two decades of the W. M. Keck Observatory as a laboratory for this purpose. I find, in the absence of upgrades, that the time to reach peak paper production for an instrument is about six years. The prime lifetime of instruments (sans upgrades), as measured by citations returns, is about a decade. Well thought out and timely upgrades increase and sometimes even double the useful lifetime.
    [Show full text]
  • URSI Commission J – Radio Astronomy
    1 URSI Commission J – Radio Astronomy Jacob W.M. Baars Max-Planck-Institut für Radioastronomie Bonn, Germany Preface The organisation and operation of URSI can be seen as a sailing trip around the world by ten boats, each representing one of the ten Commissions of URSI, that gather at three year intervals in a place on earth decided by the central overseers, the Council. At these General Assemblies the captains of the Commission ships meet with the Council to discuss the experiences of the recent period and make plans for the next. The crews of the ten boats set up their individual meetings to present the scientific discoveries of the last three years to their colleagues who could not fit on the ship and travelled to the harbour to hear the news. Occasionally, crews from more than one boat find common interest in holding joint meetings. Also, individual captains may make landfall by invitation at a suitable place for a conference on a special subject of interest. This procedure has been in place for a hundred years to great satisfaction of the URSI community and with considerable success. It is not unusual to accompany such a centennial with the publication of a book on the history of the organisation. The URSI Centenary Book, of which this chapter is a part, will do just that. But how to write a history of a journey with short highlights every three years and intermediate years of calm? In addition, the highlights, the General Assemblies, tend to be rather similar in structure and there is a danger that the story will become repetitive and rather boring.
    [Show full text]