Corundum Inclusions in Diamonds - Discriminatory Criteria and a Corundum Compositional Database
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
WATER CHEMISTRY CONTINUING EDUCATION PROFESSIONAL DEVELOPMENT COURSE 1St Edition
WATER CHEMISTRY CONTINUING EDUCATION PROFESSIONAL DEVELOPMENT COURSE 1st Edition 2 Water Chemistry 1st Edition 2015 © TLC Printing and Saving Instructions The best thing to do is to download this pdf document to your computer desktop and open it with Adobe Acrobat DC reader. Adobe Acrobat DC reader is a free computer software program and you can find it at Adobe Acrobat’s website. You can complete the course by viewing the course materials on your computer or you can print it out. Once you’ve paid for the course, we’ll give you permission to print this document. Printing Instructions: If you are going to print this document, this document is designed to be printed double-sided or duplexed but can be single-sided. This course booklet does not have the assignment. Please visit our website and download the assignment also. You can obtain a printed version from TLC for an additional $69.95 plus shipping charges. All downloads are electronically tracked and monitored for security purposes. 3 Water Chemistry 1st Edition 2015 © TLC We require the final exam to be proctored. Do not solely depend on TLC’s Approval list for it may be outdated. A second certificate of completion for a second State Agency $25 processing fee. Most of our students prefer to do the assignment in Word and e-mail or fax the assignment back to us. We also teach this course in a conventional hands-on class. Call us and schedule a class today. Responsibility This course contains EPA’s federal rule requirements. Please be aware that each state implements drinking water/wastewater/safety regulations may be more stringent than EPA’s or OSHA’s regulations. -
Volume 20 / No. 7-8 / 1987
Volume 20 Nos. 7 & 8 July & October 1987 TheJournal of Gemmology GEMMOLOGICAL ASSOCIATION OF GREAT BRITAIN OFFICERS AND COUNCIL President: *Sir Frank Claringbull, Ph.D., F.lnst.P., FGS Vice-Presidents: J. R. H. Chisholm, M.A., FGA R. K. Mitchell, FGA Chairman: *D. J. Callaghan, FGA Vice-Chairman: *N. W. Deeks, FGA Honorary Treasurer: *N. B. Israel, FGA Members elected to Council: *A. J. Allnutt, M.Sc., J. A. W. Hodgkinson, FGA *J. B. Nelson, Ph.D., Ph.D., FGA D. Inkersole, FGA FRMS, F.Inst.P., FGA *E. M. Bruton, FGA B. Jackson, FGA W. Nowak, C.Eng., *C. R. Cavey, FGA *E. A. Jobbins, B.Sc., C.Eng., F.R.Ae.S., FGA L. F. Cole, FGA FIMM, FGA M. J. Q'Donoghue, P. J. E. Daly, B.Sc., C. B. Jones, FGA MA, FGS, FGA FGA *G. H. Jones, B.Sc., Ph.D., *P. G. Read, C.Eng., *A. E. Farn, FGA FGA MIEE, MIERE, FGA A. J. French, FGA D.G.Kent,FGA A. W. R. Round, FGA *R. R. Harding, B.Sc., D. M. Larcher, FGA E. Stern, FGA D.Phil, FGA D. Morgan, FGA *C. H. Winter, FGA J. W. Harris, B.Sc., M.Sc., Ph.D. * Members of the Executive Committee Branch Chairmen: Midlands Branch: P. J. West, FGA North-West Branch: S. G. Hill, FGA South Yorkshire & District Branch: G. A. Massie~ FGA Examiners: A. J. Allnutt, M.Sc., Ph.D., FGA D. G. Kent, FGA E. M. Bruton, FGA P. Sadler, B.Sc., FGS, FGA A. E. Farn, FGA K. -
Chemical Contaminants 201 Continuing Education Professional Development Course
CHEMICAL CONTAMINANTS 201 CONTINUING EDUCATION PROFESSIONAL DEVELOPMENT COURSE 2 Chemical Contaminants 201 1st Edition TLC (928) 468-0665 Printing and Saving Instructions The best thing to do is to download this pdf document to your computer desktop and open it with Adobe Acrobat reader. Adobe Acrobat reader is a free computer software program and you can find it at Adobe Acrobat’s website. You can complete the course by viewing the course materials on your computer or you can print it out. Once you’ve paid for the course, we’ll give you permission to print this document. Printing Instructions: If you are going to print this document, this document is designed to be printed double-sided or duplexed but can be single-sided. This course booklet does not have the assignment. Please visit our website and download the assignment also. Internet Link to Assignment… http://www.abctlc.com/PDF/CC201ASS.pdf State Approval Listing Link, check to see if your State accepts or has pre- approved this course. Not all States are listed. Not all courses are listed. Do not solely trust our list for it may be outdated. It is your sole responsibility to ensure this course is accepted for credit. No refunds. Professional Engineers; Most states will accept our courses for credit but we do not officially list the States or Agencies acceptance or approvals. State Approval Listing URL… http://www.tlch2o.com/PDF/CEU%20State%20Approvals.pdf You can obtain a printed version from TLC for an additional $69.95 plus shipping charges. All downloads are electronically tracked and monitored for security purposes. -
Gravity Concentration
Gravity concentration Introduction Gravity techniques to recover residual valu- able heavy minerals in flotation tailings are being Gravity methods of separation are used to treat a increasingly used. Apart from current production, great variety of materials, ranging from heavy metal there are many large tailings dumps which could be sulphides such as galena (sp. gr. 7.5) to coal (sp. gr. excavated cheaply and processed to give high value 1.3), at particle sizes in some cases below 50 txm. concentrates using recently developed technology. These methods declined in importance in the first half of the twentieth century due to the develop- ment of the froth-flotation process, which allows Principles of gravity concentration the selective treatment of low-grade complex ores. Gravity concentration methods separate minerals of They remained, however, the main concentrating different specific gravity by their relative move- methods for iron and tungsten ores and are used ment in response to gravity and one or more extensively for treating tin ores, coal and many other forces, the latter often being the resistance to industrial minerals. motion offered by a viscous fluid, such as water In recent years, many companies have or air. re-evaluated gravity systems due to increasing It is essential for effective separation that a costs of flotation reagents, the relative simplicity marked density difference exists between the of gravity processes, and the fact that they mineral and the gangue. Some idea of the type of produce comparatively little environmental pollu- separation possible can be gained from the concen- tion. Modern gravity techniques have proved effi- tration criterion cient for concentration of minerals having particle D h - Df sizes in the 50txm range and, when coupled with (10.1) improved pumping technology and instrumenta- D 1 - Df tion, have been incorporated in high-capacity plants where D h is the specific gravity of the heavy (Holland-Batt, 1998). -
Quick Assays in Mineral Identification
Quick assays in mineral identification A guide to experiments for mineral collectors and geoscientists in field work by Walter A. Franke retired Professor of Mineralogy, Freie Universität Berlin, Germany This manual is intended for use by persons with a basic knowledge of inorganic chemistry, they are advised to follow strictly the safety instructions. The author does not accept liability or responsibility for any injury or damage to persons or property incurred by performing the experiments described on this website, nor for the content of any outside material, including linked websites. 2 Content I General Part Introduction 3 The heat source 5 The base and the vessels 8 Sample preparation 11 The reagents 12 Safety hints 15 The classical tests 17 Heating in a closed tube 17 Heating in the open tube 18 Heating on Charcoal 20 The coloration of borax and phosphate beads 23 Flame coloration 26 Fusibility 28 The oxidation melt 29 The ammonium hypophosphite fusion 29 Some tests for anion forming elements 30 Treatment with cobalt nitrate 32 The charcoal-soda stick 32 Heating with sodium thiosulphate 33 Spot tests and the use of the wet separation process 33 The choice of fusion processes 34 Some hints to filtration 38 II Special part Identification tests for the different elements in alphabetical order of their element symbols 39 The preparation of test papers and reagents 62 Staining tests for carbonates 64 UV fluorescence 65 The solubility of some minerals 66 Miscellaneous hints 69 III Appendix A basic kit of chemicals and equipment 76 Annex I, comprises all chemicals and equipment mentioned in the General Part 76 Annex II, comprises all chemicals and equipment mentioned in the Special Part 77 References 78 The periodic table of the elements 80 Normal spectra of the alkali metals 81 Glossary 82 Subject index 85 Acknowledgements 88 3 I General part Introduction A quick assay is a qualitative chemical analysis; it is a test to prove the presence or absence of a chemical element in the assayed matter. -
Chemical Investigation of Pyrope Garnets in the Stockdale Kimberlite
American Mineralogist, Volume 60, pages 675480, 1975 ChemicalInvestigation of Pyrope Garnetsin the StockdaleKimberlite Intrusion,Riley County,Kansas FnnNz Rosrt, EsnnHd\noBnnnMlNN, huo GroRc Atrlrsnugn Fachrichtung Mineralogie der Uniuersitiit des Sqarlandes, Saqrbrilcken, Germany Abstract The color variationsbetween 4l separatepyrope garnet fractions from the Stockdale kimberliteare causedby differingchromium concentrations.Two main seriesmay be dis- tinguished.Series I showsa widecolor range from paleorange to dark violet,corresponding to CrrOrcontent from 0.2to 13wt percent;the cell edge increases from ll.5ll to 11.647A. SeriesII is characterizedby light pink or redcolors, CrrO, values below 2.5 wt percent,ahd TiO, contentsgreater than 0.5 wt percent.The largercell edgesin SeriesII are causedby higher content of Fe3+, which is proved by reflectancephotometry and Mcissbauer spectroscopy.The quantitativedistribution of chromium in the Stockdalegarnets is representedin a variation diagram. Introduction the calculatedformula induced Brookins and others Many kimberlitescharacteristically contain pyrope to reinvestigate the red garnet. Brookins' (1967) garnetswhich originate from garnet peridotite and analysisof red pyropeyielded SiOr,44.l l;TiO2,0.27; pyroxenite xenoliths, or are geneticallyrelated to AlrO3, 21.50; FerOt, 1.37; CrrO3,2.77; FeO,7.55", kimberliteitself. Investigationson pyrope garnets MgO, 20.57; CaO, 4.64; MnO, 0.37. Rosa and from kimberlitesby Nixon, Knorring, and Rooke Brookins (1966)determined ao to be ll.535A for red (1963),Nixon and Hornung(1968), Meyer (1968; pyrope and ll.558A for "green" pyrope. Brookins 1970),Sobolev, Lavrent'yev, Pospelova, and Sobolev (1967) concluded that, becauseof the high value of (1969),Reid and Hanor (1970),Meyer and Boyd the unit cell and refractive index, the "green pyrope" (19'72),and Gurneyand Switzer(1973) show colors may be even more chromium rich than the red ranging from pale orangeto red and dark violet, pyrope.