<<

Index

A Bilayer polymeric structures, 306 Ablation, 87 Bioactive thin films, 304, 308 Ablation plasma, 199 Biomaterial, 272 Ablation rate, 55 Biomolecule analysis, 298 Ablation volume, 35 Biopolymer, 60, 325–327, 337–340, 342 Absorption cross section, 54, 108 Biosensor, 285 Ac conductivity, 238 Biphosphonate-hydroxyapatite, 275 Acousto-optic modulator, 22 Birefringence shift, 240, 243 Activation energy barriers, 218 Boltzmann equation for electrons, 93 Active protein thin films, 304, 308 Bottom-up nanostructuring, 59 Active site, 216, 218, 223 Bragg reflection, 332 Advance oxidation process, 222 Brazilwood, SERS, 209 Aggregates and droplets, 290 Breathing sphere model, 70 Aggregation sources, 202 Bubble/void formation, 118 Ag NPs, 203 Alizarin, SERS, 207 Amplified systems, 20 C Analysis methods, 350 Carbon coatings, 219 Anodic Aluminium Oxide, 327 Carbon nanostructure synthesis, 150 Apomorphine, SERS, 206 Carbon nanotubes, 90 ARRHENIUS equation, 32 Carmine lake,SERS, 209 ARRHENIUS plot, 32, 33 Carrier-envelope phase(CEP), 126, 127, 129, Asymmetry parameter, 138 131 Atomic force microscopy (AFM) images, 280 Catalysis process, 216, 224 Atomic movies, 67 Catalytic reaction, 218, 223 Atomic resolution electron microscopy, 148 Cell, 326, 328, 337, 340, 341 Atomization, 201 Cell proliferation and earlier differentiation, Auger process, 54 276 Autocatalytic kinetics, 162, 163 Characteristic collisional time of electrons, Avalanche ionization, 55, 63, 339, 360, 361, 108 374, 375 Characteristic recombination time, 104 Chemical hydrides, 214 Chemical vapor deposition (CVD), 154 B Chirped-pulse amplifier, 21 Ballistic electron transport, 47, 49, 63 Chitosan, 337, 339–342 Ballistic energy transport, 93 Cladding, 348 Beam parameters, 347 Clamping effect, 104 Beam self-focusing, 114 Clean fuels, 214 Benzenethiol, 336, 342 Cluster assembled film, 176, 185, 189

M. Castillejo et al. (eds.), in Materials Science, 381 Springer Series in Materials Science 191, DOI: 10.1007/978-3-319-02898-9, Ó Springer International Publishing Switzerland 2014 382 Index

Cluster-assembled W films, 185 Double optical gating, 132 Cluster-assembling (CA) films, 176 Double-pulse train, 375 Clustered NPs, 205 Drag model, 180 Cluster ejection, 86 Drag model, modified, 181, 182 Co nanoparticles, 214, 224 Droplet, 189, 201 Co oxide, 221 Drude model, 107 Coalescence, 190, 200, 216 Drug delivery systems, 271 Coarse-grained MD simulations, 71 Coarsening, 218 Co-B coatings, 219 E Collagen, 337, 338 Ee–ne diagram, 116 Collisional processes, 219 Effective absorption coefficient, 43 Colloidal nanoparticle thin films, 304, 314 Effective piezoelectric coefficient, 242 Colloidal nanorods thin films, 314 Electrolyte, 52 Colloidal solution, 193 Electron avalanche, 103 Complex impedance , 238 Electron bunches, 346 Complex oxide materials, 228 Electron diffusion, 47, 49 Compressive stress, 117 Electron–electron scattering, 44, 46, 54 Compressive wave, 117 Electron heating, 360, 361, 374, 375 Computational models, 68 Electron-hole pair, 55 Computer modeling, 67 Electronic heat capacity, 47 Confinement, 178, 193 Electronic structure calculations, 68 Continuum modeling of laser-materials Electron localization, 137, 138 interactions, 68, 93 Electron pressure, 49, 92 Coulomb explosion, 59 Electron temperature dependent interatomic Cracks, 352 potentials, 92 Cross section, 350 Electron transfer, 216 Cross-linking, 63 Electron-lattice thermalization, 116 Cryogenic target, 273 Electron–phonon coupling factor, 46, 49, 92 Electron–phonon scattering, 2, 54 Electro-optic devices, 264 D Electro-optic effect, 236 Damped harmonic oscillator, 50 Electro-optic modulator, 22 Defects in nanotubes, 156 Electro-optical coefficients, 249 Defect states, 106 EM enchancement, 203 Deflated balloons, 90 Emission of dislocations, 80 Degradation of dye, 223 Emission of partial dislocations, 76 Degradation of methylene blue dye, 213 Energy balance, 116 Degrade the methylene blue dye, 224 Energy dispersive spectroscopy mapping, 307 Dendritic growth, 354 Enzyme ribonuclease a, 271 Density variations in nanotube arrays, 160 Epitaxial growth, 241 Deposition techniques, 272 Evaporation-induced self-assembly, 284 Desorption, 87 , 15 Deterministic process, 55 Exfoliation methods, 164 Diagnostics, 199 Explosive boiling, 68, 87 Dielectric, 54, 59, 61 Dielectric spectroscopy, 234, 260 Diffusion-like propagation, 178 F Diffusion model, 180 Fabry-Perot cavity, 10 Diffusion model, modified, 181, 182 Feedback mechanism, 334, 335 Direct laser synthesis, 347 Femtosecond and picosecond lasers, 359 Direct simulation Monte Carlo (DSMC), 93 Femtosecond , 367 Disorders of bone, 275 Femtosecond laser direct writing, 363 Double focusing, 113 Femtosecond laser, 366 Index 383

Fermi distribution, 46 Heat conduction, 103 Ferroelectric materials thin films, 228, 229 Heat flow equation, 119 , 18 Helmholtz layer, 52, 63 Fiber texture, 355 Heterogeneous catalyst, 224 Fibrilar structure, 338 High-intensity, 7 Fibroblasts, 340–342 High-performance electronic devices, 228 Figure of merit, 2, 3 High resolution electron microscopy (HREM), Filamentation, 193 185 Film thickness, 356 High spatial LIPSS (HSFL), 58, 59 Filopodia, 341 Hollow fiber, 126–128 Finite element method, 352 Homogeneous and heterogeneous Finite-Difference Time-Domain, 109 melting, 73 First principles theory, 148 Homogeneous boiling, 18, 36 Fluorescence microscopy, 340 Homogeneous catalyst, 223 Focal plane, 193 Hot electron diffusion, 63 Fourier-transform infrared spectroscopy Hot electron electrochemistry, 53 studies, 280 Hot electron emission, 51 Free electron density, 335, 339 Hot spot, 205 Free electron gas, 47, 50 Hydrogen generation yield, 217 Free electron laser, 346 Hydrolysis reaction, 216, 218, 221 Free propagation, 182 Hyperthermal processes, 29, 36, 37 Frequency Resolved Optical Gating for Com- plete Reconstruction of Attosecond Bursts (FROG CRAB), 135, 136 I Frustrated ablation, 85 Idler beam, 26 Full oxide heterostructure, 263 Idler , 18, 25 Fullerenes, 150 Immunoglobulin g, 285 Immunoresponse, 286 Impact ionization, 54, 55, 63 G In situ diagnostics, 166 medium, 7–9, 21, 22 In situ diagnostics of carbon nanotube growth Garanza lake, 207 kinetics, 163 Gelatine, 337–339 In situ laser reflectivity, 161 Generalized double optical gating, 133 Incremental growth, 160 Generation of crystal defects, 67, 76 Industrial applications, 348 Generation of nanocrystalline structure, 76, 85 Initial plasma velocity, 187 Generation of vacancies, 77 In-plane orientation, 250–253 Glass microwelding, 375 Intensity dependent band gap, 110 Grain-boundaries, 223 Interconnected liquid regions, 87, 90 Graphene, 164 Internal modification, 360, 362 Graphene growth, 169 Inverse bremsstrahlung, 105 Grazing incidence small-angle X-ray scatter- In-vitro tests, 290 ing (GISAXS), 329–331 Ionization gating, 133 Grazing incidence wide-angle X-ray scattering Ionization scattering instability, 121 (GIWAXS), 329 IR-MALDI, 298 Grazing incidence X-ray scattering, 327, 329 Islands, 190 Isolated attosecond pulses, 131 Isothermal graphene growth, 166 H H2 generation rate, 218 Hard sphere binary collision, 184 K Harmonic oscillator, 50 Keldysh parameter, 104 Heat accumulation, 118 Kerr effect, 109 Heat-affected zone (HAZ), 359, 361, 375 Kinetic energy, 144 384 Index

L Matrix-assisted pulsed laser evaporation Lamellipodia, .341 (MAPLE), 89, 272, 297, 299, 302, 304, Lamellipodium, 341 306, 308, 310, 314, 318, 319, 327 Laser ablation, 4, 7, 67, 146 advantages, 300 Laser cleaning, 169 deposition hardware, 300 Laser energy, 6 deposition parameters, 310 Laser fluence, 2, 6, 285 film surface roughness, 302 Laser frequency, 6 molecular dynamic simulation, 303 Laser growth of graphene, 167 solvent volatility, 310, 312 Laser induced breakdown spectroscopy solvent solubility, 310, 312 (LIBS), 295, 296 solvent properties, 312 Laser induced forward transfer (LIFT), 327 solvent volatility, 312 Laser-induced periodic surface structures substrate temperature, 314 (LIPSS), 38, 39, 57, 325, 327–336, 339, matrix-assisted pulsed laser 341 evaporation, 89 Laser-induced stresses, 82 Maxwell’s equations, 106 Laser-induced void nucleation and growth, 83 MAXWELL-BOLTZMANN distribution, 31 Laser intensity, 4, 6, 7 MD-DSMC model, 94 Laser , 158 Meandering, 350 Laser melting, 67, 73 Mean plasma velocity, 187 Laser patterning of graphite oxide, 165 Mechanical fragmentation, 198 Laser produced plasma, 103 Medium , 110 Laser spot size, 7 Melt front propagation, 35 Laser type, 2 Melting of the nanocrystalline film, 76 Laser vaporization nanoparticle growth, 151 Metal, 44 Laser-materials interactions, 1–4 Mg and sr ions, 274 Lateral extension parameter, 56 Microbial levan, 282, 283 Lead-based ferroelectric, 231 Microchannel, 366, 372 Lead-based materials, 265 Microfluidic channel, 366, 370, 371 Lead-free ferroelectric, 227, 258 Microfluidic components, 372 Lead-free oxide, 263 Microfluidic devices, 370 Levan applications, 283 Microfluidic structure, 364 scattering to large angles, 109 Micro-optic components, 372 Liquid-assisted femtosecond , 366 Miniaturization of written structures, 119 Local densification/rarefaction, 119 Mixed amorphous-nanocrystalline Lorentz force, 112 phase, 222 Low spatial frequency LIPSS (LSFL), 57 Mixed amorphous-nanocyrstalline structure, 222 Mixed propagation model, 180, 182, 190 M Mixing, 351 Mach–Zehnder interferometer (MZI), 371 Model polymers, 24 Matrix assisted laser desorption ionization Mode-locked oscillator, 12, 21 (MALDI), 296, 297, 299, 317, 319 Mode-locking, 12, 13, 21 desorption mechanism, 299 Modified diffusion model, 181, 183 excitation and ionization mechanism, 299 Modified drag model, 181, 184 laser characteristics, 299 Molecular dynamics (MD) simulations, 67 matrix, 298 Morphotropic phase boundary, 258 MALDI-TOF, 298 Mpemba effect, 89 MAPLE experimental parameters, 274 Multilayers andmultistructures, 273 Marangoni convection, 351 Multi-pass amplifier, 21 Materials modification, 6, 18 Multiphoton absorption, 331, 341, 360–362, Materials processing, 15, 23, 25 364, 376 Index 385

Multiphoton ionization, 55, 60, 103, 360, 374, Optical trapping, 327 375 Optical waveguide, 362, 369, 370, 372 Multi-photon-polymerization, 63 Optofluidic device, 369, 372 Multipulse irradiation regimes, 118 Optofluidic microchips, 376 Multiscale computational model, 92 Optofluidic system, 370–372 Organic dyes, 207 Oscillator laser systems, 1 N Osteoblast cells, 290 Nano and microcrystalline domains, 289 OSTWALD ripening, 216 Nanoablation, 374 Over-the-barrier ionisation, 54 Nanoaquariums, 370 Oxidized levan, 283 Nanofabrication, 327, 328 Nanoimprint lithography (NIL), 327 Nanoparticle formation, 147 P Nanoparticle melting, 148 Perovskite structure, 229, 243 Nano-particles, 213, 214 P.G. de Gennes, 326 Nanoplasmas, 120 Phase explosion, 29, 37, 86, 198, 213–215 Nanoscale building blocks, 144 Photocatalysis, 214, 221 Nanosheets, 169 Photochemical ablation, 60 Nanostructured assembling, 283 Photodegradation, 222 Narrow size distribution, 213, 224 Photomechanical spallation, 67, 81 Narrow size distribution of Co3O4, 213, 224 Photon lifetime, 10 NBT-BT thin films, 258, 262 Photon-matter interactions, 4 Nd:YAG laser, 18 Photovoltaics. 264, 265 Nitrogen depth profiling, 350 Piezoelectric coefficient, 243, 246, 247 Noble metals catalyst, 218 Piezoelectric effects, 263 Nonequilibrium growth, 143, 144 Piezoelectric hysteresis, 262 Non-linear optical coupling, 54 Piezoresponse, 242 Non-linear Schrödinger equation, 106 Piezoresponse force microscopy, 262 Non-thermal melting, 56, 57 Plasma, 177 NP assembly morphology, 202 Plasma adiabatic index, 177 NP assembly optical properties, 202 Plasma confinement, 178, 193 NP assembly, 202 Plasma defocusing, 107 NP clustering, 203 Plasma diagnostics (femtosecond ablation), NP coalescence, 188 199 NP growth rate, 185 Plasma diffusive propagation, 178 NP nucleation, 184 Plasma filament, 18 NP production, 176 Plasma free propagation, 182 NP self assembling, 176, 189 Plasma luminous emission, 186 NP size distribution, 185, 188, 201 Plasma scattering, 114 NP size, 185, 188, 201 Plasma stopping, 186 NP soldering, 197 Plasma turbulence, 178 NP TEM imaging, 195 Plasma velocity, 187 NP velocities, 201 Plasma velocity, initial, 187 Plasmonic enhancement, 327 Plasmonics, 202, 209 O Plastic deformation, 76, 103 Octacalcium phosphate, 287 Plume, 4 Optical absorption length, 7 Plume splitting, clusters, 146, 147 Optical cavity, 346 Plzt thin films, 232–234, 238, 240–242 Optical parametric amplification, 126, 127 Pmn-pt thin films, 243, 245–247 Optical parametric oscillator, 18, 26 Pockels cell, 21, 22 Optical properties, 247 polarization, 58, 59 386 Index

Polarization gating, 131–133 S Poly (carbonate bisphenol A) (PC), 328, 329, Saturable absorber, 23 332 Saturation intensity, 14 Poly (ethylene terephthalate) (PET), 326, 328, SBN thin films, 248–250, 252, 253, 256, 257 332, 334 Scaffolds, 325, 337 Poly (trimethylene terephthalate) (PTT), 328, self-organized, 38, 40 329, 331–333, 336 self-organized nano-structure formation, 37 Poly (vinylidene fluoride) (PVDF), 328, 329, Self-polarization, 247 332, 333, 339 Self-trapped exciton (STE), 116 Polyethylene (PE), 326 Semiconductor (wide bandgap), 54, 59 Polymer, 60 Semiconductor saturable absorber , 23 Polymer blends, 305 Shaped pulse, 374 Polymer coating, 299, 300, 306 Shock wave (SW), 178, 181, 182, 184, 197 Polymer thin films, 304 Shock wave model, 178, 180 Polypropylene (PP), 326 Simulations, 352 Polysaccharides, 282 Single-wall carbon nanohorns, 153 Porous and irregular structure, 219 Single-wall carbon nanotube synthesis, 151 Precursors, 193 Size distribution, 188, 200, 201 Preparation, 349 Slowing down coefficient, 180 Pulsed CVD, 159 Slowly varying envelope, 109 Pulsed growth of nanotubes, 162 Solder NPs, 197 (PLD), 272, 327, 335, Solidification, 353 336 solid-state plasma, 60 Pulse energy, 13 Solute, 273 Pulse shaping, 360, 374 Solvent, 273 Purification of water, 224 Spallation, 198 Purpurin, SERS, 207 Spatial light modulator, 23 Spatial segregation of clusters/droplets, 88 Spectrometric ellipsometry, 253 Q Ss-MAPLE, 306 Q-switching, 22 Starch, 326, 337, 339 Quadratic electro-optic coefficient, 240 Step-flow method, 230, 231 Stereolithography, 62 Stochastic process, 72 R Stopping distance, 180 Raman scattering, 203 Stress accumulation, 119 Rapid prototyping, 62 Stress confinement time, 5 Rayleigh–Taylor instabilities, 351 Stress waves, 103 change, 102 Strong-field ionization, 54 Refractive index modification, 363 Strontium barium niobate, 247, 248 Regenerative amplifier, 21, 25 Substrate-assisted laser-driven ejection, 71 Relaxor behaviour, 247 Surface area and roughness, 221 Relaxor ferroelectric, 232, 243, 246, 261 Surface Enchanced Raman spectroscopy, 155 (SERS), 203, 206, 207, 325, 328, 335, Resonant nuclear reaction analysis, 350 342 Resonant optical excitation, 54 Surface evaporation, 87 RF-PLD deposited films, 234 Surface inhomogeneity, 57 , 203 Surface micromachining, 361 RIR-MAPLE, 300 Surface morphology, 280 Rotating mirror, 22 Surface plasmon resonance, 194 Roughness, 353 Surface plasmons, 203 Roughness of the films deposited Surface roughness, 219 by MAPLE, 89 Surface swelling, 85 Index 387

SW front, 185 Two-level system, 8, 13 Synthesis, 154 Two-photon-polymerization, 63 Two-temperature model, 32, 44, 46, 63, 71, 105, 335 T Tailored ultrafast laser pulses, 374, 375 TEM pictures, 188 U Tensile strength, 117 Ultrafast laser, 359–364, 366, 369, 374–376 Thermal confinement time, 4 Ultrafast laser ablation, 367 Thermal equilibrium, 31, 34–37 Ultrafast laser 3D drilling, 366 Thermal loading, 13 Ultrafast laser direct writing, 372 Thermodynamic phase transitions, 31 Ultrafast laser processing, 369, 376 Thermoelastoplastic model, 117 Ultrashort-living excitons-polaritons, 120 Thermoemission of electrons, 53 Ultrashort nanotubes, 162 Thin films, 272 Ultrasmall nanoparticles, 147, 148 Three body collisions, 199 UV-MALDI, 298 Three-dimensional (3D) microfluidic struc- tures, 366, 369 Three-dimensional (3D) micro/nano-fabrica- V tion, 362 Velocities, 200 Three-dimensional (3D) microfluidic systems, Vertically-aligned carbon nanotube array 376 growth, 159 Three-dimensional (3D) optofluidic structures, Vertically-aligned carbon nanotube arrays, 372 157, 158 Three-dimensional (3D) photonic microde- Violation of cylindrical symmetry, 113 vices, 363, 376 Volume nanogratings (VNG), 102 Threshold fluence, 43 Time-of-flight mass spectrometry, 60 Titanium, 349 W Titanium nitride, 349 Warm dense matter, 118 Transfer and immobilization, 290 Water splitting, 214 Transfer of CNTs in MAPLE, 90 Wavelength, 346, 347 Transient acoustic wave, 337 Wide-bandgap dielectric materials, 102 Transient foamy structure, 87, 90 Writing anisotropy, 121 Transition linewidth, 13 Transparent liquid, 192 Trapping-like process, 108 X TTM-MD model, 71 X-ray , 56, 355 Tunability, 237 X-ray diffraction patterns, 276 Tunable, mid-IR ps laser, 19 Tunnel ionization, 54 Tunneling ionization, 104, 360, 374 Z Turbulence, 178 Zero Riemann invariants, 112 Two-color gating, 134 Two-level atomic system, 8