Construction and Passive Q-Switching of a Ring-Cavity Erbium-Doped Fiber Laser Using Carbon Nanotubes As a Saturable Absorber" (2017)

Total Page:16

File Type:pdf, Size:1020Kb

Construction and Passive Q-Switching of a Ring-Cavity Erbium-Doped Fiber Laser Using Carbon Nanotubes As a Saturable Absorber Rose-Hulman Institute of Technology Rose-Hulman Scholar Graduate Theses - Physics and Optical Engineering Graduate Theses 8-10-2017 Construction and Passive Q-Switching of a Ring- Cavity Erbium-Doped Fiber Laser Using Carbon Nanotubes as a Saturable Absorber Austin Scott Rose-, [email protected] Follow this and additional works at: https://scholar.rose-hulman.edu/optics_grad_theses Part of the Optics Commons Recommended Citation Scott, Austin, "Construction and Passive Q-Switching of a Ring-Cavity Erbium-Doped Fiber Laser Using Carbon Nanotubes as a Saturable Absorber" (2017). Graduate Theses - Physics and Optical Engineering. 20. https://scholar.rose-hulman.edu/optics_grad_theses/20 This Thesis is brought to you for free and open access by the Graduate Theses at Rose-Hulman Scholar. It has been accepted for inclusion in Graduate Theses - Physics and Optical Engineering by an authorized administrator of Rose-Hulman Scholar. For more information, please contact weir1@rose- hulman.edu. Construction and Passive Q-Switching of a Ring-Cavity Erbium-Doped Fiber Laser Using Carbon Nanotubes as a Saturable Absorber A Thesis Submitted to the Faculty of Rose-Hulman Institute of Technology by Austin Murphy Scott In Partial Fulfillment of the Requirements for the Degree of Master of Science in Optical Engineering August 2017 ©2017 Austin Murphy Scott ABSTRACT Scott, Austin Murphy O. E. Rose-Hulman Institute of Technology August 2017 Construction and Passive Q-Switching of A Ring-Cavity Erbium-Doped Fiber Laser Using Carbon Nanotubes as a Saturable Absorber Thesis Advisor: Dr. Sergio C. Granieri The purpose of this thesis is to design, build, test, and achieve pulsed operation of a ring-cavity erbium-doped fiber laser using carbon nanotubes as a saturable absorber. The erbium-doped fiber is characterized first, cross-sections are calculated, and the gain value is determined. Subsequently, the ring cavity is constructed and the laser is operated in the continuous wave regime. Much time is then spent trying to characterize and utilize the carbon nanotubes successfully. Many dispersions are made using multiple solvents and dispersing media, various images are taken with both scanning electron and Raman microscopy, and attempts at purification are made. Saturable absorbers are then created both by coating the end facet of a fiber with a dispersion containing carbon nanotubes and by inserting a fabricated poly-methyl-methacrylate (PMMA) and single- walled carbon nanotube (SWCNT) polymer composite film between two fiber end facets. Once inserted into the cavity, the saturable absorbers passively Q-switch the laser in three distinct cases. A fiber end facet coating of SWCNTs dispersed into isopropanol produced pulses with duration of 17.45 ± 0.11 µs and 2.74 ± 0.14 µs, with repetition rates of 25.36 ± 0.53 kHz and 37.77 ± 0.33 kHz, respectively. A second fiber end facet coating of SWCNTs dispersed into dimethylformamide (DMF) produced pulses with duration of 12.28 ± 1.08 µs and 3.58 ± 0.12 µs, with repetition rates of 25.13 ± 0.63 kHz and 26.46 ± 0.13 kHz, respectively. The PMMA plus SWCNT polymer composite film produced pulses of 0.716 ± 0.007 µs duration and 142.8 ± 1 kHz repetition rate. Keywords: fiber laser, erbium doped fiber, single-walled carbon nanotubes, saturable absorber, Q-switching ACKNOWLEDGEMENTS I would like to say many thanks to multiple parties: Dr. Sergio Granieri for the initial project idea, lab space and laser equipment used, guidance throughout my research, and seemingly unlimited patience; Dr. Richard Liptak for providing knowledge and experimental methods which proved very helpful with my carbon nanotube research; Brian Fair for much assistance in the MiNDS facility; Roger Sladek and Ben Webster for many favors including fixing the SEM multiple times; Dr. Kathleen H. Dannelly of ISU’s Microbiology department for allowing me to use her tip sonicator, a critical piece of equipment; Cynthia Erwin and Lou Johnson for endless free access to numerous chemicals and other materials I frequently required; Dr. Daniel Morris for giving me easy access to the Raman microscope as well as teaching me how to use it, Dr. Azad Siahmakoun for his valuable suggestions which helped me greatly improve my thesis, Dr. Wonjong Joo for his part in making my journey to Seoul possible as well as helping secure an internship at KIST, an unforgettable experience; and, finally, my close friends and family members for all their emotional and financial support. i TABLE OF CONENTS Contents LIST OF FIGURES ............................................................................................................... iii LIST OF ABBREVIATIONS ................................................................................................ v LIST OF SYMBOLS ............................................................................................................ vii 1. INTRODUCTION .............................................................................................................. 1 2. THEORY OF RING-CAVITY ERBIUM-DOPED FIBER LASERS ............................ 3 2.1 Erbium-Doped Fibers as Gain Media ...................................................................... 3 2.1.1 Pumping as a 3-Level System..................................................................... 3 2.1.2 Pumping Schemes: Unidirectional versus Bidirectional ......................... 6 2.1.3 Gain Characteristics ................................................................................... 8 2.2 Oscillation Condition for a Fiber Laser ................................................................... 9 2.2.1 Mathematical Analysis................................................................................ 9 2.2.2 Feedback Mechanism ............................................................................... 11 3. CONSTRUCTION OF A RING-CAVITY ERBIUM-DOPED FIBER LASER ......... 13 3.1 Characterization of the EDF ................................................................................... 13 3.1.1 Signal Absorption and ASE Spectrum .................................................... 13 3.1.2 Calculating Absorption and Emission Cross-Sections ........................... 19 3.1.3 Measuring EDF Gain ................................................................................ 21 3.2 Ring Cavity Setup .................................................................................................... 24 3.3 CW Operation .......................................................................................................... 25 4. CARBON NANOTUBE INVESTIGATION AND EXPERIMENTATION................ 27 4.1 Characterization Methods and Attempts............................................................... 27 4.1.1 Scanning Electron Microscope (SEM) Imaging of SWCNTs ................ 27 4.1.2 Raman Spectroscopy of SWCNTs ........................................................... 35 4.2 Dispersions of SWCNTs into Various Organic Solvents and H 2O....................... 40 4.3 Use of SWCNTs to Make Saturable Absorbers ..................................................... 48 5. PULSING THE LASER CAVITY .................................................................................. 52 5.1 Q-Switching Theory ................................................................................................. 52 5.2 Q-Switched Laser Output Results .......................................................................... 57 ii 5.2.1 Direct-Coating of Fiber End Facets with SWCNTs in Organic Solvent Solution and Corresponding Q-Switching Results ................... 57 5.2.2 Inserting the Composite Film SA Between Two Fiber End Facets and Corresponding Q-Switching Results .................................... 65 6. CONCLUSIONS AND FUTURE WORKS.................................................................... 68 6.1 Conclusions ............................................................................................................... 68 6.2 Future Works ............................................................................................................ 72 6.2.1 Improving the Pulsed Operation to Achieve Mode-Locking ................ 72 6.2.2 Better SA Construction Techniques and SA Characterization ............. 73 LIST OF REFERENCES ..................................................................................................... 75 APPENDICES ...................................................................................................................... 79 APPENDIX A ........................................................................................................................ 79 iii LIST OF FIGURES Figure 2.1: Atomic energy band structure of Er 3+ ions ......................................................... 4 Figure 2.2: Diagram of unidirectional pumping scheme for EDFL ...................................... 7 Figure 2.3: Diagram of bidirectional pumping scheme for EDFL ........................................ 8 Figure 2.4: Diagram of ring-cavity EDFL ........................................................................... 12 Figure 3.1: Diagram of setup for measuring EDF absorption spectrum ............................. 14 Figure 3.2: Results from measuring EDF absorption spectrum .......................................... 15 Figure 3.3: Diagram of setup for measuring ASE spectrum of EDF................................... 16 Figure 3.4: ASE spectrum of EDF with unwanted oscillations present .............................
Recommended publications
  • Self Amplified Lock of a Ultra-Narrow Linewidth Optical Cavity
    Self Amplified Lock of a Ultra-narrow Linewidth Optical Cavity Kiwamu Izumi,1, ∗ Daniel Sigg,1 and Lisa Barsotti2 1LIGO Hanford Observatory, PO Box 159 Richland, Washington 99354, USA 2LIGO laboratory, Massachusetts Institute of Technology, Cambridge, Massachussetts 02139, USA compiled: January 8, 2016 High finesse optical cavities are an essential tool in modern precision laser interferometry. The incident laser field is often controlled and stabilized with an active feedback system such that the field resonates in the cavity. The Pound-Drever-Hall reflection locking technique is a convenient way to derive a suitable error signal. However, it only gives a strong signal within the cavity linewidth. This poses a problem for locking a ultra-narrow linewidth cavity. We present a novel technique for acquiring lock by utilizing an additional weak control signal, but with a much larger capture range. We numerically show that this technique can be applied to the laser frequency stabilization system used in the Laser Interferometric Gravitational-wave Observatory (LIGO) which has a linewidth of 0.8 Hz. This new technique will allow us to robustly and repeatedly lock the LIGO laser frequency to the common mode of the interferometer. OCIS codes: (140.3425), (140.3410) http://dx.doi.org/10.1364/XX.99.099999 High finesse optical cavities have been an indispens- nonlinear response [8, 9] dominant and thus hinder the able tool for precision interferometry to conduct rela- linear controller. tivistic experiments such as gravitational wave detection Gravitational wave observatories deploy kilometer [1{3] and optical clocks [4]. The use of a high finesse cav- scale interferometers with extremely narrow linewidth.
    [Show full text]
  • Power Build-Up Cavity Coupled to a Laser Diode
    I POWER BUILD-UP CAVITY COUPLED I TO A LASER DIODE Daniel J. Evans I Center of Excellence for Raman Technology University of Utah I Abstract combination of these elements will emit photons at different frequencies. The ends of these semiconductor In many Raman applications there is a need to devices are cleaved to form mirrors that bounce the I detect gases in the low ppb range. The desired photons back and forth within the cavity. The photons sensitivity can be achieved by using a high power laser excite more electrons, which form more photons source in the range of tens of watts. A system (referred to as optical pumping). 2 A certain portion of I combining a build-up cavity to enhance the power and the photons emit through the front and back cleaved an external cavity laser diode setup to narrow the surfaces of the laser diode. The amount of photons that bandwidth can give the needed power to the Raman get through the cleaved surfaces can be adjusted by I spectroscopy system. coating the surface or installing other mirrors. Introduction to Laser Diodes The planar cleaved surfaces of the laser diode form a Fabry-Perot cavity with set resonance frequencies I An important characteristic of all lasers is the (vp).3 The typical laser diode has a spacing of 150 f.1I11 mode structure. The mode structure refers to both the with an index of refraction of 3.5, yielding a resonance lasing frequency and the spatial characteristics of the frequency of 285 GHz. The wavelength spacing (~A.) I laser.
    [Show full text]
  • Quantum Illumination at the Microwave Wavelengths
    Quantum Illumination at the Microwave Wavelengths 1 2 3 4 5 6, Shabir Barzanjeh, Saikat Guha, Christian Weedbrook, David Vitali, Jeffrey H. Shapiro, and Stefano Pirandola ∗ 1Institute for Quantum Information, RWTH Aachen University, 52056 Aachen, Germany 2Quantum Information Processing Group, Raytheon BBN Technologies, Cambridge, Massachusetts 02138, USA 3QKD Corp., 60 St. George St., Toronto, M5S 3G4, Canada 4School of Science and Technology, University of Camerino, Camerino, Macerata 62032, Italy 5Research Laboratory of Electronics, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA 6Department of Computer Science & York Centre for Quantum Technologies, University of York, York YO10 5GH, United Kingdom Quantum illumination is a quantum-optical sensing technique in which an entangled source is exploited to improve the detection of a low-reflectivity object that is immersed in a bright thermal background. Here we describe and analyze a system for applying this technique at microwave frequencies, a more appropriate spectral region for target detection than the optical, due to the naturally-occurring bright thermal background in the microwave regime. We use an electro-opto- mechanical converter to entangle microwave signal and optical idler fields, with the former being sent to probe the target region and the latter being retained at the source. The microwave radiation collected from the target region is then phase conjugated and upconverted into an optical field that is combined with the retained idler in a joint-detection
    [Show full text]
  • Construction of a Flashlamp-Pumped Dye Laser and an Acousto-Optic
    ; UNITED STATES APARTMENT OF COMMERCE oUBLICATION NBS TECHNICAL NOTE 603 / v \ f ''ttis oi Construction of a Flashlamp-Pumped Dye Laser U.S. EPARTMENT OF COMMERCE and an Acousto-Optic Modulator National Bureau of for Mode-Locking Iandards — NATIONAL BUREAU OF STANDARDS 1 The National Bureau of Standards was established by an act of Congress March 3, 1901. The Bureau's overall goal is to strengthen and advance the Nation's science and technology and facilitate their effective application for public benefit. To this end, the Bureau conducts research and provides: (1) a basis for the Nation's physical measure- ment system, (2) scientific and technological services for industry and government, (3) a technical basis for equity in trade, and (4) technical services to promote public safety. The Bureau consists of the Institute for Basic Standards, the Institute for Materials Research, the Institute for Applied Technology, the Center for Computer Sciences and Technology, and the Office for Information Programs. THE INSTITUTE FOR BASIC STANDARDS provides the central basis within the United States of a complete and consistent system of physical measurement; coordinates that system with measurement systems of other nations; and furnishes essential services leading to accurate and uniform physical measurements throughout the Nation's scien- tific community, industry, and commerce. The Institute consists of a Center for Radia- tion Research, an Office of Measurement Services and the following divisions: Applied Mathematics—Electricity—Heat—Mechanics—Optical Physics—Linac Radiation 2—Nuclear Radiation 2—Applied Radiation 2—Quantum Electronics 3— Electromagnetics 3—Time and Frequency 3 —Laboratory Astrophysics3—Cryo- 3 genics .
    [Show full text]
  • Second Harmonic Generation Microscopy for Quantitative Analysis
    PROTOCOL Second harmonic generation microscopy for quantitative analysis of collagen fibrillar structure Xiyi Chen1, Oleg Nadiarynkh1,2, Sergey Plotnikov1,2 & Paul J Campagnola1 1Department of Biomedica l Engineering, University of Wisconsin-Madison, Madison, Wisconsin, USA. 2Present addresses: Department of Physics, University of Utrecht, Utrecht, The Netherlands (O.N.); US National Institutes of Health, Heart, Lung and Blood Institute, Bethesda, Maryland, USA (S.P.). Correspondence should be addressed to P.J.C. ([email protected]). Published online 8 March 2012; doi:10.1038/nprot.2012.009 Second-harmonic generation (SHG) microscopy has emerged as a powerful modality for imaging fibrillar collagen in a diverse range of tissues. Because of its underlying physical origin, it is highly sensitive to the collagen fibril/fiber structure, and, importantly, to changes that occur in diseases such as cancer, fibrosis and connective tissue disorders. We discuss how SHG can be used to obtain more structural information on the assembly of collagen in tissues than is possible by other microscopy techniques. We first provide an overview of the state of the art and the physical background of SHG microscopy, and then describe the optical modifications that need to be made to a laser-scanning microscope to enable the measurements. Crucial aspects for biomedical applications are the capabilities and limitations of the different experimental configurations. We estimate that the setup and calibration of the SHG instrument from its component parts will require 2–4 weeks, depending on the level of the user′s experience. INTRODUCTION Over the past decade, the nonlinear optical method of SHG micros­ on the harmonophores and their assembly that can be imaged, as copy has emerged as a powerful tool for visualizing the supra­ the environment must be noncentrosymmetric on the size scale molecular assembly of collagen in tissues at an unprecedented level of of λSHG; otherwise, the signal will vanish.
    [Show full text]
  • Practical Tips for Two-Photon Microscopy
    Appendix 1 Practical Tips for Two-Photon Microscopy Mark B. Cannell, Angus McMorland, and Christian Soeller INTRODUCTION blue and green diode lasers. To provide an alignment beam to which the external laser can be aligned, light from this reference As is clear from a number of the chapters in this volume, 2-photon laser needs to be bounced back through the microscope optical microscopy offers many advantages, especially for living-cell train and out through the external coupling port: studies of thick specimens such as brain slices and embryos. CAUTION: Before you switch on the reference laser in this However, these advantages must be balanced against the fact that configuration make sure that all PMTs are protected and/or commercial multiphoton instrumentation is much more costly than turned off. the equipment used for confocal or widefield/deconvolution. Given Place a front-surface mirror on the stage of the microscope and these two facts, it is not surprising that, to an extent much greater focus onto the reflective surface using an air objective for conve- than is true of confocal, many researchers have decided to add a nience (at sharp focus, you should be able to see scratches or other femtosecond (fs) pulsed near-IR laser to a scanner and a micro- mirror defects through the eyepieces). The idea of this method is scope to make their own system (Soeller and Cannell, 1996; Tsai to cause the reference laser beam to bounce back through the et al., 2002; Potter, 2005). Even those who purchase a commercial optical train and emerge from the other laser port.
    [Show full text]
  • State-Of-The-Art Fiber Optics for Short Distance Frequency Reference Distribution
    N89-27878 January-March 1989 TDA Progress Report 42-97 State-of-the-Art Fiber Optics for Short Distance Frequency Reference Distribution G. Lutes and L. Primas Communications Systems Research Section A number of recently developed fiber-optic components that hem the promise of unprecedented stability for passively stabilized frequency distribution links are character- ized. These components include a fiber-optic transmitter, an optical isolator, and a new type of fiber-optic cable. A novel laser transmitter exhibits extremely low sensitivity to intensity and polarization changes of reflected light due to cable flexure. This virtually eliminates one of the shortcomings in previous laser transmitters. A high-isolation, low- loss optical isolator has been developed which also virtually eliminates laser sensitivity to changes in intensity and polarization of reflected light. A newly developed fiber has been tested. This fiber has a thermal coefficient of delay of less than 0.5 parts per million per °C, nearly 20 times lower than the best coaxial hardline cable and 10 times lower than any previous fiber-optic cable. These components are highly suitable for distribution systems with short extent, such as within a Deep Space Communications Complex. In this article these new components are described and the test results presented. I. Introduction mary causes of degradation. These effects are caused by distri- bution system noise, which reduces the SNR, and variations in The transmitter exciter, local oscillator, and receiver delay the environmental temperature, which cause delay changes. calibration system in a Deep Space Station (DSS) require The degree of delay change is dependent on the Thermal Coef- stable frequency references.
    [Show full text]
  • A Polarization-Insensitive Recirculating Delayed Self-Heterodyne Method for Sub-Kilohertz Laser Linewidth Measurement
    hv photonics Communication A Polarization-Insensitive Recirculating Delayed Self-Heterodyne Method for Sub-Kilohertz Laser Linewidth Measurement Jing Gao 1,2,3 , Dongdong Jiao 1,3, Xue Deng 1,3, Jie Liu 1,3, Linbo Zhang 1,2,3 , Qi Zang 1,2,3, Xiang Zhang 1,2,3, Tao Liu 1,3,* and Shougang Zhang 1,3 1 National Time Service Center, Chinese Academy of Sciences, Xi’an 710600, China; [email protected] (J.G.); [email protected] (D.J.); [email protected] (X.D.); [email protected] (J.L.); [email protected] (L.Z.); [email protected] (Q.Z.); [email protected] (X.Z.); [email protected] (S.Z.) 2 University of Chinese Academy of Sciences, Beijing 100039, China 3 Key Laboratory of Time and Frequency Standards, Chinese Academy of Sciences, Xi’an 710600, China * Correspondence: [email protected]; Tel.: +86-29-8389-0519 Abstract: A polarization-insensitive recirculating delayed self-heterodyne method (PI-RDSHM) is proposed and demonstrated for the precise measurement of sub-kilohertz laser linewidths. By a unique combination of Faraday rotator mirrors (FRMs) in an interferometer, the polarization-induced fading is effectively reduced without any active polarization control. This passive polarization- insensitive operation is theoretically analyzed and experimentally verified. Benefited from the recirculating mechanism, a series of stable beat spectra with different delay times can be measured simultaneously without changing the length of delay fiber. Based on Voigt profile fitting of high- order beat spectra, the average Lorentzian linewidth of the laser is obtained. The PI-RDSHM has advantages of polarization insensitivity, high resolution, and less statistical error, providing an Citation: Gao, J.; Jiao, D.; Deng, X.; effective tool for accurate measurement of sub-kilohertz laser linewidth.
    [Show full text]
  • Saturated Absorption Spectroscopy
    Ph 76 ADVANCED PHYSICS LABORATORY —ATOMICANDOPTICALPHYSICS— Saturated Absorption Spectroscopy I. BACKGROUND One of the most important scientificapplicationsoflasersisintheareaofprecisionatomicandmolecular spectroscopy. Spectroscopy is used not only to better understand the structure of atoms and molecules, but also to define standards in metrology. For example, the second is defined from atomic clocks using the 9192631770 Hz (exact, by definition) hyperfine transition frequency in atomic cesium, and the meter is (indirectly) defined from the wavelength of lasers locked to atomic reference lines. Furthermore, precision spectroscopy of atomic hydrogen and positronium is currently being pursued as a means of more accurately testing quantum electrodynamics (QED), which so far is in agreement with fundamental measurements to ahighlevelofprecision(theoryandexperimentagreetobetterthanapartin108). An excellent article describing precision spectroscopy of atomic hydrogen, the simplest atom, is attached (Hänsch et al.1979). Although it is a bit old, the article contains many ideas and techniques in precision spectroscopy that continue to be used and refined to this day. Figure 1. The basic saturated absorption spectroscopy set-up. Qualitative Picture of Saturated Absorption Spectroscopy — 2-Level Atoms. Saturated absorp- tion spectroscopy is one simple and frequently-used technique for measuring narrow-line atomic spectral features, limited only by the natural linewidth Γ of the transition (for the rubidium D lines Γ 6 MHz), ≈ from an atomic vapor with large Doppler broadening of ∆νDopp 1 GHz. To see how saturated absorp- ∼ tion spectroscopy works, consider the experimental set-up shown in Figure 1. Two lasers are sent through an atomic vapor cell from opposite directions; one, the “probe” beam, is very weak, while the other, the “pump” beam, is strong.
    [Show full text]
  • Ophthalmic Laser Therapy: Mechanisms and Applications
    1 Ophthalmic Laser Therapy: Mechanisms and Applications Daniel Palanker Department of Ophthalmology and Hansen Experimental Physics Laboratory, Stanford University, Stanford, CA Definition The term LASER is an abbreviation which stands for Light Amplification by Stimulated Emission of Radiation. The laser is a source of coherent, directional, monochromatic light that can be precisely focused into a small spot. The laser is a very useful tool for a wide variety of clinical diagnostic and therapeutic procedures. Principles of Light Emission by Lasers Molecules are made up of atoms, which are composed of a positively charged nucleus and negatively charged electrons orbiting it at various energy levels. Light is composed of individual packets of energy, called photons. Electrons can jump from one orbit to another by either, absorbing energy and moving to a higher level (excited state), or emitting energy and transitioning to a lower level. Such transitions can be accompanied by absorption or spontaneous emission of a photon. “Stimulated Emission” is a process in which photon emission is stimulated by interaction of an atom in excited state with a passing photon. The photon emitted by the atom in this process will have the same phase, direction of propagation and wavelength as the “stimulating photon”. The “stimulating photon” does not lose energy during this interaction- it simply causes the emission and continues on, as illustrated in Figure 1. Figure 1: LASER: Light Amplification by Stimulated Emission of Radiation For such stimulated emission to occur more frequently than absorption (and hence result in light amplification), the optical material should have more atoms in excited state than in a lower state.
    [Show full text]
  • Generation of a Flat-Top Laser Beam for Gravitational Wave Detectors By
    Generation of a flat-top laser beam for gravitational wave detectors by means of a nonspherical Fabry–Perot resonator Marco G. Tarallo,1,2,* John Miller,2,3 J. Agresti,1,2 E. D’Ambrosio,2 R. DeSalvo,2 D. Forest,4 B. Lagrange,4 J. M. Mackowsky,4 C. Michel,4 J. L. Montorio,4 N. Morgado,4 L. Pinard,4 A. Remilleux,4 B. Simoni,1,2 and P. Willems2 1Dipartimento di Fisica, Università di Pisa, Largo Pontecorvo 3, 56100 Pisa, Italy 2LIGO Laboratory, California Institute of Technology, 1200 E. California Boulevard, Pasadena, California, USA 3Department of Physics and Astronomy, University of Glasgow, Glasgow G12 8QQ, UK 4Laboratoire des Matèriaux Avancès, 22 Boulevard Niels Bohr, Villeurbanne, France *Corresponding author: [email protected] Received 23 February 2007; revised 6 July 2007; accepted 11 July 2007; posted 13 July 2007 (Doc. ID 80265); published 7 September 2007 We have tested a new kind of Fabry–Perot long-baseline optical resonator proposed to reduce the thermal noise sensitivity of gravitational wave interferometric detectors—the “mesa beam” cavity—whose flat top beam shape is achieved by means of an aspherical end mirror. We present the fundamental mode intensity pattern for this cavity and its distortion due to surface imperfections and tilt misalignments, and contrast the higher order mode patterns to the Gauss–Laguerre modes of a spherical mirror cavity. We discuss the effects of mirror tilts on cavity alignment and locking and present measurements of the mesa beam tilt sensitivity. © 2007 Optical Society of America OCIS codes: 140.4780, 120.2230, 230.0040.
    [Show full text]
  • 3-5 Development of an Ultra-Narrow Line-Width Clock Laser
    3-5 Development of an Ultra-Narrow Line-Width Clock Laser LI Ying, NAGANO Shigeo, MATSUBARA Kensuke, KOJIMA Reiko, KUMAGAI Motohiro, ITO Hiroyuki, KOYAMA Yasuhiro, and HOSOKAWA Mizuhiko An optical lattice clock and a single ion optical clock are being developed in National Institute of Information and Communications Technology (NICT). Diode lasers are used for the develop- ment of extremely narrow linewidth clock lasers for optical frequency standards. Using the Pound- Drever-Hall technique, the required reduction of linewidth was achieved by locking the laser to an ultrahigh-fi nesse ultralow-expansion glass (ULE) reference cavity, which is set in the high vacuum chamber with a constant temperature and isolated against environmental noise and vibration. As a result, the laser linewidth is decreased down to several Hz. The Allan deviation is less than 4×10−15 at an averaging time over 100 s. A vibration-insensitive optical cavity has been designed, aiming the linewidth below 1 Hz. In this chapter, we report the present status of development of the clock lasers at NICT. Keywords Laser frequency stabilization, Diode laser, Optical reference cavity, Optical clock, Optical frequency standard 1 Introduction an uncertainty of 10−17 or less is divided into two types. The fi rst is the “optical lattice The second, the current time and frequency clock” [4] [5], neutral atoms are trap in the opti- standard unit, is defi ned according to the hy- cal lattice “magic wave length” and the second perfi ne structure transition of cesium atoms by is the “single ion clock” [6], single ion is con- the General Conference of Weights and Mea- fi ned to the Lamb-Dick regime.
    [Show full text]