Laser Linewidth at the Sub-Hertz Level
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Laser Linewidth, Frequency Noise and Measurement
Laser Linewidth, Frequency Noise and Measurement WHITEPAPER | MARCH 2021 OPTICAL SENSING Yihong Chen, Hank Blauvelt EMCORE Corporation, Alhambra, CA, USA LASER LINEWIDTH AND FREQUENCY NOISE Frequency Noise Power Spectrum Density SPECTRUM DENSITY Frequency noise power spectrum density reveals detailed information about phase noise of a laser, which is the root Single Frequency Laser and Frequency (phase) cause of laser spectral broadening. In principle, laser line Noise shape can be constructed from frequency noise power Ideally, a single frequency laser operates at single spectrum density although in most cases it can only be frequency with zero linewidth. In a real world, however, a done numerically. Laser linewidth can be extracted. laser has a finite linewidth because of phase fluctuation, Correlation between laser line shape and which causes instantaneous frequency shifted away from frequency noise power spectrum density (ref the central frequency: δν(t) = (1/2π) dφ/dt. [1]) Linewidth Laser linewidth is an important parameter for characterizing the purity of wavelength (frequency) and coherence of a Graphic (Heading 4-Subhead Black) light source. Typically, laser linewidth is defined as Full Width at Half-Maximum (FWHM), or 3 dB bandwidth (SEE FIGURE 1) Direct optical spectrum measurements using a grating Equation (1) is difficult to calculate, but a based optical spectrum analyzer can only measure the simpler expression gives a good approximation laser line shape with resolution down to ~pm range, which (ref [2]) corresponds to GHz level. Indirect linewidth measurement An effective integrated linewidth ∆_ can be found by can be done through self-heterodyne/homodyne technique solving the equation: or measuring frequency noise using frequency discriminator. -
Self Amplified Lock of a Ultra-Narrow Linewidth Optical Cavity
Self Amplified Lock of a Ultra-narrow Linewidth Optical Cavity Kiwamu Izumi,1, ∗ Daniel Sigg,1 and Lisa Barsotti2 1LIGO Hanford Observatory, PO Box 159 Richland, Washington 99354, USA 2LIGO laboratory, Massachusetts Institute of Technology, Cambridge, Massachussetts 02139, USA compiled: January 8, 2016 High finesse optical cavities are an essential tool in modern precision laser interferometry. The incident laser field is often controlled and stabilized with an active feedback system such that the field resonates in the cavity. The Pound-Drever-Hall reflection locking technique is a convenient way to derive a suitable error signal. However, it only gives a strong signal within the cavity linewidth. This poses a problem for locking a ultra-narrow linewidth cavity. We present a novel technique for acquiring lock by utilizing an additional weak control signal, but with a much larger capture range. We numerically show that this technique can be applied to the laser frequency stabilization system used in the Laser Interferometric Gravitational-wave Observatory (LIGO) which has a linewidth of 0.8 Hz. This new technique will allow us to robustly and repeatedly lock the LIGO laser frequency to the common mode of the interferometer. OCIS codes: (140.3425), (140.3410) http://dx.doi.org/10.1364/XX.99.099999 High finesse optical cavities have been an indispens- nonlinear response [8, 9] dominant and thus hinder the able tool for precision interferometry to conduct rela- linear controller. tivistic experiments such as gravitational wave detection Gravitational wave observatories deploy kilometer [1{3] and optical clocks [4]. The use of a high finesse cav- scale interferometers with extremely narrow linewidth. -
Power Build-Up Cavity Coupled to a Laser Diode
I POWER BUILD-UP CAVITY COUPLED I TO A LASER DIODE Daniel J. Evans I Center of Excellence for Raman Technology University of Utah I Abstract combination of these elements will emit photons at different frequencies. The ends of these semiconductor In many Raman applications there is a need to devices are cleaved to form mirrors that bounce the I detect gases in the low ppb range. The desired photons back and forth within the cavity. The photons sensitivity can be achieved by using a high power laser excite more electrons, which form more photons source in the range of tens of watts. A system (referred to as optical pumping). 2 A certain portion of I combining a build-up cavity to enhance the power and the photons emit through the front and back cleaved an external cavity laser diode setup to narrow the surfaces of the laser diode. The amount of photons that bandwidth can give the needed power to the Raman get through the cleaved surfaces can be adjusted by I spectroscopy system. coating the surface or installing other mirrors. Introduction to Laser Diodes The planar cleaved surfaces of the laser diode form a Fabry-Perot cavity with set resonance frequencies I An important characteristic of all lasers is the (vp).3 The typical laser diode has a spacing of 150 f.1I11 mode structure. The mode structure refers to both the with an index of refraction of 3.5, yielding a resonance lasing frequency and the spatial characteristics of the frequency of 285 GHz. The wavelength spacing (~A.) I laser. -
Measurement of In-Band Optical Noise Spectral Density 1
Measurement of In-Band Optical Noise Spectral Density 1 Measurement of In-Band Optical Noise Spectral Density Sylvain Almonacil, Matteo Lonardi, Philippe Jennevé and Nicolas Dubreuil We present a method to measure the spectral density of in-band optical transmission impairments without coherent electrical reception and digital signal processing at the receiver. We determine the method’s accuracy by numerical simulations and show experimentally its feasibility, including the measure of in-band nonlinear distortions power densities. I. INTRODUCTION UBIQUITUS and accurate measurement of the noise power, and its spectral characteristics, as well as the determination and quantification of the different noise sources are required to design future dynamic, low-margin, and intelligent optical networks, especially in open cable design, where the optical line must be intrinsically characterized. In optical communications, performance is degraded by a plurality of impairments, such as the amplified spontaneous emission (ASE) due to Erbium doped-fiber amplifiers (EDFAs), the transmitter-receiver (TX-RX) imperfection noise, and the power-dependent Kerr-induced nonlinear impairments (NLI) [1]. Optical spectrum-based measurement techniques are routinely used to measure the out-of-band optical signal-to-noise ratio (OSNR) [2]. However, they fail in providing a correct assessment of the signal-to-noise ratio (SNR) and in-band noise statistical properties. Whereas the ASE noise is uniformly distributed in the whole EDFA spectral band, TX-RX noise and NLI mainly occur within the signal band [3]. Once the latter impairments dominate, optical spectrum-based OSNR monitoring fails to predict the system performance [4]. Lately, the scientific community has significantly worked on assessing the noise spectral characteristics and their impact on the SNR, trying to exploit the information in the digital domain by digital signal processing (DSP) or machine learning. -
Quantum Illumination at the Microwave Wavelengths
Quantum Illumination at the Microwave Wavelengths 1 2 3 4 5 6, Shabir Barzanjeh, Saikat Guha, Christian Weedbrook, David Vitali, Jeffrey H. Shapiro, and Stefano Pirandola ∗ 1Institute for Quantum Information, RWTH Aachen University, 52056 Aachen, Germany 2Quantum Information Processing Group, Raytheon BBN Technologies, Cambridge, Massachusetts 02138, USA 3QKD Corp., 60 St. George St., Toronto, M5S 3G4, Canada 4School of Science and Technology, University of Camerino, Camerino, Macerata 62032, Italy 5Research Laboratory of Electronics, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA 6Department of Computer Science & York Centre for Quantum Technologies, University of York, York YO10 5GH, United Kingdom Quantum illumination is a quantum-optical sensing technique in which an entangled source is exploited to improve the detection of a low-reflectivity object that is immersed in a bright thermal background. Here we describe and analyze a system for applying this technique at microwave frequencies, a more appropriate spectral region for target detection than the optical, due to the naturally-occurring bright thermal background in the microwave regime. We use an electro-opto- mechanical converter to entangle microwave signal and optical idler fields, with the former being sent to probe the target region and the latter being retained at the source. The microwave radiation collected from the target region is then phase conjugated and upconverted into an optical field that is combined with the retained idler in a joint-detection -
Narrow Line Width Frequency Comb Source Based on an Injection-Locked III-V-On-Silicon Mode-Locked Laser
Narrow line width frequency comb source based on an injection-locked III-V-on-silicon mode-locked laser Sarah Uvin,1;2;∗ Shahram Keyvaninia,3 Francois Lelarge,4 Guang-Hua Duan,4 Bart Kuyken1;2 and Gunther Roelkens1;2 1Photonics Research Group, Department of Information Technology, Ghent University - imec, Sint-Pietersnieuwstraat 41, 9000 Ghent, Belgium 2Center for Nano- and Biophotonics (NB-Photonics), Ghent University, Ghent, Belgium 3Fraunhofer Heinrich-Hertz-Institut Einsteinufer 37 10587, Berlin, Germany 4III-V lab, a joint lab of Alcatel-Lucent Bell Labs France, Thales Research and Technology and CEA Leti, France ∗[email protected] Abstract: In this paper, we report the optical injection locking of an L-band (∼1580 nm) 4.7 GHz III-V-on-silicon mode-locked laser with a narrow line width continuous wave (CW) source. This technique allows us to reduce the MHz optical line width of the mode-locked laser longitudinal modes down to the line width of the source used for injection locking, 50 kHz. We show that more than 50 laser lines generated by the mode-locked laser are coherent with the narrow line width CW source. Two locking techniques are explored. In a first approach a hybrid mode-locked laser is injection-locked with a CW source. In a second approach, light from a modulated CW source is injected in a passively mode-locked laser cavity. The realization of such a frequency comb on a chip enables transceivers for high spectral efficiency optical communication. © 2016 Optical Society of America OCIS codes: (250.5300) Photonic integrated circuits; (140.4050) Mode-locked lasers. -
Construction of a Flashlamp-Pumped Dye Laser and an Acousto-Optic
; UNITED STATES APARTMENT OF COMMERCE oUBLICATION NBS TECHNICAL NOTE 603 / v \ f ''ttis oi Construction of a Flashlamp-Pumped Dye Laser U.S. EPARTMENT OF COMMERCE and an Acousto-Optic Modulator National Bureau of for Mode-Locking Iandards — NATIONAL BUREAU OF STANDARDS 1 The National Bureau of Standards was established by an act of Congress March 3, 1901. The Bureau's overall goal is to strengthen and advance the Nation's science and technology and facilitate their effective application for public benefit. To this end, the Bureau conducts research and provides: (1) a basis for the Nation's physical measure- ment system, (2) scientific and technological services for industry and government, (3) a technical basis for equity in trade, and (4) technical services to promote public safety. The Bureau consists of the Institute for Basic Standards, the Institute for Materials Research, the Institute for Applied Technology, the Center for Computer Sciences and Technology, and the Office for Information Programs. THE INSTITUTE FOR BASIC STANDARDS provides the central basis within the United States of a complete and consistent system of physical measurement; coordinates that system with measurement systems of other nations; and furnishes essential services leading to accurate and uniform physical measurements throughout the Nation's scien- tific community, industry, and commerce. The Institute consists of a Center for Radia- tion Research, an Office of Measurement Services and the following divisions: Applied Mathematics—Electricity—Heat—Mechanics—Optical Physics—Linac Radiation 2—Nuclear Radiation 2—Applied Radiation 2—Quantum Electronics 3— Electromagnetics 3—Time and Frequency 3 —Laboratory Astrophysics3—Cryo- 3 genics . -
Receiver Sensitivity and Equivalent Noise Bandwidth Receiver Sensitivity and Equivalent Noise Bandwidth
11/08/2016 Receiver Sensitivity and Equivalent Noise Bandwidth Receiver Sensitivity and Equivalent Noise Bandwidth Parent Category: 2014 HFE By Dennis Layne Introduction Receivers often contain narrow bandpass hardware filters as well as narrow lowpass filters implemented in digital signal processing (DSP). The equivalent noise bandwidth (ENBW) is a way to understand the noise floor that is present in these filters. To predict the sensitivity of a receiver design it is critical to understand noise including ENBW. This paper will cover each of the building block characteristics used to calculate receiver sensitivity and then put them together to make the calculation. Receiver Sensitivity Receiver sensitivity is a measure of the ability of a receiver to demodulate and get information from a weak signal. We quantify sensitivity as the lowest signal power level from which we can get useful information. In an Analog FM system the standard figure of merit for usable information is SINAD, a ratio of demodulated audio signal to noise. In digital systems receive signal quality is measured by calculating the ratio of bits received that are wrong to the total number of bits received. This is called Bit Error Rate (BER). Most Land Mobile radio systems use one of these figures of merit to quantify sensitivity. To measure sensitivity, we apply a desired signal and reduce the signal power until the quality threshold is met. SINAD SINAD is a term used for the Signal to Noise and Distortion ratio and is a type of audio signal to noise ratio. In an analog FM system, demodulated audio signal to noise ratio is an indication of RF signal quality. -
Arxiv:2106.00060V1 [Physics.Optics] 31 May 2021
Self-injection locking of the gain-switched laser diode Artem E. Shitikov1,∗ Valery E. Lobanov1, Nikita M. Kondratiev1, Andrey S. Voloshin2, Evgeny A. Lonshakov1, and Igor A. Bilenko1,3 1Russian Quantum Center, 143026 Skolkovo, Russia 2Institute of Physics, Swiss Federal Institute of Technology Lausanne (EPFL), CH-1015 Lausanne, Switzerland and 3Faculty of Physics, Lomonosov Moscow State University, 119991 Moscow, Russia (Dated: April 2021) We experimentally observed self-injection locking regime of the gain-switched laser to high-Q optical microresonator. We revealed that comb generated by the gain-switched laser experiences a dramatic reduce of comb teeth linewidths in this regime. We demonstrated the Lorentzian linewidth of the comb teeth of sub-kHz scale as narrow as for non-switched self-injection locked laser. Such setup allows generation of high-contrast electrically-tunable optical frequency combs with tunable comb line spacing in a wide range from 10 kHz up to 10 GHz. The characteristics of the generated combs were studied for various modulation parameters - modulation frequency and amplitude, and for parameters, defining the efficiency of the self-injection locking - locking phase, coupling efficiency, pump frequency detuning. I. INTRODUCTION In this work, we developed the first microresonator stabilized gain-switched laser operating in the SIL Narrow-linewidth lasers are in increasing demand in regime. We demonstrated experimentally high-contrast science and bleeding edge technologies as they give a electrically tuned optical frequency combs with line competitive advantage in such areas as coherent com- spacing from 10 kHz to 10 GHz. It was revealed that munications [1], high-precision spectroscopy [2, 3], op- SIL leads to a frequency distillation of each comb teeth tical clocks [4, 5], ultrafast optical ranging [6–8] and and consequently increase the comb contrast. -
2.6 Q-Switched Erbium-Doped Fiber Laser
COPYRIGHT AND CITATION CONSIDERATIONS FOR THIS THESIS/ DISSERTATION o Attribution — You must give appropriate credit, provide a link to the license, and indicate if changes were made. You may do so in any reasonable manner, but not in any way that suggests the licensor endorses you or your use. o NonCommercial — You may not use the material for commercial purposes. o ShareAlike — If you remix, transform, or build upon the material, you must distribute your contributions under the same license as the original. How to cite this thesis Surname, Initial(s). (2012) Title of the thesis or dissertation. PhD. (Chemistry)/ M.Sc. (Physics)/ M.A. (Philosophy)/M.Com. (Finance) etc. [Unpublished]: University of Johannesburg. Retrieved from: https://ujcontent.uj.ac.za/vital/access/manager/Index?site_name=Research%20Output (Accessed: Date). Development, characterisation and analysis of an active Q-switched fiber laser based on the modulation of a fiber Fabry-Perot tunable filter By KABOKO JEAN-JACQUES MONGA DISSERTATION Submitted for partial fulfillment of the requirements for the degree DOCTOR OF PHILOSOPHY in ELECTRICAL AND ELECTRONIC ENGINEERING SCIENCES in the FACULTY OF ENGINEERING at the UNIVERSITY OF JOHANNESBURG STUDY LEADERS: Dr. Rodolfo Martinez Manuel Pr. Johan Meyer April 2018 Abstract The field of fiber lasers and fiber optic devices has experienced a sustained rapid growth. In particular, all-fiber Q-switched lasers offer inherent advantages of relatively low cost, compact design, light weight, low maintenance, and increased robustness and simplicity over other fiber laser systems. In this thesis, a design of a new Q-switching approach in all-fiber based laser is proposed. -
Johnson Noise Thermometry Measurement of the Boltzmann Constant with a 200 Ω Sense Resistor Alessio Pollarolo, Taehee Jeong, Samuel P
1512 IEEE TRANSACTIONS ON INSTRUMENTATION AND MEASUREMENT, VOL. 62, NO. 6, JUNE 2013 Johnson Noise Thermometry Measurement of the Boltzmann Constant With a 200 Ω Sense Resistor Alessio Pollarolo, Taehee Jeong, Samuel P. Benz, Senior Member, IEEE, and Horst Rogalla, Member, IEEE Abstract—In 2010, the National Institute of Standards and Technology measured the Boltzmann constant k with an electronic technique that measured the Johnson noise of a 100 Ω resistor at the triple point of water and used a voltage waveform synthesized with a quantized voltage noise source (QVNS) as a reference. In this paper, we present measurements of k using a 200 Ω sense re- sistor and an appropriately modified QVNS circuit and waveform. Preliminary results show agreement with the previous value within the statistical uncertainty. An analysis is presented, where the largest source of uncertainty is identified, which is the frequency dependence in the constant term a0 of the two-parameter fit. Index Terms—Boltzmann equation, Josephson junction, mea- surement units, noise measurement, standards, temperature. Fig. 1. Schematic diagram of the Johnson-noise two-channel cross-correlator. I. INTRODUCTION HE Johnson–Nyquist equation (1) defines the thermal measurement electronics are calibrated by using a pseudonoise T noise power (Johnson noise) V 2 of a resistor in a voltage waveform synthesized with the quantized voltage noise bandwidth Δf through its resistance R and its thermodynamic source (QVNS) that acts as a spectral-density reference [8], [9]. temperature T [1], [2]: Fig. 1 shows the experimental schematic. The two chan- nels of the cross-correlator simultaneously amplify, filter, and 2 VR =4kTRΔf. -
Quantum Noise and Quantum Measurement
Quantum noise and quantum measurement Aashish A. Clerk Department of Physics, McGill University, Montreal, Quebec, Canada H3A 2T8 1 Contents 1 Introduction 1 2 Quantum noise spectral densities: some essential features 2 2.1 Classical noise basics 2 2.2 Quantum noise spectral densities 3 2.3 Brief example: current noise of a quantum point contact 9 2.4 Heisenberg inequality on detector quantum noise 10 3 Quantum limit on QND qubit detection 16 3.1 Measurement rate and dephasing rate 16 3.2 Efficiency ratio 18 3.3 Example: QPC detector 20 3.4 Significance of the quantum limit on QND qubit detection 23 3.5 QND quantum limit beyond linear response 23 4 Quantum limit on linear amplification: the op-amp mode 24 4.1 Weak continuous position detection 24 4.2 A possible correlation-based loophole? 26 4.3 Power gain 27 4.4 Simplifications for a detector with ideal quantum noise and large power gain 30 4.5 Derivation of the quantum limit 30 4.6 Noise temperature 33 4.7 Quantum limit on an \op-amp" style voltage amplifier 33 5 Quantum limit on a linear-amplifier: scattering mode 38 5.1 Caves-Haus formulation of the scattering-mode quantum limit 38 5.2 Bosonic Scattering Description of a Two-Port Amplifier 41 References 50 1 Introduction The fact that quantum mechanics can place restrictions on our ability to make measurements is something we all encounter in our first quantum mechanics class. One is typically presented with the example of the Heisenberg microscope (Heisenberg, 1930), where the position of a particle is measured by scattering light off it.