Strongly Lensed Supernovae: a Powerful Probe of Astrophysics and Cosmology
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Masamune Oguri
New directions in strong lensing Masamune Oguri RESCEU/Physics/Kavli IPMU University of Tokyo 2019/8/23 CosmoCruise@Sea Reference − arXiv:1907.06830 Strong gravitational lensing of explosive transients Masamune Oguri1,2,3 1Research Center for the Early Universe, University of Tokyo, Tokyo 113-0033, Japan 2Department of Physics, University of Tokyo, Tokyo 113-0033, Japan 3Kavli Institute for the Physics and Mathematics of the Universe (Kavli IPMU, WPI), University of Tokyo, Chiba 277-8582, Japan E-mail: [email protected] Abstract. Recent rapid progress in time domain surveys makes it possible to detect various types of explosive transients in the Universe in large numbers, some of which will be gravitationally lensed into multiple images. Although alargenumberofstronglylenseddistantgalaxiesandquasarshavealready been discovered, strong lensing of explosive transients opens up new applications, including improved measurements of cosmological parameters, powerful probes of small scale structure of the Universe, and new observational tests of dark matter scenarios, thanks to their rapidly evolving light curves as well as their compact sizes. In particular, the compactness of these transient events indicates that the wave optics e↵ect plays an important role in some cases, which can lead to totally new applications of these lensing events. Recently we have witnessed first discoveries of strongly lensed supernovae, and strong lensing events of other types of explosive transients such as gamma-ray bursts, fast radio bursts, and gravitational waves from compact binary mergers are expected to be observed soon. In this review article, we summarize the current state of research on strong gravitational lensing of explosive transients and discuss future prospects. -
Source-Plane Reconstruction of the Giant Gravitational Arc in A2667: a Candidate Wolf–Rayet Galaxy At
SOURCE-PLANE RECONSTRUCTION OF THE GIANT GRAVITATIONAL ARC IN A2667: A CANDIDATE WOLF–RAYET GALAXY AT z ∼ 1 Shuo Cao, Giovanni Covone, Eric Jullo, Johan Richard, Luca Izzo, Zong-Hong Zhu To cite this version: Shuo Cao, Giovanni Covone, Eric Jullo, Johan Richard, Luca Izzo, et al.. SOURCE-PLANE RE- CONSTRUCTION OF THE GIANT GRAVITATIONAL ARC IN A2667: A CANDIDATE WOLF– RAYET GALAXY AT z ∼ 1. Astronomical Journal, American Astronomical Society, 2015, 149, pp.8. 10.1088/0004-6256/149/1/3. hal-01109685 HAL Id: hal-01109685 https://hal.archives-ouvertes.fr/hal-01109685 Submitted on 26 Jan 2015 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. The Astronomical Journal, 149:3 (8pp), 2015 January doi:10.1088/0004-6256/149/1/3 C 2015. The American Astronomical Society. All rights reserved. SOURCE-PLANE RECONSTRUCTION OF THE GIANT GRAVITATIONAL ARC IN A2667: A CANDIDATE WOLF–RAYET GALAXY AT z ∼ 1 Shuo Cao1,2, Giovanni Covone2,3, Eric Jullo4, Johan Richard5, Luca Izzo6,7, and Zong-Hong Zhu1 1 Department of Astronomy, Beijing Normal University, 100875 Beijing, China; [email protected] 2 Dipartimento di Scienze Fisiche, Universita` di Napoli “Federico II,” Via Cinthia, I-80126 Napoli, Italy 3 INFN Sez. -
CARMENES Input Catalogue of M Dwarfs IV. New Rotation Periods from Photometric Time Series
Astronomy & Astrophysics manuscript no. pk30 c ESO 2018 October 9, 2018 CARMENES input catalogue of M dwarfs IV. New rotation periods from photometric time series E. D´ıezAlonso1;2;3, J. A. Caballero4, D. Montes1, F. J. de Cos Juez2, S. Dreizler5, F. Dubois6, S. V. Jeffers5, S. Lalitha5, R. Naves7, A. Reiners5, I. Ribas8;9, S. Vanaverbeke10;6, P. J. Amado11, V. J. S. B´ejar12;13, M. Cort´es-Contreras4, E. Herrero8;9, D. Hidalgo12;13;1, M. K¨urster14, L. Logie6, A. Quirrenbach15, S. Rau6, W. Seifert15, P. Sch¨ofer5, and L. Tal-Or5;16 1 Departamento de Astrof´ısicay Ciencias de la Atm´osfera, Facultad de Ciencias F´ısicas,Universidad Complutense de Madrid, E-280140 Madrid, Spain; e-mail: [email protected] 2 Departamento de Explotaci´ony Prospecci´onde Minas, Escuela de Minas, Energ´ıay Materiales, Universidad de Oviedo, E-33003 Oviedo, Asturias, Spain 3 Observatorio Astron´omicoCarda, Villaviciosa, Asturias, Spain (MPC Z76) 4 Centro de Astrobiolog´ıa(CSIC-INTA), Campus ESAC, Camino Bajo del Castillo s/n, E-28692 Villanueva de la Ca~nada,Madrid, Spain 5 Institut f¨ur Astrophysik, Georg-August-Universit¨at G¨ottingen, Friedrich-Hund-Platz 1, D-37077 G¨ottingen, Germany 6 AstroLAB IRIS, Provinciaal Domein \De Palingbeek", Verbrandemolenstraat 5, B-8902 Zillebeke, Ieper, Belgium 7 Observatorio Astron´omicoNaves, Cabrils, Barcelona, Spain (MPC 213) 8 Institut de Ci`enciesde l'Espai (CSIC-IEEC), Campus UAB, c/ de Can Magrans s/n, E-08193 Bellaterra, Barcelona, Spain 9 Institut d'Estudis Espacials de Catalunya (IEEC), E-08034 Barcelona, Spain 10 -
The CARMENES Search for Exoplanets Around M Dwarfs Photospheric Parameters of Target Stars from High-Resolution Spectroscopy
Astronomy & Astrophysics manuscript no. CARM_NIR ©ESO 2019 July 2, 2019 The CARMENES search for exoplanets around M dwarfs Photospheric parameters of target stars from high-resolution spectroscopy. II. Simultaneous multiwavelength range modeling of activity insensitive lines V.M. Passegger1, A. Schweitzer1, D. Shulyak2, E. Nagel1, P.H. Hauschildt1, A. Reiners3, P.J. Amado4, J. A. Caballero5, M. Cortés-Contreras5, A. J. Domínguez-Fernández6, A. Quirrenbach7, I. Ribas8; 9, M. Azzaro10, G. Anglada-Escudé4; 11, F. F. Bauer4, V.J. S. Béjar12; 13, S. Dreizler3, E. W. Guenther14, T. Henning15, S. V. Jeffers3, A. Kaminski7, M. Kürster15, M. Lafarga8; 9, E. L. Martín5, D. Montes6, J. C. Morales8; 9, J. H. M. M. Schmitt1, and M. Zechmeister3 1 Hamburger Sternwarte, Gojenbergsweg 112, D-21029 Hamburg, Germany e-mail: [email protected] 2 Max Planck Institute for Solar System Research, Justus-von-Liebig-Weg 3, D-37077 Göttingen, Germany 3 Institut für Astrophysik, Georg-August-Universität, Friedrich-Hund-Platz 1, D-37077 Göttingen, Germany 4 Instituto de Astrofísica de Andalucía (IAA-CSIC), Glorieta de la Astronomía s/n, E-18008 Granada, Spain 5 Centro de Astrobiología (CSIC-INTA), ESAC, Camino Bajo del Castillo s/n, E-28692 Villanueva de la Cañada, Madrid, Spain 6 Departamento de Física de la Tierra y Astrofísica and IPARCOS-UCM (Instituto de Física de Partículas y del Cosmos de la UCM), Facultad de Ciencias Físicas, Universidad Complutense de Madrid, E-28040 Madrid, Spain 7 Landessternwarte, Zentrum für Astronomie der Universtät Heidelberg, -
An Investigation of Radio-Quiet Quasars Using Gravitational Lensing
AN INVESTIGATION OF RADIO-QUIET QUASARS USING GRAVITATIONAL LENSING A thesis submitted to the University of Manchester for the degree of Master of Science in the Faculty of Engineering and Physical Sciences 2015 By Hannah Ruth Stacey Jodrell Bank Centre for Astrophysics School of Physics and Astronomy Contents 1 Introduction 1 1.1 Gravitational lensing . 3 1.1.1 History of gravitational lensing . 3 1.1.2 Gravitational lens theory . 7 1.1.3 Galactic substructure . 11 1.1.4 Microlensing . 14 1.2 Radiative Processes . 16 1.2.1 Thermal emission . 16 1.2.2 Synchrotron emission . 16 1.2.3 Free-free emission . 18 1.3 Radio-quiet quasars . 20 1.3.1 Quasar morphology . 20 1.3.2 Radio properties . 21 1.3.3 Source of radio emission from radio-quiet quasars . 26 2 Fundamentals of radio interferometry 29 2.1 Aperture synthesis . 29 2.2 The two-element interferometer . 31 2.3 u-v coverage . 33 2.4 Limitations . 36 2.5 Sensitivity . 37 2.6 Calibration . 37 CONTENTS 2.7 Imaging and Deconvolution . 39 3 Observations 41 3.1 Sample selection . 41 3.2 e-MERLIN observations . 42 3.3 Data reduction . 44 3.3.1 Loading the data . 44 3.3.2 Calibration . 48 3.3.3 Imaging the target . 57 4 Results 60 4.1 HS 0810+2554 . 60 4.2 RX J0911+0551 . 69 4.3 SDSS J1251+2935 . 77 4.4 SDSS J1330+1810 . 80 5 Summary and Conclusions 81 Appendix A i Appendix B iii Appendix C vii List of Tables 3.1 Details of e-MERLIN observations at L-band. -
Publications for Geraint Lewis 2021 2020
Publications for Geraint Lewis 2021 R., Horner, J., Wright, D., Carter, B., Morton, T., Spina, L., Li, T., Koposov, S., Erkal, D., Ji, A., Shipp, N., Hilmi, T., Bland-Hawthorn, J., Hayden, M., Lewis, G., Sharma, S., Kuehn, K., Pace, A., Lewis, G., Mackey, D., Wan, Z., Bland- Simpson, J., et al (2021). The GALAH Survey: Using galactic Hawthorn, J., Sharma, S., et al (2021). Broken into pieces: archaeology to refine our knowledge of TESS target stars. ATLAS and Aliqa Uma as one single stream. The Astrophysical Monthly Notices of the Royal Astronomical Society, 504(4), Journal, 911(2), 149. <a href="http://dx.doi.org/10.3847/1538- 4968-4989. <a 4357/abeb18">[More Information]</a> href="http://dx.doi.org/10.1093/mnras/stab1052">[More Information]</a> Sharma, S., Hayden, M., Bland-Hawthorn, J., Stello, D., Buder, S., Zinn, J., Kallinger, T., Asplund, M., De Silva, G., D'Orazi, Oliver, W., Elahi, P., Lewis, G., Power, C. (2021). The V., Kos, J., Lewis, G., Lin, J., Zucker, D., Chen, B., Huber, D., hierarchical structure of galactic haloes: Classification and Kafle, P., Khanna, S., et al (2021). Fundamental relations for characterization with halo-optics. Monthly Notices of the Royal the velocity dispersion of stars in the Milky Way. Monthly Astronomical Society, 501(3), 4420-4437. <a Notices of the Royal Astronomical Society, 506(2), 1761-1776. href="http://dx.doi.org/10.1093/mnras/staa3879">[More <a href="http://dx.doi.org/10.1093/mnras/stab1086">[More Information]</a> Information]</a> Arentsen, A., Starkenburg, E., Aguado, D., Martin, N., Placco, Wiseman, P., Sullivan, M., Smith, M., Frohmaier, C., Vincenzi, V., Carlberg, R., Gonz�lez Hern�ndez, J., Hill, V., M., Graur, O., Popovic, B., Armstrong, P., Brout, D., Davis, T., Jablonka, P., Kordopatis, G., Lewis, G., Wan, Z., et al (2021). -
Star Systems in the Solar Neighborhood up to 10 Parsecs Distance
Vol. 16 No. 3 June 15, 2020 Journal of Double Star Observations Page 229 Star Systems in the Solar Neighborhood up to 10 Parsecs Distance Wilfried R.A. Knapp Vienna, Austria [email protected] Abstract: The stars and star systems in the solar neighborhood are for obvious reasons the most likely best investigated stellar objects besides the Sun. Very fast proper motion catches the attention of astronomers and the small distances to the Sun allow for precise measurements so the wealth of data for most of these objects is impressive. This report lists 94 star systems (doubles or multiples most likely bound by gravitation) in up to 10 parsecs distance from the Sun as well over 60 questionable objects which are for different reasons considered rather not star systems (at least not within 10 parsecs) but might be if with a small likelihood. A few of the listed star systems are newly detected and for several systems first or updated preliminary orbits are suggested. A good part of the listed nearby star systems are included in the GAIA DR2 catalog with par- allax and proper motion data for at least some of the components – this offers the opportunity to counter-check the so far reported data with the most precise star catalog data currently available. A side result of this counter-check is the confirmation of the expectation that the GAIA DR2 single star model is not well suited to deliver fully reliable parallax and proper motion data for binary or multiple star systems. 1. Introduction high proper motion speed might cause visually noticea- The answer to the question at which distance the ble position changes from year to year. -
Lessons from the First Multiply Imaged Supernova: a Revised Light-Traces
Draft version August 26, 2020 Typeset using LATEX twocolumn style in AASTeX63 Lessons from the first multiply imaged supernova: A revised Light-Traces-Mass strong lensing model for the galaxy cluster MACS J1149.5+2223 Adi Zitrin1 1Physics Department, Ben-Gurion University of the Negev, P.O. Box 653, Be'er-Sheva 84105, Israel (Received; Revised; Accepted) Submitted to ApJ ABSTRACT Our light-traces-mass (LTM) strong-lensing model for MACS J1149.5+2223 has played several key roles over the last decade: it aided the identification of multiple images in this cluster and the study of MACS1149-JD1 at redshift z ' 9, it was used to estimate the properties of the first multiply imaged supernova, Refsdal, in its discovery paper, and of the first caustic crossing event by a cluster, Lensed Star 1. Supernova Refsdal supplied an invaluable opportunity to conduct a blind test of the ability of common lens-modeling techniques to accurately describe the properties of SN Refsdal's images and predict the reappearance of one of its counter images that was due about a year post-discovery of the original Einstein cross. Thanks to this practice, in which our submitted model yielded some outlying results, we located a numerical artifact in the time delay (TD) calculation part of the code, which was now fixed. This artifact did not influence the reproduction of multiple images (i.e., the deflection fields { which are those constrained directly from the observations) or the derived mass model, and so it remained unnoticed prior to supernova Refsdal, emphasizing the importance of blind tests in astronomy. -
Stellar Explosions
Chapter 11: Stellar Explosions Prof. Douglas Laurence AST 1002 What are Stellar Explosions? Stellar remnant, probably a neutron star. • When stars above a certain mass die (run out of fuel at their core), they will literally explode in novae, supernovae, or hypernovae • The explosions “blows away” some of the star, leaving a stellar remnant, which can be: • A white dwarf • A neutron star • Or a black hole Stellar and Remnants Masses • Stars with a (main sequence) mass < 8#⊙ will eventually become white dwarfs. • White dwarfs have a remnant mass < 1.4#⊙, known as the Chandrasekhar limit. • Stars with a mass < 25#⊙will eventually become neutron stars. • Neutron stars have a remnant mass < 3#⊙, known as the Tolman-Oppenheimer- Volkoff (TOV) limit. • Stars with mass > 25#⊙, or remnant mass > 3#⊙, become black holes. • What a star becomes is determined by the remnant mass; remnant masses trend with main sequence masses, but they’re the decider. • A star with a very large mass can have a dramatically lower remnant mass after a stellar explosion, if the explosion blows away much of the star’s mass. Novae and White Dwarfs • Very little mass is ejected by a nova, so it will not affect the type of stellar remnant left behind (which will invariably be a white dwarf.) • Novae can increase brightness by 10,000 times. • Some novae repeat themselves, becoming what are called recurrent novae. Mechanism of Nova Production • Novae occur in binary systems between a red giant and a white dwarf. • White dwarf is formed by planetary nebula. • Novae don’t produce white dwarfs. -
Metadata of the Chapter That Will Be Visualized Online
Metadata of the chapter that will be visualized online Chapter Title Binary Systems and Their Nuclear Explosions Copyright Year 2018 Copyright Holder The Author(s) Author Family Name Isern Particle Given Name Jordi Suffix Organization Institute of Space Sciences (ICE, CSIC) Address Barcelona, Spain Organization Institut d’Estudis Espacials de Catalunya (IEEC) Address Barcelona, Spain Email [email protected] Corresponding Author Family Name Hernanz Particle Given Name Margarita Suffix Organization Institute of Space Sciences (ICE, CSIC) Address Barcelona, Spain Organization Institut d’Estudis Espacials de Catalunya (IEEC) Address Barcelona, Spain Email [email protected] Author Family Name José Particle Given Name Jordi Suffix Organization Universitat Politècnica de Catalunya (UPC) Address Barcelona, Spain Organization Institut d’Estudis Espacials de Catalunya (IEEC) Address Barcelona, Spain Email [email protected] Abstract The nuclear energy supply of a typical star like the Sun would be ∼ 1052 erg if all the hydrogen could be incinerated into iron peak elements. Chapter 5 1 Binary Systems and Their Nuclear 2 Explosions 3 Jordi Isern, Margarita Hernanz, and Jordi José 4 5.1 Accretion onto Compact Objects and Thermonuclear 5 Runaways 6 The nuclear energy supply of a typical star like the Sun would be ∼1052 erg if all 7 the hydrogen could be incinerated into iron peak elements. Since the gravitational 8 binding energy is ∼1049 erg, it is evident that the nuclear energy content is more 9 than enough to blow up the Sun. However, stars are stable thanks to the fact that their 10 matter obeys the equation of state of a classical ideal gas that acts as a thermostat: if 11 some energy is released as a consequence of a thermal fluctuation, the gas expands, 12 the temperature drops and the instability is quenched. -
Fundamentals of Stellar Evolution Theory: Understanding the HRD
Fundamentals of Stellar Evolution Theory: Understanding the HRD By C E S A R E C H I O S I Department of Astronomy, University of Padua, Vicolo Osservatorio 5, 35122 Padua, Italy Published in: "Stellar Astrophysics for the Local Group: a First Step to the Universe" VIII Canary Islands Winter School Cambridge University Press 25 March, 1997 Abstract. We summarize the results of stellar evolution theory for single stars that have been obtained over the last two decades, and compare these results with the observations. We discuss in particular the effect of mass loss by stellar winds during the various evolutionary stages of stars that are affected by this phenomenon. In addition, we focus on the problem of mixing in stellar interiors calling attention on weak aspects of current formulations and presenting plausible alternatives. Finally, we survey some applications of stellar models to several areas of modern astrophysics. 1. Introduction The major goal of stellar evolution theory is the interpretation and reproduction of the Hertzsprung-Russell Diagram (HRD) of stars in different astrophysical environments: solar vicinity, star clusters of the Milky Way and nearby galaxies, fields in external galaxies. The HRD of star clusters, in virtue of the small spread in age and composition of the component stars, is the classical template to which stellar models are compared. If the sample of stars is properly chosen from the point of view of completeness, even the shortest lived evolutionary phases can be tested. The HRD of field stars, those in external galaxies in particular, contains much information on the past star formation history. -
Arxiv:1801.05235V1 [Astro-Ph.CO] 16 Jan 2018
YITP-18-04 KUNS-2714 RUP-18-2 Primordial Black Holes - Perspectives in Gravitational Wave Astronomy - Misao Sasakia, Teruaki Suyamab, Takahiro Tanakac;a, and Shuichiro Yokoyamad;e a Center for Gravitational Physics, Yukawa Institute for Theoretical Physics, Kyoto University, Kyoto 606-8502, Japan b Research Center for the Early Universe (RESCEU), Graduate School of Science, The University of Tokyo, Tokyo 113-0033, Japan c Department of Physics, Kyoto University, Kyoto 606-8502, Japan d Department of Physics, Rikkyo University, Tokyo 171-8501, Japan e Kavli IPMU (WPI), UTIAS, The University of Tokyo, Kashiwa, Chiba 277-8583, Japan Abstract This is a review article on the primordial black holes (PBHs), with particular focus on 15 the massive ones (& 10 g) which have not evaporated by the present epoch by the Hawking radiation. By the detections of gravitational waves by LIGO, we have gained a completely novel tool to observationally search for PBHs complementary to the electromagnetic waves. Based on the perspective that gravitational-wave astronomy will make a significant progress in the next decades, a purpose of this article is to give a comprehensive review covering a wide range of topics on PBHs. After discussing PBH formation as well as several inflation models leading to PBH production, we summarize various existing and future observational constraints. We then present topics on formation of PBH binaries, gravitational waves from PBH binaries, various observational tests of PBHs by using gravitational waves. arXiv:1801.05235v1 [astro-ph.CO] 16 Jan 2018 1 Contents 1 Introduction 4 2 Formation of PBHs 6 2.1 Basis of primordial black holes formation in the early Universe .