Fundamentals of Stellar Evolution Theory: Understanding the HRD
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
UNSTABLE NONRADIAL OSCILLATIONS on HELIUM-BURNING NEUTRON STARS Anthony L
The Astrophysical Journal, 603:252–264, 2004 March 1 # 2004. The American Astronomical Society. All rights reserved. Printed in U.S.A. UNSTABLE NONRADIAL OSCILLATIONS ON HELIUM-BURNING NEUTRON STARS Anthony L. Piro Department of Physics, Broida Hall, University of California, Santa Barbara, CA 93106; [email protected] and Lars Bildsten Kavli Institute for Theoretical Physics and Department of Physics, Kohn Hall, University of California, Santa Barbara, CA 93106; [email protected] Received 2003 September 18; accepted 2003 November 17 ABSTRACT Material accreted onto a neutron star can stably burn in steady state only when the accretion rate is high (typically super-Eddington) or if a large flux from the neutron star crust permeates the outer atmosphere. For such situations we have analyzed the stability of nonradial oscillations, finding one unstable mode for pure helium accretion. This is a shallow surface wave that resides in the helium atmosphere above the heavier ashes of the ocean. It is excited by the increase in the nuclear reaction rate during the oscillations, and it grows on the timescale of a second. For a slowly rotating star, this mode has a frequency !=ð2Þð20 30 HzÞ½lðl þ 1Þ=21=2, and we calculate the full spectrum that a rapidly rotating (330 Hz) neutron star would support. The short-period X-raybinary4U1820À30 is accreting helium-rich material and is the system most likely to show this unstable mode, especially when it is not exhibiting X-ray bursts. Our discovery of an unstable mode in a thermally stable atmosphere shows that nonradial perturbations have a different stability criterion than the spherically symmetric thermal perturbations that generate type I X-ray bursts. -
Stellar Explosions
Chapter 11: Stellar Explosions Prof. Douglas Laurence AST 1002 What are Stellar Explosions? Stellar remnant, probably a neutron star. • When stars above a certain mass die (run out of fuel at their core), they will literally explode in novae, supernovae, or hypernovae • The explosions “blows away” some of the star, leaving a stellar remnant, which can be: • A white dwarf • A neutron star • Or a black hole Stellar and Remnants Masses • Stars with a (main sequence) mass < 8#⊙ will eventually become white dwarfs. • White dwarfs have a remnant mass < 1.4#⊙, known as the Chandrasekhar limit. • Stars with a mass < 25#⊙will eventually become neutron stars. • Neutron stars have a remnant mass < 3#⊙, known as the Tolman-Oppenheimer- Volkoff (TOV) limit. • Stars with mass > 25#⊙, or remnant mass > 3#⊙, become black holes. • What a star becomes is determined by the remnant mass; remnant masses trend with main sequence masses, but they’re the decider. • A star with a very large mass can have a dramatically lower remnant mass after a stellar explosion, if the explosion blows away much of the star’s mass. Novae and White Dwarfs • Very little mass is ejected by a nova, so it will not affect the type of stellar remnant left behind (which will invariably be a white dwarf.) • Novae can increase brightness by 10,000 times. • Some novae repeat themselves, becoming what are called recurrent novae. Mechanism of Nova Production • Novae occur in binary systems between a red giant and a white dwarf. • White dwarf is formed by planetary nebula. • Novae don’t produce white dwarfs. -
Metadata of the Chapter That Will Be Visualized Online
Metadata of the chapter that will be visualized online Chapter Title Binary Systems and Their Nuclear Explosions Copyright Year 2018 Copyright Holder The Author(s) Author Family Name Isern Particle Given Name Jordi Suffix Organization Institute of Space Sciences (ICE, CSIC) Address Barcelona, Spain Organization Institut d’Estudis Espacials de Catalunya (IEEC) Address Barcelona, Spain Email [email protected] Corresponding Author Family Name Hernanz Particle Given Name Margarita Suffix Organization Institute of Space Sciences (ICE, CSIC) Address Barcelona, Spain Organization Institut d’Estudis Espacials de Catalunya (IEEC) Address Barcelona, Spain Email [email protected] Author Family Name José Particle Given Name Jordi Suffix Organization Universitat Politècnica de Catalunya (UPC) Address Barcelona, Spain Organization Institut d’Estudis Espacials de Catalunya (IEEC) Address Barcelona, Spain Email [email protected] Abstract The nuclear energy supply of a typical star like the Sun would be ∼ 1052 erg if all the hydrogen could be incinerated into iron peak elements. Chapter 5 1 Binary Systems and Their Nuclear 2 Explosions 3 Jordi Isern, Margarita Hernanz, and Jordi José 4 5.1 Accretion onto Compact Objects and Thermonuclear 5 Runaways 6 The nuclear energy supply of a typical star like the Sun would be ∼1052 erg if all 7 the hydrogen could be incinerated into iron peak elements. Since the gravitational 8 binding energy is ∼1049 erg, it is evident that the nuclear energy content is more 9 than enough to blow up the Sun. However, stars are stable thanks to the fact that their 10 matter obeys the equation of state of a classical ideal gas that acts as a thermostat: if 11 some energy is released as a consequence of a thermal fluctuation, the gas expands, 12 the temperature drops and the instability is quenched. -
Sensitivity of Type Ia Supernovae to Electron Capture Rates E
A&A 624, A139 (2019) Astronomy https://doi.org/10.1051/0004-6361/201935095 & c ESO 2019 Astrophysics Sensitivity of Type Ia supernovae to electron capture rates E. Bravo E.T.S. Arquitectura del Vallès, Universitat Politècnica de Catalunya, Carrer Pere Serra 1-15, 08173 Sant Cugat del Vallès, Spain e-mail: [email protected] Received 22 January 2019 / Accepted 8 March 2019 ABSTRACT The thermonuclear explosion of massive white dwarfs is believed to explain at least a fraction of Type Ia supernovae (SNIa). After thermal runaway, electron captures on the ashes left behind by the burning front determine a loss of pressure, which impacts the dynamics of the explosion and the neutron excess of matter. Indeed, overproduction of neutron-rich species such as 54Cr has been deemed a problem of Chandrasekhar-mass models of SNIa for a long time. I present the results of a sensitivity study of SNIa models to the rates of weak interactions, which have been incorporated directly into the hydrodynamic explosion code. The weak rates have been scaled up or down by a factor ten, either globally for a common bibliographical source, or individually for selected isotopes. In line with previous works, the impact of weak rates uncertainties on sub-Chandrasekhar models of SNIa is almost negligible. The impact on the dynamics of Chandrasekhar-mass models and on the yield of 56Ni is also scarce. The strongest effect is found on the nucleosynthesis of neutron-rich nuclei, such as 48Ca, 54Cr, 58Fe, and 64Ni. The species with the highest influence on nucleosynthesis do not coincide with the isotopes that contribute most to the neutronization of matter. -
The Single Degenerate Progenitor Scenario for Type Ia Supernovae and the Convective Urca Process
The Single Degenerate Progenitor Scenario for Type Ia Supernovae and the Convective Urca Process ADissertationpresented by Donald Eugene Willcox to The Graduate School in Partial Fulfillment of the Requirements for the Degree of Doctor of Philosophy in Physics Stony Brook University August 2018 Stony Brook University The Graduate School Donald Eugene Willcox We, the dissertation committe for the above candidate for the Doctor of Philosophy degree, hereby recommend acceptance of this dissertation Alan Calder – Dissertation Advisor Associate Professor, Physics and Astronomy Michael Zingale – Chairperson of Defense Associate Professor, Physics and Astronomy Joanna Kiryluk – Committee Member Associate Professor, Physics and Astronomy Matthew Reuter – External Committee Member Assistant Professor, Applied Mathematics and Statistics This dissertation is accepted by the Graduate School Charles Taber Dean of the Graduate School ii Abstract of the Dissertation The Single Degenerate Progenitor Scenario for Type Ia Supernovae and the Convective Urca Process by Donald Eugene Willcox Doctor of Philosophy in Physics Stony Brook University 2018 This dissertation explores the e↵ects of properties of the progenitor massive white dwarf (WD) on thermonuclear (Type Ia) supernovae. It includes a study of explosions from “hy- brid” C/O/Ne progenitors and focuses primarily on the convective Urca process occurring in C/O progenitors shortly before their explosion. Pre-supernova WDs approaching the Chan- drasekhar mass can possess sufficiently high central densities that 23Na synthesized via 12C fusion undergoes electron capture to 23Ne. Convection sweeps 23Ne to regions of lower den- sity where it reverts via beta decay to 23Na, and vice versa. Cyclic weak nuclear processes of this type constitute the convective Urca process in WDs. -
Thermal Stress Reduction of Power MOSFET with Dynamic Gate Voltage Control and Circulation Current Injection in Electric Drive Application
electronics Article Thermal Stress Reduction of Power MOSFET with Dynamic Gate Voltage Control and Circulation Current Injection in Electric Drive Application Lie Wang *, Bas Vermulst , Jorge Duarte and Henk Huisman Department of Electrical Engineering, Electromechanics and Power Electronics, Eindhoven University of Technology, 5612 AZ Eindhoven, The Netherlands; [email protected] (B.V.); [email protected] (J.D.); [email protected] (H.H.) * Correspondence: [email protected] Received: 24 October 2020; Accepted: 24 November 2020; Published: 30 November 2020 Abstract: While operating an electric drive under different load conditions, power switch devices experience thermal stress which provokes wear-out failures and compromises lifetime. In this paper, a model-based dynamic gate voltage control strategy is proposed to reduce the thermal stress by shaping the profile of conduction losses. Thermal stability criteria are investigated, which limit the gate voltage operating range; thus, current focalization and associated local heat up are avoided. After that, simulations and lifetime estimation are conducted for performance evaluation in two different operation scenarios, which show promising results at high speed operation conditions. Furthermore, a current injection method is applied for low-speed operating conditions to improve the compensation effort. This method is experimentally verified by using a custom proof-of-concept gate driver that supplies an adjustable three-level gate voltage. A three-phase electric drive is prototyped, on which power cycling tests are conducted. The junction temperature is measured and the results confirm the thermal control method. Keywords: power MOSFET modelling; thermal instability; gate voltage control; three-level gate driver; current injection; power cycling 1. -
Stellar Collapse R
STELLAR COLLAPSE R. Canal To cite this version: R. Canal. STELLAR COLLAPSE. Journal de Physique Colloques, 1980, 41 (C2), pp.C2-105-C2-110. 10.1051/jphyscol:1980218. jpa-00219810 HAL Id: jpa-00219810 https://hal.archives-ouvertes.fr/jpa-00219810 Submitted on 1 Jan 1980 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. JOURNAL DE PHYSIQUE Colloque C2, supplément au n° 3, Tome 41, mars 1980, page C2-105 STELLAR COLLAPSE R . Canal Depar-tamento de Fisica de la Tierra y del Cosmos Univevsidad de Barcelona Spain Résumé .- On considère le problème de l'effondrement des étoiles à la fin de leur évolution . Las étoiles à grande masse (M ~ 10 M„) vont vers leur effondrement ayant épuisé (dans leurs couches centrales au moins) leurs combustibles thermonu cléaires . L'explosion de leurs couches extérieures doit se produire par transfert de 1'énergie gravitationnelle du noyau . On examine les différents mécanismes qui ont été proposés, ainsi que les incertitudes qui s'y rattachent. Les étoiles aux masses plus petites (sauf celles qui finissent comme naines blanches) rencontrent des instabilités explosives par suite de la formation, dans leur intérieur, de noyauKdont la composante électronique est fortement dégénérée. -
N-Body Techniques for Astrophysics: Lecture 4 – STARLAB
Michela Mapelli N-body techniques for astrophysics: Lecture 4 – STARLAB PhD School in Astrophysics, University of Padova November 19-30, 2018 Michela Mapelli N-body techniques for astrophysics: Lecture 4 – STARLAB MOST IMPORTANT INGREDIENT: stay calm, breath, don't panic, don't kill yourself, don't kill your office mates PhD School in Astrophysics, University of Padova November 19-30, 2018 OUTLINE: 1* definition and structure of starlab http://www.sns.ias.edu/~starlab/overview/ http://www.sns.ias.edu/~starlab/structure/ 2* the dynamics: KIRA http://www.sns.ias.edu/~starlab/kira/ 3* the stellar evolution: SEBA 4* the outputs http://www.sns.ias.edu/~starlab/internals/ 5* compilation and installation 6* writing initial conditions http://www.sns.ias.edu/~starlab/examples/ 7* running kira 8* visualize outputs 1) definition and structure of starlab http://www.sns.ias.edu/~starlab/ * Software environment: multiple codes to generate, evolve and analyze a collisional system (such as a star cluster) They can be combined * Tools to Monte Carlo generate initial conditions (e.g. makeplummer) Evolve stars and binaries via population synthesis (e.g. SeBa) Evolve collisional dynamics (e.g. kira) Analyze outputs (e.g. xstarplot) * Collisional dynamics is evolved through HERMITE SCHEME with block time steps: example of code adopting tools described in lecture 3 1) definition and structure of starlab http://www.sns.ias.edu/~starlab/structure/ - CLASS: description of structure+ its functions - an OBJECT belongs to a class if it is DEFINED as member of the class → star a; EACH PARTICLE + root belongs to the node class (include/node.h) class node { static node* root; // Global address of the root node. -
Piersanti 2017 Apjl 836 L9.Pdf
Publication Year 2017 Acceptance in OA@INAF 2020-09-02T14:46:33Z Title Type Ia Supernovae Keep Memory of their Progenitor Metallicity Authors PIERSANTI, Luciano; Bravo, Eduardo; CRISTALLO, Sergio; Domínguez, Inmaculada; STRANIERO, Oscar; et al. DOI 10.3847/2041-8213/aa5c7e Handle http://hdl.handle.net/20.500.12386/27071 Journal THE ASTROPHYSICAL JOURNAL LETTERS Number 836 The Astrophysical Journal Letters, 836:L9 (6pp), 2017 February 10 https://doi.org/10.3847/2041-8213/aa5c7e © 2017. The American Astronomical Society. All rights reserved. SNe Ia Keep Memory of Their Progenitor Metallicity Luciano Piersanti1,2, Eduardo Bravo3, Sergio Cristallo1,2, Inmaculada Domínguez4, Oscar Straniero1,5, Amedeo Tornambé6, and Gabriel Martínez-Pinedo7,8 1 INAF-Osservatorio Astronomico di Teramo, via Mentore Maggini, snc, I-64100, Teramo, Italy; [email protected] 2 INFN-Sezione di Perugia, via Pascoli, Perugia, Italy; [email protected] 3 E.T.S. Arquitectura del Vallés, Universitat Politècnica de Catalunya, Carrer Pere Serra 1-15, E-08173 Sant Cugat del Vallès, Spain; [email protected] 4 Universidad de Granada, E-18071 Granada, Spain; [email protected] 5 INFN, Laboratori Nazionali del Gran Sasso (LNGS), I-67100 Assergi, Italy; [email protected] 6 INAF-Osservatorio Astronomico di Roma, via Frascati, 33, I-00040, Monte Porzio Catone, Italy; [email protected] 7 GSI Helmholtzzentrum für Schwerioneneforschung, Planckstraße 1, D-64291 Darmstadt, Germany; [email protected] 8 Institut für Kernphysik (Theoriezentrum), Technische Universität Darmstadt, Schlossgartenstraße 2, D-64289 Darmstadt, Germany Received 2016 December 16; accepted 2017 January 26; published 2017 February 9 Abstract The ultimate understanding of SNe Ia diversity is one of the most urgent issues to exploit thermonuclear explosions of accreted White Dwarfs (WDs) as cosmological yardsticks. -
MOSFET Secondary Breakdown Application Note
MOSFET Secondary Breakdown Application Note MOSFET Secondary Breakdown Description This document describes the secondary breakdown of a power MOSFET. © 2018 1 2018-09-01 Toshiba Electronic Devices & Storage Corporation MOSFET Secondary Breakdown Application Note Table of Contents Description ............................................................................................................................................ 1 Table of Contents ................................................................................................................................. 2 1. MOSFET secondary breakdown ..................................................................................................... 3 1.1. Safe operating area of a MOSFET ..................................................................................................... 3 1.2. MOSFET secondary breakdown ......................................................................................................... 4 1.3. Mechanism of MOSFET secondary breakdown ............................................................................... 4 RESTRICTIONS ON PRODUCT USE.................................................................................................... 6 List of Figures Figure 1 Safe operating area of a MOSFET .......................................................................................... 3 © 2018 2 2018-09-01 Toshiba Electronic Devices & Storage Corporation MOSFET Secondary Breakdown Application Note 1. MOSFET secondary breakdown This section -
Ch 06-Phys--Star Death & H-R Di
Ch. 6--Stars and H-R Diagrams Chapter 6 THE LIFE AND DEATH OF A STAR, and THE H-R DIAGRAM A.) Hertzsprung-Russell Diagrams: 1.) The Hertzsprung-Russell diagram plots luminosity versus temperature. Aside from its primary use (i.e., if you can determine a star's surface temperature, the H-R diagram will give you its luminosity), it is a useful educational tool in the sense that it highlights in the universe order out of what would otherwise appear to be disorder. Hertzsprung-Russell diagram 2.) The basics of the H-R diagram and things you Luminosity (solar units) blue giants need to understand about and supergiants the system follow. 10,000 red giants and supergiants a.) Temperature 100 on the H-R diagram 100 R ranges from 30,000 main sun sequence degrees Kelvin to 1 sun 3000 degrees Kelvin 10 Rsun (those temperatures are plotted backward- .01 R -odd, but that's the sun red dwarfs way some white dwarfs astronomers are--a .0001 .1 Rsun little bit of physicist humor). It plots from 30,000 10,000 6000 3000 O type to M type stars (we talked about spec- Surface Temperature (degrees K) tral classification earlier). OAGMBFK Spectral Class 171 b.) The luminosity scale is expressed in terms of luminosity of the sun. That is, on a H-R diagram, L = 1 is found in the middle of the plot and denotes the sun's position on the diagram. c.) Luminosity on the H-R diagram ranges from 10-4 to 104. Again, 1 denotes the luminosity of the sun. -
Exotic Forms of Nuclear Matter Under Extreme Conditions in Supernovae and Compact Stars
Physics 599, Fall 2009 Exotic forms of nuclear matter under extreme conditions in supernovae and compact stars Jirina Stone UT/ORNL Theorecal Astrophysics Group Oxford University [email protected] PhD: Charles University of Prague, Czech Republic Teaching: Technical University of Prague, CZ Oxford University, Oxford, UK Research work: Experimental nuclear physics Instute for Nuclear Research, Rez near Prague Joint Instute for Nuclear Reasearch, Dubna, Russia Oxford, UK Daresbury, UK Studsvik, Sweden ORNL – Oak Ridge, USA CERN, ISOLDE – Geneva, Switzerland Theorecal nuclear physics and astrophysics: Oxford, UK UT/ORNL PhD Students (co) supervisor: 16 + 1 new starng in Spring at UT Research publicaons: over 150 UT‐ ORNL Theorecal Astrophysics hp://astro.phys.utk.edu Scienfic focus: Explosive stellar events and the associated nuclear astrophysics Construcon of theorecal models for supernovae, nova, x‐ray and gamma‐ray bursters. Macro (hydrodynamics) Micro (equaon of state – interacon between nuclei and parcles in stellar maer) Models of creaon of chemical elements contribung to the galaxy and forming the basis for new stars Visualizaon of Three‐Dimensional and planets Simulaon of Standing Accreon Shock Instability (SASI) Connecon between these events and their nuclear (Blondin, Mezzacappa, de Marino) products is an important link in the chain in history Astrophysics Journal, Nature connecng us to the beginning of the Universe. Senior group members: Chrisan Cardall Macroscopic modelling of Core‐Collapse Supernovae (CCS) Michael W. Guidry