Stellar Collapse R

Total Page:16

File Type:pdf, Size:1020Kb

Stellar Collapse R STELLAR COLLAPSE R. Canal To cite this version: R. Canal. STELLAR COLLAPSE. Journal de Physique Colloques, 1980, 41 (C2), pp.C2-105-C2-110. 10.1051/jphyscol:1980218. jpa-00219810 HAL Id: jpa-00219810 https://hal.archives-ouvertes.fr/jpa-00219810 Submitted on 1 Jan 1980 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. JOURNAL DE PHYSIQUE Colloque C2, supplément au n° 3, Tome 41, mars 1980, page C2-105 STELLAR COLLAPSE R . Canal Depar-tamento de Fisica de la Tierra y del Cosmos Univevsidad de Barcelona Spain Résumé .- On considère le problème de l'effondrement des étoiles à la fin de leur évolution . Las étoiles à grande masse (M ~ 10 M„) vont vers leur effondrement ayant épuisé (dans leurs couches centrales au moins) leurs combustibles thermonu­ cléaires . L'explosion de leurs couches extérieures doit se produire par transfert de 1'énergie gravitationnelle du noyau . On examine les différents mécanismes qui ont été proposés, ainsi que les incertitudes qui s'y rattachent. Les étoiles aux masses plus petites (sauf celles qui finissent comme naines blanches) rencontrent des instabilités explosives par suite de la formation, dans leur intérieur, de noyauKdont la composante électronique est fortement dégénérée. Là, l'issue dépend de la compétition des captures électroniques avec les. réactions thermonucléaires . Les conditions les plus favorables à l'effondrement ont lieu dans les systèmes doubles. La solution du problème posé par l'effondrement des étoiles passe par une meilleure connaissance de l'équation d'état aux grandes densités, des taux des réactions nucléaires, de l'opacité de la matière aux neutrinos, des régimes de combustion, des séparations de phase, de l'évolution des étoiles isolées et de celle des systèmes doubles rapprochés . Stellar collapse is a physical process that r his means stars that form very massive he­ is expected to account for : lium cores following hydrogen burning and -Neutron star formation, which comprises encounter instability due to pair formation-, the coming into being of radio pulsars -*• + (single neutron stars, mainly) and of X-ray Y *• e + e pulsars and bursters (neutron stars in clo­ se binary systems) . leading to r E (-1IIL-E-) g < 4/3 just before -Supernovae . central oxygen ignition (Barkat, Rakavy, -The bulk of the nucleosynthesis in the Ga­ and Sack 1967 ; Fraley 1968) . Dynamical stu­ laxy . dies of this case (Arnett 1978a) give an im­ -The origin of the galactic cosmic rays. plosion-explosion behaviour, both with and Stellar collapse might also produce black without remnant left, depending on the assu­ holes, gravitational waves, and neutrino, med mass of the helium core . The relevance •y-ray, X-ray, UV and IR "supernovae" . In of this mass range is doubtful, however. most cases mass ejection is needed, in Dearborn (1977), extrapolating the observed addition to the collapse, to explain the main-sequence mass-loss rates, concludes observed objects and phenomena. Energy that the masses of such stars, if they are emission must always occur, since stellar formed at all, will be reduced below the li­ collapse means forming a more gravitational mit for the occurrence of pair instability, ly bound object from' a less bound one . already during hydrogen burning . r he dynamic We will review the different types of stars process of star formation itself can also which are collapse candidates, stressing set the maximum mass of a star around the unsolved problems concerning their ul­ 60 - 100 M@ (Larson and Starrfield 19-71) . timate fates . We consider first single b) Massive stars : stars . Later we will discuss the supplemen­ 8 + ( 2 to 3) M. < M< M . tary possibilities related with close bina­ ® ~ paxr ry evolution . Those stars are able to go through all the 1- Single stars . - thermonuclear burning stages, from hydrogen a) Very massive stars : to silicon burning . rhey develop the classi­ cal onionring structure (Arnett 1973), with M>M . - 100 + 30M.- ~ paxr - © succesive burning shells corresponding, from Article published online by EDP Sciences and available at http://dx.doi.org/10.1051/jphyscol:1980218 JOURNAL DE PHYSIQUE the center outwards, to Si, 0, Ne, C, He, cussing in this same volume different as- and H . One must have in mind, however, that pects of the physics of the collapse of most calculations stalt from helium cores, massive stars, I will only briefly indicate neglecting the hydrogen envelopes .The the main steps leading to our present view treatment of convection is doubtful, as are of the situation. mass loss effects. Further uncertainties are Two energy sources are available for produ- associated with the Si burning phase (Arnett cing a "mass cut" and obtaining an explo- 1977a). Anyway, Fe-Kki cores developat the sion : the thermonuclear energy of the man- centers of such stars, with masses in the tle and the gravitational potential of the 2 Mg F hey are ne- core.The last gives rise, by core contrac- range 1 -2 Mg <- Mcore -< -5 arly isothermal, with temperatures tion, to neutrino emission, infall kinetic r % 5 x 10' OK, and are supported by the de- energy, increase of rotation and of the ma- generate pressure of highly relativistic gnetic fields. electrons, so r 2 4/3. Core contraction Compression and heating of the mantle was leads to electron captures and pressure de- first proposed by Hoyle and Fowler (1960) : crease. Rising temperature (due to compres- the explosive thermonuclear burning of this sion and to the captures) induces endoergic material would release enough energy to photodisintegration of the nuclei. Both pro- eject a fraction of it and the whole enve- cesses start dynamical collapse. lope. Hydrodynamic calculations by Colgate At first sight, pure collapse of the massive and White (1966) showed that the compres- stars would be a natural outcome of their sed material is in fact "swallowed" by the evolution, when in their cores there is no neutronized core .The same authors sugges- more nuclear potential energy 1eft.rhe pro- ted energy transport by the neutrinos pro- blem is that such stars should also explode duced in the accretion shock front, at the as supernovae, ejecting their mantles and boundary of the core, to the zone corres- envelopes and leaving condensed remnants ponding to their last mean free path before (neutron stars and perhaps, in some cases, escape -the "neutrino photospherew-, as an ejection mechanism. Later work concentrated black holes) . A few reasons for that are : -The existence of at least two associations on the problem of neutrino transport and its neutron star-supernova remnant (Crab and coupling with the hydrodynamics, both newto- Vela) .The Crab nebula is very helium-rich nian and general-relativistic (Arnett 1968 ; and its mass could be as high as 8 - 10 Ma. Wilson 1971) . Experimental results in 1973, -Cas A, a supernova remnant, shows evidence indicating the presence of a neutral current for nucleosynthesis of the heavy elements. in the weak interaction, opened up new pos- -The onion-ring structure developed by tho- sibilities for mass ejection during collapse se stars appears to be the ideal site for (see, Freedman, Schramm, and Tubbs 1977) . the synthesis of the heavy elements, both Coherent scattering by the heavy nuclei in explosively and non-explosively (Arnett and the outer core and in the mantle, of the neutrinos produced in the inner core, would Schramm 1973 ; Arnett 197833) . -For a 1.4M Fe-IS core collapsing to a neu- mainly transfer momentum to those layers and 0 tron star, the gravitational energy release perhaps reverse their motion. In addition to this, the change of r from is % 10~~er~.So, only about 1 % of this energy would suffice, if transferred to the lower to higher than 4/3, at or above nu- mantle and envelope, to blow them off with clear densities, was known to cause a "boun- energies typical for supernova events. ce" of the inner core and then a reflected -'Type 11 supernovae are concentrated to- shock wave. In this way, a fraction of the wards the spiral arms in spiral galaxies kinetic energy of the collapsing core can be (Maza and Van den Bergh 1976), where the transferred to the overlying and less gravi- youngest stellar population is also found" tationally bound material (Bruenn 1975) . Since Arnett, Buchler, and Livio are dis- Bruenn, Arnett, and Schramm (1977) have ana- lyzed the detailed calculations of Wilson (1974, 1976), Chechetkin et a1 . (1977), and This mass range would correspond to stars several others, to clarify the interplay that burn their carbon in non-degenerate between neutrino energy and momentum deposit conditions (Barkat, Reiss, and Rakavy 1974) tion and core bounce. but where carbon burning resultsin the for-, Continued improvements in the calculation of mation of an electron-degenerate 0-*-Mg neutrino opacities (Sato 1975, Nadyozhin core.The evolution of such a core, sur- 1977, Arnett 1977b) have led to the impor- rounded by a carbon burning shell, has been tant conclusion that neutrinos are trapped studied by Miyaji et a1 . (1979) . Electron during collapse for densities p > lo1 2g ~m-~.captures compete with explosive oxygen bur- Adiabatic hydrodynamics thus provides a good ning and lead to core collapse, with possi- approximation to the collapse of the inner ble ejection of the envelope due to explo- core. Van Riper (1978, 1979), and Van Riper sive carbon and helium burning.The discus- and Arnett (1978), find mass ejection by a sion of this mass range is closely related reflected shock, with the appropriate ener- to'that of the intermediate-mass stars.
Recommended publications
  • UNSTABLE NONRADIAL OSCILLATIONS on HELIUM-BURNING NEUTRON STARS Anthony L
    The Astrophysical Journal, 603:252–264, 2004 March 1 # 2004. The American Astronomical Society. All rights reserved. Printed in U.S.A. UNSTABLE NONRADIAL OSCILLATIONS ON HELIUM-BURNING NEUTRON STARS Anthony L. Piro Department of Physics, Broida Hall, University of California, Santa Barbara, CA 93106; [email protected] and Lars Bildsten Kavli Institute for Theoretical Physics and Department of Physics, Kohn Hall, University of California, Santa Barbara, CA 93106; [email protected] Received 2003 September 18; accepted 2003 November 17 ABSTRACT Material accreted onto a neutron star can stably burn in steady state only when the accretion rate is high (typically super-Eddington) or if a large flux from the neutron star crust permeates the outer atmosphere. For such situations we have analyzed the stability of nonradial oscillations, finding one unstable mode for pure helium accretion. This is a shallow surface wave that resides in the helium atmosphere above the heavier ashes of the ocean. It is excited by the increase in the nuclear reaction rate during the oscillations, and it grows on the timescale of a second. For a slowly rotating star, this mode has a frequency !=ð2Þð20 30 HzÞ½lðl þ 1Þ=21=2, and we calculate the full spectrum that a rapidly rotating (330 Hz) neutron star would support. The short-period X-raybinary4U1820À30 is accreting helium-rich material and is the system most likely to show this unstable mode, especially when it is not exhibiting X-ray bursts. Our discovery of an unstable mode in a thermally stable atmosphere shows that nonradial perturbations have a different stability criterion than the spherically symmetric thermal perturbations that generate type I X-ray bursts.
    [Show full text]
  • Sensitivity of Type Ia Supernovae to Electron Capture Rates E
    A&A 624, A139 (2019) Astronomy https://doi.org/10.1051/0004-6361/201935095 & c ESO 2019 Astrophysics Sensitivity of Type Ia supernovae to electron capture rates E. Bravo E.T.S. Arquitectura del Vallès, Universitat Politècnica de Catalunya, Carrer Pere Serra 1-15, 08173 Sant Cugat del Vallès, Spain e-mail: [email protected] Received 22 January 2019 / Accepted 8 March 2019 ABSTRACT The thermonuclear explosion of massive white dwarfs is believed to explain at least a fraction of Type Ia supernovae (SNIa). After thermal runaway, electron captures on the ashes left behind by the burning front determine a loss of pressure, which impacts the dynamics of the explosion and the neutron excess of matter. Indeed, overproduction of neutron-rich species such as 54Cr has been deemed a problem of Chandrasekhar-mass models of SNIa for a long time. I present the results of a sensitivity study of SNIa models to the rates of weak interactions, which have been incorporated directly into the hydrodynamic explosion code. The weak rates have been scaled up or down by a factor ten, either globally for a common bibliographical source, or individually for selected isotopes. In line with previous works, the impact of weak rates uncertainties on sub-Chandrasekhar models of SNIa is almost negligible. The impact on the dynamics of Chandrasekhar-mass models and on the yield of 56Ni is also scarce. The strongest effect is found on the nucleosynthesis of neutron-rich nuclei, such as 48Ca, 54Cr, 58Fe, and 64Ni. The species with the highest influence on nucleosynthesis do not coincide with the isotopes that contribute most to the neutronization of matter.
    [Show full text]
  • Fundamentals of Stellar Evolution Theory: Understanding the HRD
    Fundamentals of Stellar Evolution Theory: Understanding the HRD By C E S A R E C H I O S I Department of Astronomy, University of Padua, Vicolo Osservatorio 5, 35122 Padua, Italy Published in: "Stellar Astrophysics for the Local Group: a First Step to the Universe" VIII Canary Islands Winter School Cambridge University Press 25 March, 1997 Abstract. We summarize the results of stellar evolution theory for single stars that have been obtained over the last two decades, and compare these results with the observations. We discuss in particular the effect of mass loss by stellar winds during the various evolutionary stages of stars that are affected by this phenomenon. In addition, we focus on the problem of mixing in stellar interiors calling attention on weak aspects of current formulations and presenting plausible alternatives. Finally, we survey some applications of stellar models to several areas of modern astrophysics. 1. Introduction The major goal of stellar evolution theory is the interpretation and reproduction of the Hertzsprung-Russell Diagram (HRD) of stars in different astrophysical environments: solar vicinity, star clusters of the Milky Way and nearby galaxies, fields in external galaxies. The HRD of star clusters, in virtue of the small spread in age and composition of the component stars, is the classical template to which stellar models are compared. If the sample of stars is properly chosen from the point of view of completeness, even the shortest lived evolutionary phases can be tested. The HRD of field stars, those in external galaxies in particular, contains much information on the past star formation history.
    [Show full text]
  • The Single Degenerate Progenitor Scenario for Type Ia Supernovae and the Convective Urca Process
    The Single Degenerate Progenitor Scenario for Type Ia Supernovae and the Convective Urca Process ADissertationpresented by Donald Eugene Willcox to The Graduate School in Partial Fulfillment of the Requirements for the Degree of Doctor of Philosophy in Physics Stony Brook University August 2018 Stony Brook University The Graduate School Donald Eugene Willcox We, the dissertation committe for the above candidate for the Doctor of Philosophy degree, hereby recommend acceptance of this dissertation Alan Calder – Dissertation Advisor Associate Professor, Physics and Astronomy Michael Zingale – Chairperson of Defense Associate Professor, Physics and Astronomy Joanna Kiryluk – Committee Member Associate Professor, Physics and Astronomy Matthew Reuter – External Committee Member Assistant Professor, Applied Mathematics and Statistics This dissertation is accepted by the Graduate School Charles Taber Dean of the Graduate School ii Abstract of the Dissertation The Single Degenerate Progenitor Scenario for Type Ia Supernovae and the Convective Urca Process by Donald Eugene Willcox Doctor of Philosophy in Physics Stony Brook University 2018 This dissertation explores the e↵ects of properties of the progenitor massive white dwarf (WD) on thermonuclear (Type Ia) supernovae. It includes a study of explosions from “hy- brid” C/O/Ne progenitors and focuses primarily on the convective Urca process occurring in C/O progenitors shortly before their explosion. Pre-supernova WDs approaching the Chan- drasekhar mass can possess sufficiently high central densities that 23Na synthesized via 12C fusion undergoes electron capture to 23Ne. Convection sweeps 23Ne to regions of lower den- sity where it reverts via beta decay to 23Na, and vice versa. Cyclic weak nuclear processes of this type constitute the convective Urca process in WDs.
    [Show full text]
  • Thermal Stress Reduction of Power MOSFET with Dynamic Gate Voltage Control and Circulation Current Injection in Electric Drive Application
    electronics Article Thermal Stress Reduction of Power MOSFET with Dynamic Gate Voltage Control and Circulation Current Injection in Electric Drive Application Lie Wang *, Bas Vermulst , Jorge Duarte and Henk Huisman Department of Electrical Engineering, Electromechanics and Power Electronics, Eindhoven University of Technology, 5612 AZ Eindhoven, The Netherlands; [email protected] (B.V.); [email protected] (J.D.); [email protected] (H.H.) * Correspondence: [email protected] Received: 24 October 2020; Accepted: 24 November 2020; Published: 30 November 2020 Abstract: While operating an electric drive under different load conditions, power switch devices experience thermal stress which provokes wear-out failures and compromises lifetime. In this paper, a model-based dynamic gate voltage control strategy is proposed to reduce the thermal stress by shaping the profile of conduction losses. Thermal stability criteria are investigated, which limit the gate voltage operating range; thus, current focalization and associated local heat up are avoided. After that, simulations and lifetime estimation are conducted for performance evaluation in two different operation scenarios, which show promising results at high speed operation conditions. Furthermore, a current injection method is applied for low-speed operating conditions to improve the compensation effort. This method is experimentally verified by using a custom proof-of-concept gate driver that supplies an adjustable three-level gate voltage. A three-phase electric drive is prototyped, on which power cycling tests are conducted. The junction temperature is measured and the results confirm the thermal control method. Keywords: power MOSFET modelling; thermal instability; gate voltage control; three-level gate driver; current injection; power cycling 1.
    [Show full text]
  • Piersanti 2017 Apjl 836 L9.Pdf
    Publication Year 2017 Acceptance in OA@INAF 2020-09-02T14:46:33Z Title Type Ia Supernovae Keep Memory of their Progenitor Metallicity Authors PIERSANTI, Luciano; Bravo, Eduardo; CRISTALLO, Sergio; Domínguez, Inmaculada; STRANIERO, Oscar; et al. DOI 10.3847/2041-8213/aa5c7e Handle http://hdl.handle.net/20.500.12386/27071 Journal THE ASTROPHYSICAL JOURNAL LETTERS Number 836 The Astrophysical Journal Letters, 836:L9 (6pp), 2017 February 10 https://doi.org/10.3847/2041-8213/aa5c7e © 2017. The American Astronomical Society. All rights reserved. SNe Ia Keep Memory of Their Progenitor Metallicity Luciano Piersanti1,2, Eduardo Bravo3, Sergio Cristallo1,2, Inmaculada Domínguez4, Oscar Straniero1,5, Amedeo Tornambé6, and Gabriel Martínez-Pinedo7,8 1 INAF-Osservatorio Astronomico di Teramo, via Mentore Maggini, snc, I-64100, Teramo, Italy; [email protected] 2 INFN-Sezione di Perugia, via Pascoli, Perugia, Italy; [email protected] 3 E.T.S. Arquitectura del Vallés, Universitat Politècnica de Catalunya, Carrer Pere Serra 1-15, E-08173 Sant Cugat del Vallès, Spain; [email protected] 4 Universidad de Granada, E-18071 Granada, Spain; [email protected] 5 INFN, Laboratori Nazionali del Gran Sasso (LNGS), I-67100 Assergi, Italy; [email protected] 6 INAF-Osservatorio Astronomico di Roma, via Frascati, 33, I-00040, Monte Porzio Catone, Italy; [email protected] 7 GSI Helmholtzzentrum für Schwerioneneforschung, Planckstraße 1, D-64291 Darmstadt, Germany; [email protected] 8 Institut für Kernphysik (Theoriezentrum), Technische Universität Darmstadt, Schlossgartenstraße 2, D-64289 Darmstadt, Germany Received 2016 December 16; accepted 2017 January 26; published 2017 February 9 Abstract The ultimate understanding of SNe Ia diversity is one of the most urgent issues to exploit thermonuclear explosions of accreted White Dwarfs (WDs) as cosmological yardsticks.
    [Show full text]
  • MOSFET Secondary Breakdown Application Note
    MOSFET Secondary Breakdown Application Note MOSFET Secondary Breakdown Description This document describes the secondary breakdown of a power MOSFET. © 2018 1 2018-09-01 Toshiba Electronic Devices & Storage Corporation MOSFET Secondary Breakdown Application Note Table of Contents Description ............................................................................................................................................ 1 Table of Contents ................................................................................................................................. 2 1. MOSFET secondary breakdown ..................................................................................................... 3 1.1. Safe operating area of a MOSFET ..................................................................................................... 3 1.2. MOSFET secondary breakdown ......................................................................................................... 4 1.3. Mechanism of MOSFET secondary breakdown ............................................................................... 4 RESTRICTIONS ON PRODUCT USE.................................................................................................... 6 List of Figures Figure 1 Safe operating area of a MOSFET .......................................................................................... 3 © 2018 2 2018-09-01 Toshiba Electronic Devices & Storage Corporation MOSFET Secondary Breakdown Application Note 1. MOSFET secondary breakdown This section
    [Show full text]
  • Exotic Forms of Nuclear Matter Under Extreme Conditions in Supernovae and Compact Stars
    Physics 599, Fall 2009 Exotic forms of nuclear matter under extreme conditions in supernovae and compact stars Jirina Stone UT/ORNL Theorecal Astrophysics Group Oxford University [email protected] PhD: Charles University of Prague, Czech Republic Teaching: Technical University of Prague, CZ Oxford University, Oxford, UK Research work: Experimental nuclear physics Instute for Nuclear Research, Rez near Prague Joint Instute for Nuclear Reasearch, Dubna, Russia Oxford, UK Daresbury, UK Studsvik, Sweden ORNL – Oak Ridge, USA CERN, ISOLDE – Geneva, Switzerland Theorecal nuclear physics and astrophysics: Oxford, UK UT/ORNL PhD Students (co) supervisor: 16 + 1 new starng in Spring at UT Research publicaons: over 150 UT‐ ORNL Theorecal Astrophysics hp://astro.phys.utk.edu Scienfic focus: Explosive stellar events and the associated nuclear astrophysics Construcon of theorecal models for supernovae, nova, x‐ray and gamma‐ray bursters. Macro (hydrodynamics) Micro (equaon of state – interacon between nuclei and parcles in stellar maer) Models of creaon of chemical elements contribung to the galaxy and forming the basis for new stars Visualizaon of Three‐Dimensional and planets Simulaon of Standing Accreon Shock Instability (SASI) Connecon between these events and their nuclear (Blondin, Mezzacappa, de Marino) products is an important link in the chain in history Astrophysics Journal, Nature connecng us to the beginning of the Universe. Senior group members: Chrisan Cardall Macroscopic modelling of Core‐Collapse Supernovae (CCS) Michael W. Guidry
    [Show full text]
  • Thermal Runaway Initiation Federal Aviation Administration William J
    DOT/FAA/TC-20/12 Thermal Runaway Initiation Federal Aviation Administration William J. Hughes Technical Center Methods for Lithium Batteries Aviation Research Division Atlantic City International Airport New Jersey 08405 July 2019 Final Report This document is available to the U.S. public through the National Technical Information Services (NTIS), Springfield, Virginia 22161. This document is also available from the Federal Aviation Administration William J. Hughes Technical Center at actlibrary.tc.faa.gov. U.S. Department of Transportation Federal Aviation Administration NOTICE This document is disseminated under the sponsorship of the U.S. Department of Transportation in the interest of information exchange. The U.S. Government assumes no liability for the contents or use thereof. The U.S. Government does not endorse products or manufacturers. Trade or manufacturers’ names appear herein solely because they are considered essential to the objective of this report. The findings and conclusions in this report are those of the author(s) and do not necessarily represent the views of the funding agency. This document does not constitute FAA policy. Consult the FAA sponsoring organization listed on the Technical Documentation page as to its use. This report is available at the Federal Aviation Administration William J. Hughes Technical Center’s Full-Text Technical Reports page: actlibrary.tc.faa.gov in Adobe Acrobat portable document format (PDF). Technical Report Documentation Page 1. Report No. 2. Government Accession No. 3. Recipient's Catalog No. DOT/FAA/TC-20/12 4. Title and Subtitle 5. Report Date Thermal Runaway Initiation Methods for Lithium Batteries July 2019 6. Performing Organization Code ANG-E21 7.
    [Show full text]
  • Arxiv:1007.2659V1 [Astro-Ph.SR] 15 Jul 2010 Aeteesasecletcrnmtr N Edsrb Why Describe Stars
    The Astronomy & Astrophysics Review manuscript No. (will be inserted by the editor) Evolutionary and pulsational properties of white dwarf stars Leandro G. Althaus Alejandro H. Corsico´ Jordi Isern Enrique Garc´ıa–Berro· · · Received: October 22, 2018/ Accepted: October 22, 2018 Abstract White dwarf stars are the final evolutionary stage of the vast majority of stars, including our Sun. Since the coolest white dwarfs are very old objects, the present popula- tion of white dwarfs contains a wealth of information on the evolution of stars from birth to death, and on the star formation rate throughout the history of our Galaxy. Thus, the study of white dwarfs has potential applications to different fields of astrophysics. In partic- ular, white dwarfs can be used as independent reliable cosmic clocks, and can also provide valuable information about the fundamental parameters of a wide variety of stellar popu- lations, like our Galaxy and open and globular clusters. In addition, the high densities and temperatures characterizing white dwarfs allow to use these stars as cosmic laboratories for studying physical processes under extreme conditions that cannot be achieved in terrestrial laboratories. Last but not least, since many white dwarf stars undergo pulsational instabili- ties, the study of their properties constitutes a powerful tool for applications beyond stellar astrophysics. In particular, white dwarfs can be used to constrain fundamental properties of elementary particles such as axions and neutrinos, and to study problems related to the variation of fundamental constants. These potential applications of white dwarfs have led to a renewed interest in the cal- culation of very detailed evolutionary and pulsational models for these stars.
    [Show full text]
  • Modelling the Supernova-Driven ISM in Different Environments
    MNRAS 449, 1057–1075 (2015) doi:10.1093/mnras/stv324 Modelling the supernova-driven ISM in different environments A. Gatto,1‹ S. Walch,1,2 M.-M. Mac Low,3 T. Naab,1 P. Girichidis,1 S. C. O. Glover,4 R. Wunsch,¨ 5 R. S. Klessen,4,6,7 P. C. Clark,4,8 C. Baczynski,3,4 T. Peters,1,9 J. P. Ostriker,10,11 J. C. Iba´nez-Mej˜ ´ıa3,4 and S. Haid2 1Max-Planck-Institut fur¨ Astrophysik, Karl-Schwarzschild-Strasse 1, D-85748 Garching, Germany 2Physikalisches Institut, Universitat¨ Koln,¨ Zulpicher¨ Strasse 77, D-50937 Koln,¨ Germany 3Department of Astrophysics, American Museum of Natural History, 79th Street at Central Park West, New York, NY 10024, USA 4Institut fur¨ Theoretische Astrophysik, Zentrum fur¨ Astronomie, Universitat¨ Heidelberg, Albert-Ueberle-Str. 2, D-69120 Heidelberg, Germany 5Astronomicky´ Ustav,´ Akademie ved˘ Cesk˘ e´ Republiky, Bocn˘ ´ı II 1401, CZ-14131 Praha, Czech Republic 6Department of Astronomy and Astrophysics, University of California, 1156 High Street, Santa Cruz, CA 95064, USA 7Kavli Institute for Particle Astrophysics and Cosmology, Stanford University, SLAC Nat. Acc. Lab., Menlo Park, CA 94025, USA 8School of Physics and Astronomy, Cardiff University, 5 The Parade, Cardiff CF24 3AA, UK 9Institut fur¨ Computergestutzte¨ Wissenschaften, Universitat¨ Zurich,¨ Winterthurerstrasse 190, CH-8057 Zurich,¨ Switzerland 10Department of Astrophysical Sciences, Princeton University, 4 Ivy Ln, Princeton, NJ 08544, USA 11Department of Astronomy, Columbia University, 550 West 120th Street, New York, NY 10027, USA Accepted 2015 January 28. Received 2015 January 21; in original form 2014 October 31 ABSTRACT We use hydrodynamical simulations in a (256 pc)3 periodic box to model the impact of supernova (SN) explosions on the multiphase interstellar medium (ISM) for initial densities n = 0.5–30 cm−3 and SN rates 1–720 Myr−1.
    [Show full text]
  • Evolution Off the Main Sequence: Supernovae
    Evolution off the main sequence: Supernovae March 16, 2020 1 Supernova observations Only a three supernovae have been observed within the Milky way galaxy and five anywhere before the use of telescopes: 1. HB9 was marked on star charts from India about 5000 years ago. 2. SN 185 was viewed by Chinese astronomers in 185 CE 3. On about April 30, 1006 a magnitude −9 star suddenly appeared in the constellation Lupus , bright enough to be seen in daytime and to read by at night. It was reported by astrologers in Europe, the Middle East, and Asia. 4. July 4, 1054, Yang Wei-T’e documented a “guest star” in Taurus, which gradually became invisible after a year. It was also observed in Japan, Korea and Arabia. It was also visible in daylight. This supernova is the source of the Crab nebula (Crab supernova remnant). (Milky Way) 5. Tycho Brahe recorded a supernova in 1572. (Tycho’s supernova) (Milky Way) 6. Johannes Kepler (Tycho Brahe’s student) recorded a supernova in 1604. (Kepler’s supernova) (Milky Way) The closest supernova since Kepler’s supernova occured in the Large Magellenic Cloud in 1987. (SN 1987A) 2 Types of supernovae Supernovae fall into two (or four) distince classes: • Thermal runaway – Thermal runaway happens either when a white dwarf star accumulates enough matter to reignite, or two white dwarf stars collide. In either case, the reignition disrupts the star, leading to a supernova explosion and a collapsed core. • Core collapse – Direct core collapse occurs as the end state of large stars. NASA clip on supernova formation Supernovae
    [Show full text]