Direct Measure of Radiative and Dynamical Properties of An

Total Page:16

File Type:pdf, Size:1020Kb

Direct Measure of Radiative and Dynamical Properties of An Draft version April 10, 2018 A Preprint typeset using LTEX style emulateapj v. 01/23/15 DIRECT MEASURE OF RADIATIVE AND DYNAMICAL PROPERTIES OF AN EXOPLANET ATMOSPHERE Julien de Wit1, Nikole K. Lewis2, Jonathan Langton3, Gregory Laughlin4, Drake Deming5, Konstantin Batygin6, Jonathan J. Fortney4 Draft version April 10, 2018 ABSTRACT Two decades after the discovery of 51 Peg b, the formation processes and atmospheres of short-period gas giants remain poorly understood. Observations of eccentric systems provide key insights on those topics as they can illuminate how a planet’s atmosphere responds to changes in incident flux. We report here the analysis of multi-day multi-channel photometry of the eccentric (e ∼ 0.93) hot Jupiter HD 80606 b obtained with the Spitzer Space Telescope. The planet’s extreme eccentricity combined with the long coverage and exquisite precision of new periastron-passage observations allow us to break the degeneracy between the radiative and dynamical timescales of HD 80606 b’s atmosphere and constrain its global thermal response. Our analysis reveals that the atmospheric layers probed heat rapidly (∼ 4-hr radiative timescale) from < 500K to 1400K as they absorb ∼ 20% of the incoming +85 stellar flux during the periastron passage, while the planet’s rotation period is 93−35 hours, which exceeds the predicted pseudo-synchronous period (40 hours). Keywords: planet-star interactions, planets and satellites: atmospheres, planets and satellites: dynam- ical evolution and stability, planets and satellites: individual: HD 80606 b, techniques: photometric, methods: numerical 1. INTRODUCTION As the planet’s orbital period decreases, the Kozai os- The discovery of 51 Peg b (Mayor & Queloz 1995), the cillations are damped by general relativistic precession first extrasolar planet orbiting a sun-like star, was an and other effects of comparable magnitude, marooning epoch-making event. The now-famous 51 Peg b, which the planet on an inclined, gradually circularizing orbit. When orbital circularization is complete, the end prod- has P = 4.23 d and M sin(i)=0.47MJup, rapidly be- came the prototype hot Jupiter—gas giants on short- uct is a hot Jupiter in an orbit that is misaligned with period orbits. In the past two decades, a substantial the equator of the parent star. number of such planets have been observed and stud- The HD 80606 system (Naefetal. 2001; ied along their orbits (Charbonneau et al. 2002, 2005; Laughlin et al. 2009; Moutou et al. 2009), with its Deming et al. 2005; Knutson et al. 2007). The existence V=8.93 G5V primary and M=3.94 MJup gas giant of hot Jupiters challenged standard planetary system for- planet, appears to be an excellent example of a planet mation and evolution theories developed in the context embarking on the final circularizing phase of the KCTF of our own solar system. process. The external solar-type binary perturbing star, HD 80607, is plainly visible at a projected sep- The mechanism of Kozai cycles with tidal fric- ∼ tion, or KCTF (Eggleton & Kiseleva-Eggleton 2001; aration of 1000 AU. The planet HD 80606 b, with a P =111.43637d orbit, has an extremely high orbital Wu & Murray 2003; Fabrycky & Tremaine 2007), is an ◦ ± ◦ attractive process to explain the current orbits of many eccentricity (e = 0.93366) and a λ = 42 8 sky- of the known hot Jupiters. KCTF occur when a dis- projected misalignment between the orbital and stellar tant, sufficiently inclined stellar binary or planetary spin angular momentum vectors (Moutou et al. 2009; companion forces a planet on an initially long-period Winn et al. 2009), and experiences strong, episodic radiative and tidal forcing as a result of periastron arXiv:1606.01105v1 [astro-ph.EP] 3 Jun 2016 low-eccentricity (e < 0.1) orbit to experience periodic episodes of very high eccentricity (e > 0.5), a process encounters that sweep the planet a mere 6R⊙ from the known as Kozai cycling (Kozai 1962; Lidov 1962). Dur- stellar surface (the geometry of the system is indicated ing a planet’s closest approach to its host star, periastron in Figure 1). passage, tidal dissipation converts orbital energy into Weather variations in the atmosphere of HD 80606 b heat, thereby decreasing the planet’s semi-major axis. are naturally expected to be extreme. The flux received by the planet intensifies by a factor f = ((1 + e)/(1 − e))2 = 850 between apoastron and periastron, with the 1 Department of Earth, Atmospheric and Planetary Sciences, MIT, 77 Massachusetts Avenue, Cambridge, MA 02139, USA major fraction of this increase coming during the 24-hour 2 Space Telescope Science Institute, 3700 San Martin Drive, period prior to the periastron passage. The large, impul- Baltimore, MD 21218, USA 3 sive deposition of energy into the planetary atmosphere Department of Physics, Principia College, Elsah, IL 62028, (equivalent to ∼1000x the energy delivered to Jupiter by USA 4 Department of Astronomy and Astrophysics, University of the Shoemaker-Levy impacts) drives a global tempera- California, Santa Cruz, CA 95064, USA ture increase that we have observed with Spitzer Space 5 Department of Astronomy, University of Maryland at Col- Telescope’s IRAC detector (Werner et al. 2004). lege Park, College Park, MD 20742, USA 6 Division of Geological and Planetary Sciences, California In- stitute of Technology, Pasadena, CA 91125, USA 2. OBSERVATIONS AND DATA REDUCTION 2 de Wit et al. Using the 4.5-µm channel of the IRAC detector in sub- for these instrumental systematics using standard tech- array (32×32 pixel) mode, we obtained a series of 676,000 niques described below allowing us to reach photometric photometric measurements of HD 80606 in two successive precisions of 55 and 100 ppm per 1-hr bin at 4.5 and blocks of 50 and 30 hrs starting on UT Jan 06 2010 and 8 µm, respectively. The resulting 0.1% flux variation of ending on Jan 09 2010, with a 0.4 sec exposure time. the system during the course of the observations is shown The first block started 34 hours before the periastron in Figure 2. passage at HJD 2455204.91. The second block started We analyze HD 80606’s photometry using a method after a three-hour interruption for data transfer follow- previously introduced in the literature (de Wit et al. ing the acquisition of the first block. In addition, we have 2012; de Wit 2015). The method is implemented as an re-analyzed a separate (shorter) set of photometric mea- adaptive Markov Chain Monte Carlo (MCMC) (Gregory surements obtained in 2007 using Spitzer’s 8-µm channel 2005; Ford 2006) algorithm, allowing us to stochastically (Laughlin et al. 2009). sample the posterior probability distribution for our cho- sen model, providing an estimate of the best-fit model 2.1. Spitzer 4.5-µm Photometry parameters, their uncertainties, and any covariances be- We calculate the time at mid-exposure for each image tween parameters. We update the method to include the from time stamps stored in the FITS header. For each transient heating of the planet’s atmosphere due to its FITS file, we determine the background level of each of eccentric orbit. the 64 subarray images from the pixels located outside a 3.1. Nominal Model 10 pixel radius, excluding any flagged hot,bright or pe- ripheral pixels. Using a histogram of the measured back- We use a simple energy-conserving model of the ground pixel values we discard the 3σ outliers from the planet’s global atmospheric response to estimate the at- background pixels. We estimate the background value mospheric properties of HD 80606 b by fitting the time based on the median of the undiscarded background pix- series data. The model assumes that the photometry els. We then subtract this background value from each is unaffected by any advective hydrodynamical response, image. From the background subtracted image, we de- and that the planet has a uniform global temperature, T0, termine the stellar centroid based on a flux-weighted cen- 50 hrs prior to its periastron passage, which is consistent troid method using a circular aperture with a radius of with predictions from global circulation models for exo- 4 pixels (Knutson et al. 2008; Lewis et al. 2013). We es- planets on high eccentricity orbits (Langton & Laughlin timate the stellar flux from each background subtracted 2008; Kataria et al. 2013; Lewis et al. 2014). For both image using a circular aperture centered on the estimated the 4.5-µm and the 8-µm channels, at each point on a position of the star. We optimize our choice of aperture planetary latitude (θ) longitude (φ) grid, and at each individually for each AOR looking both at the white and time stamp, we compute the rate of temperature change red noise contributions for time-varying and fixed aper- T˙ using tures (Knutson et al. 2012; Lewis et al. 2013). We find ˙ 4 − 4 T = γT (Teq T ), (1) that for all the AORs time-varying apertures equal to the square root of the noise pixel parameter β˜ with a con- where γT is a parameter related to the radiative response stant offset minimize the scatter and the relative amount rate and Teq(t,φ,θ) is the temporally- and spatially- of red noise in the final time series and have an average varying equilibrium temperature of the atmosphere. aperture of 1.8 pixels. Specifically, we take Finally, we remove outliers from our final time series 4 L∗ 4 sets using 4 σ moving filters with widths of 64, 1000, Teq = f 2 cos α + T0 . (2) 2000, and 4000 on the photometry and the centroid po- 4πσr sition. The use of multiple large filters allow us to re- In the above equation, the instantaneous star-planet move pointing excursions with longer (∼ 1 minute) du- distance, r, is r = a(1 − e cos E), where a is the semi- rations, such as those due to micrometeorite impacts on major axis and E is the eccentric anomaly, which is re- the spacecraft.
Recommended publications
  • Predicting Exoplanet Observability in Time, Contrast, Separation, and Polarization, in Scattered Light
    A&A 578, A59 (2015) Astronomy DOI: 10.1051/0004-6361/201424202 & c ESO 2015 Astrophysics Predicting exoplanet observability in time, contrast, separation, and polarization, in scattered light Guillaume Schworer1;2 and Peter G. Tuthill2 1 LESIA, Observatoire de Paris, CNRS/UMR 8109, UPMC, Université Paris Diderot, 5 place J. Janssen, 92195 Meudon, France e-mail: [email protected] 2 Sydney Institute for Astronomy (SIfA), School of Physics, The University of Sydney, NSW 2006, Australia Received 14 May 2014 / Accepted 14 March 2015 ABSTRACT Context. Polarimetry is one of the keys to enhanced direct imaging of exoplanets. Not only does it deliver a differential observable pro- viding extra contrast, but when coupled with spectroscopy, it also reveals valuable information on the exoplanetary atmospheric com- position. Nevertheless, angular separation and contrast ratio to the host-star make for extremely challenging observation. Producing detailed predictions for exactly how the expected signals should appear is of critical importance for the designs and observational strategies of tomorrow’s telescopes. Aims. We aim at accurately determining the magnitudes and evolution of the main observational signatures for imaging an exoplanet: separation, contrast ratio to the host-star and polarization as a function of the orbital geometry and the reflectance parameters of the exoplanet. Methods. These parameters were used to construct a polarized-reflectance model based on the input of orbital parameters and two albedo values. The model is able to calculate a variety of observational predictions for exoplanets at any orbital time. Results. The inter-dependency of the three main observational criteria – angular separation, contrast ratio, polarization – result in a complex time-evolution of the system.
    [Show full text]
  • University of California Santa Cruz
    UNIVERSITY OF CALIFORNIA SANTA CRUZ BENEATH THE SURFACE OF GIANT PLANETS: EVOLUTION, STRUCTURE, AND COMPOSITION A dissertation submitted in partial satisfaction of the requirements for the degree of DOCTOR OF PHILOSOPHY in ASTRONOMY AND ASTROPHYSICS by Neil L Kelly Miller March 2013 The Dissertation of Neil L Kelly Miller is approved: Jonathan Fortney, Chair Professor D. Lin Professor P. Garaud Professor P. Bodenheimer Tyrus Miller Vice Provost and Dean of Graduate Studies Copyright c by Neil L Kelly Miller 2013 Table of Contents List of Figures v List of Tables xii Abstract xiii Dedication xv Acknowledgments xvi 1 Introduction 1 1.1 TheSolarSystemGiantPlanets . 3 1.2 FromIndividualSystemstoSamples . 4 1.3 Physical Processes in the Evolution of Giant Planets . ........ 8 2 Coupled Thermal and Tidal Evolution of Giant Expolanets 14 2.1 Abstract.................................... 14 2.2 Introduction.................................. 15 2.3 Model:Introduction ............................. 21 2.4 Model:Implementation ........................... 23 2.5 GeneralExamples .............................. 29 2.6 Results..................................... 37 2.6.1 SpecificSystems ........................... 37 2.6.2 SummaryforSuite .......................... 47 ′ 2.6.3 High Qs cases............................. 56 2.7 Discussion&Conclusions . 59 3 Applications of Giant Planet Thermal Evolution Model 74 3.1 Introduction.................................. 74 3.2 CoRoT-2b: Young Planet With Potentially Tidally Inflated Radius . 75 3.3 CoRoT-7b: Potential Evaporative Mass Loss Scenario . ....... 78 3.3.1 EvaporativeMassLossModel. 80 iii 3.3.2 PlanetEvolution ........................... 82 3.4 Kepler11 ................................... 82 3.4.1 Formation and Compositions of Kepler 11 Planets . 82 4 Measuring the Heavy Element Composition of Giant Exoplanets with Lower Irradiation 86 4.1 Abstract.................................... 86 4.2 Introduction.................................. 87 4.3 ModelandMethod.............................
    [Show full text]
  • Transit Timing Analysis of the Hot Jupiters WASP-43B and WASP-46B and the Super Earth Gj1214b
    Transit timing analysis of the hot Jupiters WASP-43b and WASP-46b and the super Earth GJ1214b Mathias Polfliet Promotors: Michaël Gillon, Maarten Baes 1 Abstract Transit timing analysis is proving to be a promising method to detect new planetary partners in systems which already have known transiting planets, particularly in the orbital resonances of the system. In these resonances we might be able to detect Earth-mass objects well below the current detection and even theoretical (due to stellar variability) thresholds of the radial velocity method. We present four new transits for WASP-46b, four new transits for WASP-43b and eight new transits for GJ1214b observed with the robotic telescope TRAPPIST located at ESO La Silla Observatory, Chile. Modelling the data was done using several Markov Chain Monte Carlo (MCMC) simulations of the new transits with old data and a collection of transit timings for GJ1214b from published papers. For the hot Jupiters this lead to a general increase in accuracy for the physical parameters of the system (for the mass and period we found: 2.034±0.052 MJup and 0.81347460±0.00000048 days and 2.03±0.13 MJup and 1.4303723±0.0000011 days for WASP-43b and WASP-46b respectively). For GJ1214b this was not the case given the limited photometric precision of TRAPPIST. The additional timings however allowed us to constrain the period to 1.580404695±0.000000084 days and the RMS of the TTVs to 16 seconds. We investigated given systems for Transit Timing Variations (TTVs) and variations in the other transit parameters and found no significant (3sv) deviations.
    [Show full text]
  • Direct Measure of Radiative and Dynamical Properties of an Exoplanet Atmosphere
    DIRECT MEASURE OF RADIATIVE AND DYNAMICAL PROPERTIES OF AN EXOPLANET ATMOSPHERE The MIT Faculty has made this article openly available. Please share how this access benefits you. Your story matters. Citation Wit, Julien de, et al. “DIRECT MEASURE OF RADIATIVE AND DYNAMICAL PROPERTIES OF AN EXOPLANET ATMOSPHERE.” The Astrophysical Journal, vol. 820, no. 2, Mar. 2016, p. L33. © 2016 The American Astronomical Society. As Published http://dx.doi.org/10.3847/2041-8205/820/2/L33 Publisher American Astronomical Society Version Final published version Citable link http://hdl.handle.net/1721.1/114269 Terms of Use Article is made available in accordance with the publisher's policy and may be subject to US copyright law. Please refer to the publisher's site for terms of use. The Astrophysical Journal Letters, 820:L33 (6pp), 2016 April 1 doi:10.3847/2041-8205/820/2/L33 © 2016. The American Astronomical Society. All rights reserved. DIRECT MEASURE OF RADIATIVE AND DYNAMICAL PROPERTIES OF AN EXOPLANET ATMOSPHERE Julien de Wit1, Nikole K. Lewis2, Jonathan Langton3, Gregory Laughlin4, Drake Deming5, Konstantin Batygin6, and Jonathan J. Fortney4 1 Department of Earth, Atmospheric and Planetary Sciences, MIT, 77 Massachusetts Avenue, Cambridge, MA 02139, USA 2 Space Telescope Science Institute, 3700 San Martin Drive, Baltimore, MD 21218, USA 3 Department of Physics, Principia College, Elsah, IL 62028, USA 4 Department of Astronomy and Astrophysics, University of California, Santa Cruz, CA 95064, USA 5 Department of Astronomy, University of Maryland at College Park, College Park, MD 20742, USA 6 Division of Geological and Planetary Sciences, California Institute of Technology, Pasadena, CA 91125, USA Received 2016 January 28; accepted 2016 February 18; published 2016 March 28 ABSTRACT Two decades after the discovery of 51Pegb, the formation processes and atmospheres of short-period gas giants remain poorly understood.
    [Show full text]
  • ON the INCLINATION DEPENDENCE of EXOPLANET PHASE SIGNATURES Stephen R
    The Astrophysical Journal, 729:74 (6pp), 2011 March 1 doi:10.1088/0004-637X/729/1/74 C 2011. The American Astronomical Society. All rights reserved. Printed in the U.S.A. ON THE INCLINATION DEPENDENCE OF EXOPLANET PHASE SIGNATURES Stephen R. Kane and Dawn M. Gelino NASA Exoplanet Science Institute, Caltech, MS 100-22, 770 South Wilson Avenue, Pasadena, CA 91125, USA; [email protected] Received 2011 December 2; accepted 2011 January 5; published 2011 February 10 ABSTRACT Improved photometric sensitivity from space-based telescopes has enabled the detection of phase variations for a small sample of hot Jupiters. However, exoplanets in highly eccentric orbits present unique opportunities to study the effects of drastically changing incident flux on the upper atmospheres of giant planets. Here we expand upon previous studies of phase functions for these planets at optical wavelengths by investigating the effects of orbital inclination on the flux ratio as it interacts with the other effects induced by orbital eccentricity. We determine optimal orbital inclinations for maximum flux ratios and combine these calculations with those of projected separation for application to coronagraphic observations. These are applied to several of the known exoplanets which may serve as potential targets in current and future coronagraph experiments. Key words: planetary systems – techniques: photometric 1. INTRODUCTION and inclination for a given eccentricity. We further calculate projected separations at apastron as a function of inclination The changing phases of an exoplanet as it orbits the host star and determine their correspondence with maximum flux ratio have long been considered as a means for their detection and locations.
    [Show full text]
  • Detailed Chemical Compositions of the Wide Binary HD 80606/80607: Revised Stellar Properties and Constraints on Planet Formation?,?? F
    A&A 614, A138 (2018) Astronomy https://doi.org/10.1051/0004-6361/201832701 & c ESO 2018 Astrophysics Detailed chemical compositions of the wide binary HD 80606/80607: revised stellar properties and constraints on planet formation?;?? F. Liu1, D. Yong2, M. Asplund2, S. Feltzing1, A. J. Mustill1, J. Meléndez3, I. Ramírez4, and J. Lin2 1 Lund Observatory, Department of Astronomy and Theoretical physics, Lund University, Box 43, 22100 Lund, Sweden e-mail: [email protected] 2 Research School of Astronomy and Astrophysics, Australian National University, Canberra, ACT 2611, Australia 3 Departamento de Astronomia do IAG/USP, Universidade de São Paulo, Rua do Matão 1226, São Paulo 05508-900, SP, Brazil 4 Tacoma Community College, 6501 S. 19th Street, Tacoma, WA 98466, USA Received 25 January 2018 / Accepted 25 February 2018 ABSTRACT Differences in the elemental abundances of planet-hosting stars in binary systems can give important clues and constraints about planet formation and evolution. In this study we performed a high-precision, differential elemental abundance analysis of a wide binary system, HD 80606/80607, based on high-resolution spectra with high signal-to-noise ratio obtained with Keck/HIRES. HD 80606 is known to host a giant planet with the mass of four Jupiters, but no planet has been detected around HD 80607 so far. We determined stellar parameters as well as abundances for 23 elements for these two stars with extremely high precision. Our main results are that (i) we confirmed that the two components share very similar chemical compositions, but HD 80606 is marginally more metal-rich than HD 80607, with an average difference of +0.013 ± 0.002 dex (σ = 0.009 dex); and (ii) there is no obvious trend between abundance differences and condensation temperature.
    [Show full text]
  • Planets Galore
    physicsworld.com Feature: Exoplanets Detlev van Ravenswaay/Science Photo Library Planets galore With almost 1700 planets beyond our solar system having been discovered, climatologists are beginning to sketch out what these alien worlds might look like, as David Appell reports And so you must confess Jupiters, black Jupiters or puffy Jupiters; there are David Appell is a That sky and earth and sun and all that comes to be hot Neptunes and mini-Neptunes; exo-Earths, science writer living Are not unique but rather countless examples of a super-Earths and eyeball Earths. There are planets in Salem, Oregon, class. that orbit pulsars, or dim red dwarf stars, or binary US, www. Lucretius, Roman poet and philosopher, from star systems. davidappell.com De Rerum Natura, Book II Astronomers are in heaven and planetary scien- tists have an entirely new zoo to explore. “This is the The only thing more astonishing than their diver- best time to be an exoplanetary astronomer,” says sity is their number. We’re talking exoplanets exoplanetary astronomer Jason Wright of Pennsyl- – planets around stars other than our Sun. And vania State University. “Things have really exploded they’re being discovered in Star Trek quantities: recently.” Proving the point is that a third of all 1692 as this article goes to press, and another 3845 abstracts at a recent meeting of the American Astro- unconfirmed candidates. nomical Society were related to exoplanets. The menagerie includes planets that are pink, This explosion is largely thanks to the Kepler space blue, brown or black. Some have been labelled hot observatory.
    [Show full text]
  • ASTR 101 Lecture
    Welcome back! from one version of the Olympics … Welcome back! from one version of the Olympics … Welcome back! from one version of the Olympics … Welcome back! Passing the torch … Welcome back! Olympic flame … to another I seek to light Welcome back! … to another Olympic flame I seek to light 1 MAR – 14 APR Welcome back! … to another Cross-country skiing on Mars Baseball on the Moon 1 MAR – 14 APR Own the podium (humbly)! Own the Assignment podium! My pencil floated away I gave 110% but my mark was only 99.99% because I wasn’t allowed to move my pencil faster than the speed of light! Pencil?!? Albert COLD, LASER-TRAPPED ATOMS: The “other” energy frontier in particle physics the Rosetta Stone Trapped atoms could be a “Rosetta Stone” for many aspects of modern physics. Theorists can now dream of using ultracold matter (left) to model physical systems ranging from black holes to globular star clusters (middle). With the help of a few lasers, a cloud of ultracold atoms could even be made to simulate gravity. Welcome back! Here’s visual proof of the Pauli Exclusion Principle Welcome back! Here’s visual proof of the Pauli Exclusion Principle Two stable isotopes of lithium (Li 7, a boson, and Li 6, a fermion) are trapped in the same cloud at temperatures approaching absolute zero Welcome back! Here’s visual proof of the Pauli Exclusion Principle Two stable isotopes of lithium (Li 7, a boson, and Li 6, a fermion) are trapped in the same cloud at temperatures approaching absolute zero The fermions are kept from getting any closer together since
    [Show full text]
  • Exploring Extrasolar Worlds Today and Tomorrow
    Pathways Towards Habitable Planets ASP Conference Series, Vol. 430, 2010 Vincent Coud´e du Foresto, Dawn M. Gelino, and Ignasi Ribas, eds. Exploring Extrasolar Worlds Today and Tomorrow G. Tinetti1 and C. A. Griffith2 1Department of Physics and Astronomy, University College London, London WC1E 6BT, UK 2Lunar and Planetary Laboratory, University of Arizona, Tucson, Arizona, US Abstract. More than 440 extrasolar planets have been found since the dis- covery of 51 Peg b by Mayor & Queloz (1995). The traditional field of plan- etology has thus expanded its frontiers to include planetary environments not represented in our Solar System. We expect that in the next five years space missions (CoRoT, Kepler, and GAIA) or ground-based detection techniques will both increase exponentially the number of new planets discovered and lower the present limit of a ∼1.9 Earth-mass object (Mayor et al. 2009). While the search for an Earth-twin orbiting a Sun-twin has been one of the major goals pursued by the exoplanet community in the past years, the possibility of sounding the at- mospheric composition and structure of an increasing sample of exoplanets with current telescopes has opened new opportunities, unthinkable just a few years ago. As a result, it is possible now not only to determine the orbital charac- teristics of the new bodies, but moreover to study the exotic environments that lie tens of parsecs away from us. The analysis of the starlight not intercepted by the thin atmospheric limb of its planetary companion (transit spectroscopy), or of the light emitted/reflected by the exoplanet itself, will guide our under- standing of the atmospheres and the surfaces of these extrasolar worlds in the next few years.
    [Show full text]
  • A Deeper View of the Corot-9 Planetary System. a Small Non-Zero
    Astronomy & Astrophysics manuscript no. Bonomoetal_CoRoT-9 c ESO 2018 August 27, 2018 A deeper view of the CoRoT-9 planetary system A small non-zero eccentricity for CoRoT-9b likely generated by planet-planet scattering A. S. Bonomo1, G. Hébrard2, 3, S. N. Raymond4, F. Bouchy5, A. Lecavelier des Etangs2, P. Bordé4, S. Aigrain6, J.-M. Almenara5, R. Alonso7, 8, J. Cabrera9, Sz. Csizmadia9, C. Damiani10, H. J. Deeg7, 8, M. Deleuil11, R. F. Díaz12, 13, A. Erikson9, M. Fridlund14, 15, D. Gandolfi16, E. Guenther17, T. Guillot18, A. Hatzes17, A. Izidoro19, 4, C. Lovis5, C. Moutou20, 11, M. Ollivier10, 21, M. Pätzold22, H. Rauer9, 23, D. Rouan21, A. Santerne11, and J. Schneider24 (Affiliations can be found after the references) Received 15 February 2017 / Accepted 17 March 2017 ABSTRACT CoRoT-9b is one of the rare long-period (P = 95.3 days) transiting giant planets with a measured mass known to date. We present a new analysis of the CoRoT-9 system based on five years of radial-velocity (RV) monitoring with HARPS and three new space-based transits observed with CoRoT and Spitzer. Combining our new data with already published measurements we redetermine the CoRoT-9 system parameters and find good +0.042 agreement with the published values. We uncover a higher significance for the small but non-zero eccentricity of CoRoT-9b(e = 0.133 0.037) and find no evidence for additional planets in the system. We use simulations of planet-planet scattering to show that the eccentricity of CoRoT-9b− may have been generated by an instability in which a 50 M planet was ejected from the system.
    [Show full text]
  • Is the Activity Level of HD 80606 Influenced by Its Eccentric Planet?
    A&A 592, A143 (2016) Astronomy DOI: 10.1051/0004-6361/201628981 & c ESO 2016 Astrophysics Is the activity level of HD 80606 influenced by its eccentric planet? P. Figueira1, A. Santerne1, A. Suárez Mascareño2, J. Gomes da Silva1, L. Abe3, V. Zh. Adibekyan1, P. Bendjoya3, A. C. M. Correia4; 5, E. Delgado-Mena1, J. P. Faria1; 6, G. Hebrard7; 8, C. Lovis9, M. Oshagh10, J.-P. Rivet3, N. C. Santos1; 6, O. Suarez3, and A. A. Vidotto11 1 Instituto de Astrofísica e Ciências do Espaço, Universidade do Porto, CAUP, Rua das Estrelas, 4150-762 Porto, Portugal e-mail: [email protected] 2 Instituto de Astrofísica de Canarias, 38205 La Laguna, Tenerife, Spain 3 Laboratoire J.-L. Lagrange, Université de Nice Sophia-Antipolis, CNRS, Observatoire de la Cote d’Azur, 06304 Nice, France 4 CIDMA, Departamento de Física, Universidade de Aveiro, Campus de Santiago, 3810-193 Aveiro, Portugal 5 ASD, IMCCE-CNRS UMR8028, Observatoire de Paris, 77 Av. Denfert-Rochereau, 75014 Paris, France 6 Departamento de Física e Astronomia, Faculdade de Ciências, Universidade do Porto, 4099-002 Porto, Portugal 7 Institut d’Astrophysique de Paris, UMR7095 CNRS, Université Pierre & Marie Curie, 98bis boulevard Arago, 75014 Paris, France 8 Observatoire de Haute-Provence, CNRS, Université d’Aix-Marseille, 04870 Saint-Michel-l’Observatoire, France 9 Observatoire Astronomique de l’Université de Genève, 51 Ch. des Maillettes, – Sauverny – 1290 Versoix, Suisse 10 Institut für Astrophysik, Georg-August-Universität, Friedrich-Hund-Platz 1, 37077 Göttingen, Germany 11 School of Physics, Trinity College Dublin, The University of Dublin, Dublin-2, Ireland Received 23 May 2016 / Accepted 12 June 2016 ABSTRACT Aims.
    [Show full text]
  • Giant Planets
    Architecture and demographics of planetary systems Wednesday, March 6, 2013 Struve (1952) Wednesday, March 6, 2013 The demography of the planets that we detect is strongly affected by • detection methods • psychology of the observer Understanding planet demography requires multiple detection methods: • radial velocities • transits • gravitational lensing • direct imaging • astrometry Wednesday, March 6, 2013 Kepler • launch March 6 2009 • 0.95 meter mirror, 100 megapixel camera, 12 degree diameter field of view • monitor ~105 stars continuously over ~6 yr mission • 30 parts per million photometric precision Wednesday, March 6, 2013 fractional brightness dip: Jupiter 0.01 = 1% Earth 0.0001=0.01% Pál et al. (2008) 1% Wednesday, March 6, 2013 Wednesday, March 6, 2013 Wednesday, March 6, 2013 Gravitational lensing image source track the gravitational field from the lensing star: lensing mass Einstein ring - splits image into two - magnifies one image and demagnifies the other - if source, lens and observer are exactly in line the image appears as an Einstein ring currently about 20 planets have been detected by lensing Wednesday, March 6, 2013 Gravitational lensing source track the gravitational field from the lensing star: lensing mass Einstein ring - splits image into two - magnifies one image and demagnifies the other - if source, lens and observer are exactly in line the image appears as an Einstein ring currently about 20 planets have been detected by lensing Wednesday, March 6, 2013 transits radial velocities Wednesday, March 6, 2013 observational
    [Show full text]