Study of Memory Effect in an Atmospheric Pressure Townsend
Total Page:16
File Type:pdf, Size:1020Kb
THÈSE En vue de l’obtention du DOCTORAT DE L’UNIVERSITÉ DE TOULOUSE Délivré par l'Université Toulouse 3 - Paul Sabatier Présentée et soutenue par Xi LIN Le 22 février 2019 Study of memory effect in an Atmospheric Pressure Townsend Discharge in the mixture N2/O2 using laser induced fluorescence Ecole doctorale : GEET - Génie Electrique Electronique et Télécommunications : du système au nanosystème Spécialité : Ingénierie des Plasmas Unité de recherche : LAPLACE - Laboratoire PLAsma et Conversion d'Énergie - CNRS-UPS-INPT Thèse dirigée par Simon DAP et Nicolas GHERARDI Jury Mme Svetlana Starikovskaia, Rapporteuse M. Ronny Brandenburg, Rapporteur Mme Françoise Massines, Examinateur M. Frédéric Marchal, Examinateur M. Philippe Teulet, Examinateur M. Simon DAP, Directeur de thèse Acknowledgement I would like to express my deepest thanks to my supervisor, Simon Dap. He has devoted so much time on teaching and leading me into the world of plasma physics. I am very appreciated for his patience and encouragement, also thanks to his support and rich discussion on physics, I finally achieve my thesis. I would also like to express my thanks to Nicolas Naudé for the fruitful discussions and suggestions on electrical characteristics of discharge, and for his knowledge on electrode fabrication and on OES spectroscopy. Thanks to Nicolas Gherardi for his confidence and support on me. Thanks to Prof. Svetlana M Starikovskaia and Prof. Ronny Brandenburg, for reviewing my thesis. I would also like to extend my gratitude to three other jury members, Prof. Françoise Massines, Prof. Feédéric Marchal and Prof. Philippe Teulet, for being the examiners of my work. I appreciate the assistance and advice from the technicians and engineers of Laplace, Benoît Schlegel, Fédéric Sidor, Vincent Bley, Céline Combettes, Cédric Trupin, and Stéphane Martin. Without your kindly help, I cannot conduct my experiments. I would also thanks to Richard Clergereaux and Freddy Gaboriau, for their support during the experiments. I wish to thank my labmates, Rémi Berard, Christophère Laurent, Mathias Rojo, Luice Brès, Inès Martinko, Marvine Soumbo, Jacopo Profili, and Morgane Laurent, for their support and enthusiasm. Especially, thanks to Clémence Tyl, for her valuable information on simulation of discharge characteristics. And thanks to all of MPP group for your kindness and the surprise birthday celebration in 2017. With a special mention to Shuangshuang, Yuchao, Jingjing in general, it is very delighted to have you in the laboratory. And my two best friends Hui and Shengyue, thanks so much for your company during the nearly four years’ life in Toulouse, without you, I would miss much happiness. Thanks to my boyfriend Yifei. His knowledge of plasma simulation and kinetics helps me a lot, the discussion on plasma is an interesting topic linking us. Finally, I would like to thank my beloved parents and grandparents for their infinite and firm support and love throughout my life, and especially nearly seven years’ life far from home. Contents CONTENTS ........................................................................................................................ 1 GENERAL INTRODUCTION ................................................................................................. 5 CHAPTER 1. LITERATURE REVIEW AND CONTEXT OF THIS WORK .................................. 7 I. GENERATION OF HOMOGENEOUS DISCHARGES AT ATMOSPHERIC PRESSURE AND BREAKDOWN MECHANISMS .................................................................................................................... 7 I.1. Two main kinds of breakdown mechanism ......................................................................... 8 I.1.1. Townsend breakdown ................................................................................................. 8 I.1.2. Streamer breakdown ................................................................................................... 9 II. GENERATION OF A NON-THERMAL PLASMA AT ATMOSPHERIC PRESSURE ................................... 10 II.1. Decreasing the value of 푝 × 푑 ........................................................................................... 10 II.2. Generation of a corona discharge ..................................................................................... 10 II.3. Dielectric barrier discharges .............................................................................................. 11 III. GENERATION OF A HOMOGENEOUS DBD AT ATMOSPHERIC PRESSURE .................................. 12 III.1. Different kind of homogenous DBD .................................................................................. 12 III.2. Atmospheric pressure glow discharge (APGD) .................................................................. 13 III.2.1. Basic features of APGD .............................................................................................. 13 III.2.2. Memory effect in APGD ............................................................................................. 14 III.3. Atmospheric pressure Townsend discharge (APTD) ......................................................... 14 III.3.1. Basic features of APTD .............................................................................................. 14 III.3.2. Memory effect in APTD ............................................................................................. 16 CHAPTER 2. EXPERIMENTAL SET-UP ........................................................................... 25 I. PLASMA VESSEL AND PUMPING SYSTEM ........................................................................... 25 I.1. Discharge cell and power supply ....................................................................................... 25 I.1.1. Discharge cell ............................................................................................................. 25 I.1.2. Power supply ............................................................................................................. 27 I.2. Determination of the electrical characteristics of the discharge ...................................... 27 I.2.1. Calculation of the gas gap voltage and the discharge current .................................. 27 I.2.2. Definition and calculation of the discharge power and of the energy dissipated in the discharge ............................................................................................................................. 28 II. GENERAL CONSIDERATIONS ABOUT LASER INDUCED FLUORESCENCE ......................................... 30 II.1. Principle of laser induced fluorescence ............................................................................. 30 II.1.1. Fluorescence spectroscopy with single-photon excitation (LIF) ............................... 30 II.1.2. Fluorescence spectroscopy with two-photon excitation (TALIF) .............................. 30 II.2. Theoretical approach......................................................................................................... 31 II.2.1. Measurements at low laser energy ........................................................................... 32 II.2.2. Measurements at high laser energy .......................................................................... 33 II.2.3. TALIF signal ................................................................................................................ 33 II.2.4. Determination of the LIF/TALIF regime ..................................................................... 34 II.2.5. Measuring the LIF/TALIF signal .................................................................................. 34 II.3. Calibration method: obtaining absolute densities ............................................................ 36 II.3.1. Calibration of LIF measurements on NO(X) ............................................................... 36 1 II.3.2. Calibration of TALIF measurements on N(4S) and O(3P) ............................................ 36 III. LIF/TALIF SETUP .................................................................................................. 38 III.1. Laser system ...................................................................................................................... 38 3 4 6 1 III.1.1. Configuration for measurement of N (2p S3/2) and Kr (4p S0) .............................. 41 4 3 6 1 III.1.2. Configuration for measurement of O (2p PJ) and Xe (5p S0) ................................ 42 III.1.3. Configuration for measurement of NO ..................................................................... 44 III.2. Acquisition system and boxcar averager ........................................................................... 44 III.3. Verification of the operation mode of photomultiplier tube ............................................ 45 IV. SYNCHRONIZATION OF THE LASER PULSE, DISCHARGE AND BOXCAR ...................................... 45 V. MEASUREMENT PROCEDURE ......................................................................................... 46 3 4 CHAPTER 3. TALIF MEASUREMENTS OF ATOMIC NITROGEN N (2P S3/2) DENSITY ....... 47 I. VALIDATION OF TALIF MEASUREMENTS, CALIBRATION PROCEDURE AND EXPERIMENTAL ERRORS .... 47 I.1. Validation of TALIF measurements ................................................................................... 47 I.2. Calibration procedure........................................................................................................ 49 I.3. Influence of the gas temperature.....................................................................................