Simulation of Magnetically Confined Inductively Coupled Plasma" (2017)

Total Page:16

File Type:pdf, Size:1020Kb

Simulation of Magnetically Confined Inductively Coupled Plasma South Dakota State University Open PRAIRIE: Open Public Research Access Institutional Repository and Information Exchange Theses and Dissertations 2017 Simulation of Magnetically Confined nducI tively Coupled Plasma Sina Javadpour South Dakota State University Follow this and additional works at: http://openprairie.sdstate.edu/etd Part of the Electrical and Computer Engineering Commons, Mechanical Engineering Commons, and the Physics Commons Recommended Citation Javadpour, Sina, "Simulation of Magnetically Confined Inductively Coupled Plasma" (2017). Theses and Dissertations. 1147. http://openprairie.sdstate.edu/etd/1147 This Thesis - Open Access is brought to you for free and open access by Open PRAIRIE: Open Public Research Access Institutional Repository and Information Exchange. It has been accepted for inclusion in Theses and Dissertations by an authorized administrator of Open PRAIRIE: Open Public Research Access Institutional Repository and Information Exchange. For more information, please contact [email protected]. SIMULATION OF MAGNETICALLY CONFINED INDUCTIVELY COUPLED PLASMA BY SINA JAVADPOUR A thesis submitted in partial fulfillment of the requirements for the Master of Science Major in Mechanical Engineering South Dakota State University 2017 iii ACKNOWLEDGEMENTS I would like to thank Dr. Delfanian, Director of METLAB, for his help and support throughout my 2.5 years at SDSU and Dr. Hu, for giving me the chance to get acquainted with Dr. Delfanian and Dr. Fan and his supervision. My sincere gratitude goes to Dr. Fan for introducing material processing plasma to me and trusting me with this research project. Furthermore, I am greatly in debt of Dr. Letcher for involving me in various research projects and Ms. Jane Boggs, Secretary of ME Department, for helping me get acquainted with Dr. Hu and Dr. Delfanian and receive the graduate research assistantship, which made it possible for me to attend SDSU to study for my master’s degree. This research was supported by the National Science Foundation under awards #1462389 and #1536209. Also acknowledged are South Dakota State University and Fraunhofer USA Center for Coatings and Diamond Technologies. iv CONTENTS ABBREVIATIONS………………………..…………………………………..…….…....v LIST OF FIGURES………………………..…………………………….…..…….…….vii LIST OF TABLES………………………..…………………………………..…….….....ix ABSTRACT………………………………..………………………………….…….….....x INTRODUCTION……….………………………………………………………………..1 MATERIALS AND METHODS……………………………………………………….....6 RESULTS AND DISCUSSIONS………………………………………………………..16 CONCLUSION………..…………………………………………………………………27 LITERATURE CITED………………………………………………………….……….28 v ABBREVIATIONS K Kelvin A Ampere V Volt Ω Ohm 2D 2 Dimensional 3D 3 Dimensional mm millimeter cm centimeter eV Electron Volt RF Radio Frequency CCP Capacitively Coupled Plasma ICP Inductively Coupled Plasma EEDF Electron Energy Distribution Function mTorr Milli Torr Rad Radian S Simens vi F Farad Hz Hertz N Newton C Coulomb T Tesla s Second PVD Physical Vapor Deposition EBPVD Electron Beam Physical Vapor Deposition CVD Chemical Vapor Deposition HDPCVD High Density Plasma Chemical Vapor Deposition PECVD Plasma Enhanced Chemical Vapor Deposition vii LIST OF FIGURES Figure 1. Front, side, and bottom views of the half-toroidal coil…………………………8 Figure 2. Front, side, and top view of the single cylindrical coil…………………………9 Figure 3. 3D view of single cylindrical and half-toroidal coils……………………….…..9 Figure 4. ICP simulation models with single cylindrical and half-toroidal antennas……10 Figure 5. Cut-plane depicted in red, passing through the middle section of the simulation models and used to plot the main plasma variables………………………….…………..16 Figure 6. Electron density cross-section plots for cylindrical and half toroidal coil designs……………………………………………………………………………..……..17 Figure 7. Electron density volume histogram plots for cylindrical and half toroidal coil designs…………………………………………………………………………………....18 Figure 8. Electron temperature cross-section plots for cylindrical and half toroidal coil designs……………………………………………………………………………..……..19 Figure 9. Electron temperature volume histogram plots for cylindrical and half toroidal coil designs………………………………………………………………………….……20 Figure 10. Argon ion density cross-section plots for cylindrical and half toroidal coil designs…………………………………………………………………………………....21 Figure 11. Argon ion density volume histogram plots for cylindrical and half toroidal coil designs……………………………………………………………………………….…...22 viii Figure 12. Excited argon density cross-section plots for cylindrical and half toroidal coil designs…………………………………………………………………………………....23 Figure 13. Excited argon density volume histogram plots for cylindrical and half toroidal coil designs……………………………………………………………………………….24 Figure 14. Electric potential cross-section plots for cylindrical and half toroidal coil designs……………………………………………………………………………….…...25 Figure 15. Electric potential volume histogram plots for cylindrical and half toroidal coil designs…………………………………………………………………………………....26 Figure 16. Magnetic field flux plots for cylindrical and half-toroidal coil designs.……………………………………………………………………………….......27 ix LIST OF TABLES Table 1. Collision processes included in the simulated argon discharge.………………..13 Table 2. Average of main plasma variables over the entire chamber volume…….……..26 x ABSTRACT SIMULATION OF MAGNETICALLY CONFINED INDUCTIVELY COUPLED PLASMA SINA JAVADPOUR 2017 In this work, a new parallel coil design was presented to address the need for high density inductively coupled plasmas with enhanced properties and a more uniform and consistent distribution, suitable for large-area material processing. Fluid model simulations of 3D argon inductively coupled plasma (ICP) were performed in COMSOL for the proposed coil and a conventional single cylindrical coil with the same impedance to be used as reference, to compare and evaluate the performance of this new half- toroidal parallel coil design and study its effects on the main variables of the generated plasma. Through different comparisons of the simulations results, it was shown that using the new half-toroidal coil has the advantage of a higher and more uniform power deposition over the conventional cylindrical coil, resulting in a plasma with enhanced main variables and a more even distribution than those generated by the traditional methods. These improvements in the generated plasma provide a larger effective area to be used for material processing, increasing the efficiency of the system. 1 INTRODUCTION Plasma is basically ionized gas composed of unbound positive and negative charges and is considered as the forth state of matter along with solid, liquid, and gas. Although the charges are unbound, they have interactions with each other and when they move they generate electric currents and magnetic fields, which govern their collective behavior with many degrees of freedom and give properties to plasma unlike the other states of matter. Plasma usually possesses equal positive and negative charge densities and hence is electrically neutral. Moreover, it is electrically conductive and has a strong response to electromagnetic fields. Plasma is the most abundant state of matter in the universe and forms 99.9% of its visible mass, excluding the dark matter. All matter goes to plasma state in temperatures exceeding 10000 K. Because of the unique properties of plasma, it is used for different application, some of which are: lights, displays, thrusters, spray coating, and material processing. Main plasma-assisted processes with material processing application include: 1. Physical Vapor Deposition (PVD) processes, such as Electron Beam Physical Vapor Deposition (EBPVD), Magnetron Sputtering, and Ion Sputtering. 2. Chemical Vapor Deposition (CVD) processes, such as High Density Plasma Chemical Vapor Deposition (HDPCVD) and Plasma Enhanced Chemical Vapor Deposition (PECVD). 3. Plasma Etching, such as Microwave Plasma Etching and Hydrogen Plasma Etching. 4. Plasma Cleaning. and 5. Plasma Torches used for welding and cutting parts. Plasma processes, especially CVD processes, are essential to the fabrication of microelectronics. Also, gold sputtering is often used to ground the sample for Scanning Electron Microscope (SEM) imaging. 2 Plasma is generated by the electric field directly or indirectly induced by an electrode which leads to accelerating the free electrons pre-existing in the neutral gas, making them drift and collide with the neutral atoms of the gas and ionize them. The electrons freed from the neutral atoms of the gas through the process of ionization add to the density of the plasma and lead to more ionizing collisions, through which the plasma would be sustained. The increase in the number of electrons as they drift away from one electrode to the other is known as Townsend Discharge or electron avalanche. After the plasma is sustained in a high density, the interactive species, i.e. neutral radicals, ions, and electrons will be delivered to the material being processed through drift, diffusion, and Lorentz forces to add, remove, or modify it. Industrial plasma for material processing has the following main characteristics: 1. Plasma Density, which is the number of electrons and ions per unit volume and typically in the range of 1014 m-3 to 1021 m-3. 2. Electron and Ion Temperatures (Energies). Higher electron temperatures than ion temperatures are usually desired in material processing. Since electrons have higher energies than ions and the neutral gas in material processing plasmas,
Recommended publications
  • Study of Memory Effect in an Atmospheric Pressure Townsend
    THÈSE En vue de l’obtention du DOCTORAT DE L’UNIVERSITÉ DE TOULOUSE Délivré par l'Université Toulouse 3 - Paul Sabatier Présentée et soutenue par Xi LIN Le 22 février 2019 Study of memory effect in an Atmospheric Pressure Townsend Discharge in the mixture N2/O2 using laser induced fluorescence Ecole doctorale : GEET - Génie Electrique Electronique et Télécommunications : du système au nanosystème Spécialité : Ingénierie des Plasmas Unité de recherche : LAPLACE - Laboratoire PLAsma et Conversion d'Énergie - CNRS-UPS-INPT Thèse dirigée par Simon DAP et Nicolas GHERARDI Jury Mme Svetlana Starikovskaia, Rapporteuse M. Ronny Brandenburg, Rapporteur Mme Françoise Massines, Examinateur M. Frédéric Marchal, Examinateur M. Philippe Teulet, Examinateur M. Simon DAP, Directeur de thèse Acknowledgement I would like to express my deepest thanks to my supervisor, Simon Dap. He has devoted so much time on teaching and leading me into the world of plasma physics. I am very appreciated for his patience and encouragement, also thanks to his support and rich discussion on physics, I finally achieve my thesis. I would also like to express my thanks to Nicolas Naudé for the fruitful discussions and suggestions on electrical characteristics of discharge, and for his knowledge on electrode fabrication and on OES spectroscopy. Thanks to Nicolas Gherardi for his confidence and support on me. Thanks to Prof. Svetlana M Starikovskaia and Prof. Ronny Brandenburg, for reviewing my thesis. I would also like to extend my gratitude to three other jury members, Prof. Françoise Massines, Prof. Feédéric Marchal and Prof. Philippe Teulet, for being the examiners of my work. I appreciate the assistance and advice from the technicians and engineers of Laplace, Benoît Schlegel, Fédéric Sidor, Vincent Bley, Céline Combettes, Cédric Trupin, and Stéphane Martin.
    [Show full text]
  • Experiments and Simulations of an Atmospheric Pressure Lossy Dielectric Barrier Townsend Discharge
    Journal of Physics D: Applied Physics PAPER Related content - Atmospheric pressure glow discharge Experiments and simulations of an atmospheric plasma A A Garamoon and D M El-zeer pressure lossy dielectric barrier Townsend - Diffuse barrier discharges discharge Z Navrátil, R Brandenburg, D Trunec et al. - Nonlinear phenomena in dielectric barrier discharges: pattern, striation and chaos To cite this article: S Im et al 2014 J. Phys. D: Appl. Phys. 47 085202 Jiting OUYANG, Ben LI, Feng HE et al. Recent citations View the article online for updates and enhancements. - Radial structures of atmospheric-pressure glow discharges with multiple current pulses in helium Zhanguo Bai et al This content was downloaded from IP address 128.12.245.233 on 22/09/2020 at 18:06 Journal of Physics D: Applied Physics J. Phys. D: Appl. Phys. 47 (2014) 085202 (10pp) doi:10.1088/0022-3727/47/8/085202 Experiments and simulations of an atmospheric pressure lossy dielectric barrier Townsend discharge S Im, M S Bak1, N Hwang2 and M A Cappelli Mechanical Engineering Department, Stanford University, Stanford, California 94305-3032, USA E-mail: [email protected] Received 25 September 2013, revised 7 January 2014 Accepted for publication 9 January 2014 Published 7 February 2014 Abstract A diffuse discharge is produced in atmospheric pressure air between porous alumina dielectric barriers using low-frequency (60 Hz) alternating current. To study its formation mechanism, both the discharge current and voltage are measured while varying the dielectric barrier porosity (0%, 48% or 85%) and composition (99% Al2O3 ,99% SiO2 or 75% Al2O3 + 16% SiO2 + 9% other oxides).
    [Show full text]
  • Relativistic Runaway Electrons Above Thunderstorms
    Relativistic Runaway Electrons above Thunderstorms Nikolai G. Lehtinen Physics Department STAR Laboratory Stanford University Advisers: Umran S. Inan, EE Department, Timothy F. Bell, EE Department, Roger W. Romani, Physics Department Plan 1. Introduction 2. Monte Carlo model of runaway electron avalanche 3. Fluid model of runaway electrons above thunderstorms 4. Effects of runaway electrons in the conjugate hemisphere Lightning-mesosphere interaction phenomena ~ 2000 cm-3 Electron density Β 100 km THERMOSPHERE Elves 80 km Sprites MESOSPHERE γ-rays 60 km Runaway ~100 MV 40 km E ~ 103 V/m electrons STRATOSPHERE at 40 km Blue Jet 20 km Cameras + + + + + TROPOSPHERE +CG 0 km - --- - γ-ray flash Red Sprites (BATSE observation) 40 Elves 30 20 Sprites 10 Rate (counts/0.1ms) 0 015205 10 1996.204.07.17.38.792 Time (ms) Red Sprites Red Sprites: - altitude range ~50-90 km - lateral extent ~5-10 km - occur ~1-5 ms after +CG discharge - last up to several 10 ms Aircraft view Ground View 90-95 km horizon Space Shuttle View sprite sprite thunderstorm Examples of Terrestrial Gamma Ray Flashes (BATSE Data) Terrestrial Gamma Rays: - time duration ~1 ms - energies 20 keV—2 MeV - hard spectrum (bremsstrahlung) Rate (counts/0.1ms) Rate (counts/0.1ms) Rate (counts/0.1ms) Time (ms) Time (ms) Time (ms) Time (ms) C. T. R. Wilson, 1925 While the electric force due to the thundercloud falls off rapidly, ... the electric force required to cause sparking ... falls off still more rapidly. Thus, ... there will be a height above which the electric force due to the cloud exceeds the sparking limit ..
    [Show full text]
  • Electrical Breakdown in Gases
    High-voltage Pulsed Power Engineering, Fall 2018 Electrical Breakdown in Gases Fall, 2018 Kyoung-Jae Chung Department of Nuclear Engineering Seoul National University Gas breakdown: Paschen’s curves for breakdown voltages in various gases Friedrich Paschen discovered empirically in 1889. Left branch Right branch Paschen minimum F. Paschen, Wied. Ann. 37, 69 (1889)] 2/40 High-voltage Pulsed Power Engineering, Fall 2018 Generation of charged particles: electron impact ionization + Proton Electron + + Electric field Acceleration Electric field Slow electron Fast electron Acceleration Electric field Acceleration Ionization energy of hydrogen: 13.6 eV 3/40 High-voltage Pulsed Power Engineering, Fall 2018 Behavior of an electron before ionization collision Electrons moving in a gas under the action of an electric field are bound to make numerous collisions with the gas molecules. 4/40 High-voltage Pulsed Power Engineering, Fall 2018 Electron impact ionization Electron impact ionization + + Electrons with sufficient energy (> 10 eV) can remove an electron+ from an atom and produce one extra electron and an ion. → 2 5/40 High-voltage Pulsed Power Engineering, Fall 2018 Townsend mechanism: electron avalanche = Townsend ionization coefficient ( ) : electron multiplication : production of electrons per unit length along the electric field (ionization event per unit length) = = exp( ) = = 푒 푒 6/40 High-voltage Pulsed Power Engineering, Fall 2018 Townsend 1st ionization coefficient When an electron travels a distance equal to its free path in the direction of the field , it gains an energy of . For the electron to ionize, its gain in energy should be at least equal to the ionization potential of the gas: 1 1 = ≥ st ∝ The Townsend 1 ionization coefficient is equal to the number of free paths (= 1/ ) times the probability of a free path being more than the ionizing length , 1 1 exp exp ∝ − ∝ − = ⁄ − A and B must be experimentally⁄ determined for different gases.
    [Show full text]
  • Ball Lightning Caused by a Semi-Relativistic Runaway Electron Avalanche
    Journal of Atmospheric and Solar-Terrestrial Physics 120 (2014) 36–40 Contents lists available at ScienceDirect Journal of Atmospheric and Solar-Terrestrial Physics journal homepage: www.elsevier.com/locate/jastp Ball lightning caused by a semi-relativistic runaway electron avalanche Geron S. Paiva a,n, Carlton A. Taft a, Nelson C.C.P. Furtado a, Marcos C. Carvalho a, Eduardo N. Hering a, Marcus Vinícius b, F.L. RonaldoJr.c, Neil M. De la Cruz a a Centro Brasileiro de pesquisas Físicas, Rua Dr. Xavier Sigaud, 150, 22290-180 Rio de Janeiro, Brazil b Departamento de Química Fundamental, Universidade Federal de Pernambuco, 50740-540 Recife, Pernambuco, Brazil c Universidade Católica de Pernambuco, Rua do Principe, 526, 50050-900, Recife, Pernambuco, Brazil article info abstract Article history: Ball lightning (BL) is observed as a luminous sphere in regions of thunderstorm activity. There are many Received 11 June 2013 reports of BL forming in total absence of thunderclouds, associated with earthquakes and volcanoes. In Received in revised form this latter case, BL has been known to appear out of “nowhere”. In this work, a hypothesis on BL 13 August 2014 formation is presented involving the interaction between very low frequency (VLF) radio waves and Accepted 14 August 2014 atmospheric plasmas. High-velocity light balls are produced by ionic acoustic waves (IAWs) interacting Available online 20 August 2014 with a stationary plasma. Several physical properties (color, velocity, and fragmentation) observed in the Keywords: BL phenomenon can be explained through this model. Ball lightning & 2014 Elsevier Ltd. All rights reserved. Rock piezoelectricity Semi-relativistic runaway electron avalanche 1.
    [Show full text]
  • A 3-Stage Gated UV-Photon Gaseous Detector with Optical Imaging
    INJS DOCUMINT WIS-89|9/March-PH A 3-Stage Gated UV-Photon Gaseous Detector with Optical Imaging A. Breskin, R. Chechik* and D. Sauvage Department of Nuclear Physics The Weizmann Institute of Science Rehovot 76100, Israel Abstract UV-Photons are detected by a low-pressure photosensitive multistep gaseous de­ tector. Photoelectrons are multiplied in two charge amplification stages. A third, light amplification stage operating in a scintillation mode, provides light yields >5.107 vis­ ible photons per single photoelectron avalanche, in Argon-CjHe-TMAE gas mixture. We present results or. absolute photon yields in various TMAE gas mixtures, at low gas pressures and at low charge gains. We describe the operation mechanism and some ba­ sic properties of the gated 3-stage detectors, such as stability of operation at high back­ ground rates and localization resolutions particularly at large TMAE concentration and high temperature operation conditions. Further applications are discussed. (Submitted to Nuclear Instruments and Methods in Physics Research) * The Hettie H. Heineman Research Fellow 1. Introduction Single UV-photons, in the wavelength range of 120-220 nm can be efficiently de­ tected and imaged with gaseous detectors filled with photosensitive vapours. Several UV-imaging techniques have been developed, mostly motivated by the application to Cerenkov Ring Imaging (RICH)1' in particle physics. There exist many other appli­ cations of UV-detectors such as in particle calorimetry2', nuclear medicine3-, plasma diagnostics'1', and UV astronomy5'.
    [Show full text]
  • Relativistic Runaway Electron Avalanches Within Complex Thunderstorm Electric field Structures
    Relativistic runaway electron avalanches within complex thunderstorm electric field structures E. Stadnichuka,b,∗, E. Svechnikovad, A. Nozika,e, D. Zemlianskayaa,c, T. Khamitova,c, M. Zelenyya,c, M. Dolgonosovb,f aMoscow Institute of Physics and Technology - 1 \A" Kerchenskaya st., Moscow, 117303, Russian Federation bHSE University - 20 Myasnitskaya ulitsa, Moscow 101000 Russia cInstitute for Nuclear Research of RAS - prospekt 60-letiya Oktyabrya 7a, Moscow 117312 dInstitute of Applied Physics of RAS - 46 Ul'yanov str., 603950, Nizhny Novgorod, Russia eJetBrains Research - St. Petersburg, st. Kantemirovskaya, 2, 194100 fSpace Research Institute of RAS, 117997, Moscow, st. Profsoyuznaya 84/32 Abstract Relativistic runaway electron avalanches (RREAs) are generally accepted as a source of thunderstorms gamma-ray radiation. Avalanches can multiply in the electric field via the relativistic feedback mechanism based on processes with gamma-rays and positrons. This paper shows that a non-uniform electric field geometry can lead to the new RREAs multiplication mechanism - \reactor feed- back", due to the exchange of high-energy particles between different accelerat- ing regions within a thundercloud. A new method for the numerical simulation of RREA dynamics within heterogeneous electric field structures is proposed. The developed analytical description and the numerical simulation enables us to derive necessary conditions for TGF occurrence in the system with the reactor feedback Observable properties of TGFs influenced by the proposed mechanism are discussed. Keywords: relativistic runaway electron avalanches, terrestrial gamma-ray flash, thunderstorm ground enhancement, gamma-glow, thunderstorm, arXiv:2105.02818v1 [physics.ao-ph] 6 May 2021 relativistic feedback, reactor feedback ∗Egor Stadnichuk Email address: [email protected] (E.
    [Show full text]
  • Derivation of the Paschen's
    Derivation of the Paschen's Law Arturo Dominguez November 29, 2016 1 Objective If a voltage differential is supplied to a gas as shown in the setup (Figure 1), an electric field is formed. If the electric field applied is strong enough, an avalanche process (the Townsend avalanche) is started which leads to the breakdown of the gas and the formation of plasma. This document describes the physics of this process and derives the law (Paschen's law) that predicts the voltage differential that needs to be supplied in order to create the plasma. 2 Experimental Setup In Figure 1 the experimental setup for the Paschen curve experiment is shown. A pair of parallel plate electrodes are placed inside a vessel that contains a gas which can be air but can also be a more pure gas, like He, Ar, Ne, etc. While the geometry of the setup is irrelevant to the qualitative behavior of the breakdown voltage, the simple 1D geometry results in a simpler comparison with theory. The variables that can be controlled are: the pressure of the gas, p, the distance between the electrodes, d, and the voltage between the electrodes, V , as well as the gas contained in the vessel. 3 Qualitative description As the voltage difference is applied, the electric field will accelerate any free charges that exist. Free electrons exist in the system due to random events from a variety of mechanisms including the triboelectric effect or through as- tronomical particles traversing the vessel and ionizing neutral particles. If an electron can gain more than the ionizing energy of the gas, UI (approximately 14eV for Nitrogen), the electron can ionize the neutral particle and create a new free electron and a free ion.
    [Show full text]
  • Analysis of Streamer Propagation in Atmospheric Air Manfred Heiszler Iowa State University
    Iowa State University Capstones, Theses and Retrospective Theses and Dissertations Dissertations 1971 Analysis of streamer propagation in atmospheric air Manfred Heiszler Iowa State University Follow this and additional works at: https://lib.dr.iastate.edu/rtd Part of the Electrical and Electronics Commons Recommended Citation Heiszler, Manfred, "Analysis of streamer propagation in atmospheric air " (1971). Retrospective Theses and Dissertations. 4459. https://lib.dr.iastate.edu/rtd/4459 This Dissertation is brought to you for free and open access by the Iowa State University Capstones, Theses and Dissertations at Iowa State University Digital Repository. It has been accepted for inclusion in Retrospective Theses and Dissertations by an authorized administrator of Iowa State University Digital Repository. For more information, please contact [email protected]. 72-5207 HEISZLER, Manfred, 1941- ANALYSIS OF STREAMER PROPAGATION IN ATMOSPHERIC AIR. Iowa State University, Ph.D., 1971 Engineering, electrical t University Microfilms. A XERDK Company, Ann Arbor, Michigan THIS DISSERTATION HAS BEEN MICROFILMED EXACTLY AS RECEIVED Analysis of streamer propagation in atmospheric air by Manfred Heiszler A Dissertation Submitted to the Graduate Faculty in Partial Fulfillment of The Requirements for the Degree of DOCTOR OF PHILOSOPHY Major Subject: Electrical Engineering Approved: Signature was redacted for privacy. In Charge of Major Work Signature was redacted for privacy. For the Major Department Signature was redacted for privacy. For the Graduate College Iowa State University Of Science and Technology Ames, lawa 1971 ii TABLE OF CCOTENTS Page I. INTRODUCTION 1 II. REVIEW OF LITERATURE 4 A. The General Streamer Model 4 B. The Critical Avalanche 6 C. The Burst Pulse and Streamer Onset 9 D.
    [Show full text]
  • Simulation, Design and Construction of a Gas Electron Multiplier for Particle Tracking
    Simulation, Design and Construction of a Gas Electron Multiplier for Particle Tracking By Andrej Sipaj A Thesis Submitted in Partial Fulfillment Of the Requirements for the Degree of Master of Applied Science In Nuclear Engineering Faculty of Energy Systems and Nuclear Science Program University of Ontario Institute of Technology December, 2012 ©Andrej Sipaj, 2012 Abstract The biological effects of charged particles is of interest in particle therapy, radiation protection and space radiation science and known to be dependent on both absorbed dose and radiation quality or LET. Microdosimetry is a technique which uses a tissue equivalent gas to simulate microscopic tissue sites of the order of cellular dimensions and the principles of gas ionization devices to measure deposited energy. The Gas Electron Multiplier (GEM) has been used since 1997 for tracking particles and for the determination of particle energy. In general, the GEM detector works in either tracking or energy deposition mode. The instrument proposed here is a combination of both, for the purpose of determining the energy deposition in simulated microscopic sites over the charged particle range and in particular at the end of the range where local energy deposition increases in the so‐called Bragg‐peak region. The detector is designed to track particles of various energies for 5 cm in one dimension, while providing the particle energy deposition every 0.5 cm of its track. The reconfiguration of the detector for different particle energies is very simple and achieved by adjusting the pressure of the gas inside the detector and resistor chain. In this manner, the detector can be used to study various ion beams and their dose distributions to tissues.
    [Show full text]
  • Relativistic Electron Avalanches As a Thunderstorm Discharge Competing with Lightning
    ARTICLE Received 19 Aug 2014 | Accepted 17 Jun 2015 | Published 12 Aug 2015 DOI: 10.1038/ncomms8845 Relativistic electron avalanches as a thunderstorm discharge competing with lightning Nicole A. Kelley1, David M. Smith2, Joseph R. Dwyer3, Michael Splitt4, Steven Lazarus4, Forest Martinez-McKinney2, Bryna Hazelton5, Brian Grefenstette6, Alexander Lowell1 & Hamid K. Rassoul7 Gamma-ray ‘glows’ are long duration (seconds to tens of minutes) X-ray and gamma-ray emission coming from thunderclouds. Measurements suggest the presence of relativistic runaway electron avalanches (RREA), the same process underlying terrestrial gamma-ray flashes. Here we demonstrate that glows are relatively a common phenomena near the tops of thunderstorms, when compared with events such as terrestrial gamma-ray flashes. Examining the strongest glow measured by the airborne detector for energetic emissions, we show that this glow is measured near the end of a downward RREA, consistent with occurring between the upper positive charge layer and the negative screening layer above it. The glow discharges the upper positive layer by Z9.6 mA, strong enough to be an important charging mechanism of the storm. For this glow, the gamma-ray flux observed is close to the value at which relativistic feedback processes become important, with an avalanche multiplication factor of 4,500. 1 Space Sciences Laboratory, University of California, Berkeley, 7 Gauss Way, Berkeley, California 94705, USA. 2 Physics Department and Santa Cruz Institute for Particle Physics, University of California, 1156 High Street, Santa Cruz, California 95064, USA. 3 Department of Physics, University of New Hampshire, 8 College Road, Durham, New Hampshire 03824, USA. 4 Department of Marine and Environmental Systems, Florida Institute of Technology, 150 West University Boulevard, Melbourne, Florida 32901, USA.
    [Show full text]
  • GASEOUS IONIZATION and ION TRANSPORT: an Introduction to Gas Discharges
    GASEOUS IONIZATION AND ION TRANSPORT: An Introduction to Gas Discharges Prof. David B. Go Department of Aerospace and Mechanical Engineering University of Notre Dame Notre Dame, IN 46556 March 19, 2012 Chapter 1 Preface Gas-phase ions are ubiquitous in the universe, and are often cited as making up more than 99 % of known matter [REF-Burnett] in the universe - all stars, for example are in a plasma state consisting of gaseous ions and electrons. However, in every day life on Earth, gaseous ions are not as common and certainly not understood by the general public. If you were to take a poll of the general population about engineering and science topics, nearly everyone would understand what robotics is and most would likely be able to surmise, on some level, what an aerospace engineer does. In fact, most people can probably identify that a car is more aerodynamically sound than a truck. However, if you ask the general population what the ’plasma’ in plasma television stands for, they would not be able to tell you. Further, most scientists and engineers do not really understand either as plasma science and technology is not a common subject covered by undergraduate students most core disciplines such as mechanical engineering, biochemistry, or materials science. But plasma science is an incredibly important field. Besides entertainment (the aforementioned plasma television), plasmas and their closely related cousin, gas discharges, have been instrumental in modern life, affecting everything from the computer revolution to everyday lighting and transportation. Plasma processing, such as reactive ion etching and sputter metal deposition, has been essential to the development of the modern day computer chip.
    [Show full text]