Design of Social Robots Using Open-Source Robotic Platforms
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Soccer Server 3D Manual
Edited by: Version 1.2 Joschka Boedecker Klaus Dorer Markus Rollmann Yuan Xu Feng Xue Marian Buchta Hedayat Vatankhah January 2010 Contents 1 Introduction 1 1.1 What is SimSpark?1 1.2 History of the Project1 1.3 About this Manual2 1.4 Reader’s Guide to the Manual2 2 System Overview 3 2.1 The Server3 2.2 The Monitor and Logplayer4 2.3 The Sample Client4 2.4 Available Simulations4 3 Getting Started 5 3.1 Download and Installation Instructions5 3.2 An Example of a Simulation Run7 4 Simspark 13 4.1 Perceptors 13 4.1.1 General message format 13 4.1.2 General Perceptors 13 4.1.3 Soccer Perceptors 15 4.2 Effectors/Actuators 18 4.2.1 General Effectors 18 4.2.2 Soccer Effectors 19 4.2.3 Older Version Effectors 20 4.3 Simulation Update Loop 21 4.3.1 Single-threaded Timer 22 4.3.2 Multi-threaded Timer 22 5 Rcssmonitor3d 25 5.1 Internal Monitor 25 5.2 External Monitor 25 5.3 Playing Log files 25 5.4 Key Assignments 25 i 6 Rcssagent3d 27 6.1 Behaviors 27 6.1.1 SoccerbotBehavior 27 6.2 How to change Behaviors? 27 7 Simulations 29 7.1 The Soccer Simulation 29 7.1.1 Overview 29 7.1.2 Environment and Objects on the Field 29 7.1.3 Rules Judged by the Automatic Referee 31 7.1.4 Rules Judged by the Human Referee 31 8 The Robot Models 33 8.1 Soccerbot 33 8.2 Nao 36 8.2.1 Parameters 36 8.2.2 Implementation 39 9 Further Resources 41 9.1 Project Homepage 41 9.2 Mailing Lists 41 9.3 IRC channel 41 9.4 Wiki 41 9.5 Thesis and Papers 41 9.6 How to contribute? 42 A License 43 ii Introduction 1 1.1 What is SimSpark? SimSpark is a multi-agent simulation system for agents in three-dimensional environments. -
Concurrency Patterns for Easier Robotic Coordination
Concurrency Patterns for Easier Robotic Coordination Andrey Rusakov∗ Jiwon Shin∗ Bertrand Meyer∗† ∗Chair of Software Engineering, Department of Computer Science, ETH Zurich,¨ Switzerland †Software Engineering Lab, Innopolis University, Kazan, Russia fandrey.rusakov, jiwon.shin, [email protected] Abstract— Software design patterns are reusable solutions to Guarded suspension – are chosen for their concurrent nature, commonly occurring problems in software development. Grow- applicability to robotic coordination, and evidence of use ing complexity of robotics software increases the importance of in existing robotics frameworks. The paper aims to help applying proper software engineering principles and methods such as design patterns to robotics. Concurrency design patterns programmers who are not yet experts in concurrency to are particularly interesting to robotics because robots often have identify and then to apply one of the common concurrency- many components that can operate in parallel. However, there based solutions for their applications on robotic coordination. has not yet been any established set of reusable concurrency The rest of the paper is organized as follows: After design patterns for robotics. For this purpose, we choose six presenting related work in Section II, it proceeds with a known concurrency patterns – Future, Periodic timer, Invoke later, Active object, Cooperative cancellation, and Guarded sus- general description of concurrency approach for robotics pension. We demonstrate how these patterns could be used for in Section III. Then the paper presents and describes in solving common robotic coordination tasks. We also discuss detail a number of concurrency patterns related to robotic advantages and disadvantages of the patterns and how existing coordination in Section IV. -
Programming Robots for Activities of Everyday Life
Thesis for The Degree of Licentiate of Engineering Programming Robots for Activities of Everyday Life Swaib Dragule Division of Software Engineering Department of Computer Science & Engineering Chalmers University of Technology and Gothenburg University Gothenburg, Sweden, 2021 Programming Robots for Activities of Everyday Life Swaib Dragule Copyright ©2021 Swaib Dragule except where otherwise stated. All rights reserved. Department of Computer Science & Engineering Division of Software Engineering Chalmers University of Technology and Gothenburg University Gothenburg, Sweden This thesis has been prepared using LATEX. Printed by Chalmers Reproservice, Gothenburg, Sweden 2021. ii ”Smiling to someone is an act of charity.” - Prophet Muhammad (P.B.U.H) iv v Abstract Text-based programming remains a challenge to novice programmers in all programming domains, including robotics. The use of robots is gaining considerable traction in several domains since robots are capable of assisting humans in repetitive and hazardous tasks. Soon robots will commonly be used in tasks-of-everyday-life in homes, hotels, airports, and museums. However, robotic missions have been either predefined or programmed using low-level APIs, making mission specification task-specific and error-prone. To harness the full potential of robots, it must be possible to define missions for specific application domains as needed. The specification of missions of robotic applications should be performed via easy-to-use, accessible ways, and at the same time, be accurate and unambiguous. Simplicity and flexibility in programming such robots are important since end-users come from diverse domains, not necessarily with sufficient programming knowledge. The main objective of this licentiate thesis is to empirically understand the state-of-the-art in languages and tools used for specifying robot missions by end-users. -
Tag: Job Control in Urbiscript
Tag: Job Control in urbiscript Jean-Christophe Baillie Akim Demaille Quentin Hocquet Matthieu Nottale May 7, 2010 Abstract The Urbi software platform for the development of applications for robots relies heavily on concur- rency. While concurrent programs have existed for decades, there is still no universal consensus for the proper means to control the complexity of parallelism. This paper presents some innovating features of Urbi: syntactic constructs to support concurrent jobs, and tags, used to control them. Urbi SDK is a software platform used to develop portable applications for robotics and artificial intel- ligence (Baillie, 2005). It is based on UObjects, a distributed component architecture, and on urbiscript, a parallel and event-driven scripting language. It’s current architecture has already described elsewhere (Baillie et al., 2008), this paper focuses on one specific feature of urbiscript: job control. Today, any computer runs many programs concurrently. The Operating System is in charge of provid- ing each process with the illusion of a fresh machine for it only, and of scheduling all these concurrent processes. In robots, jobs not only run concurrently, they collaborate. Each process is a piece of a complex behavior that emerges from the coordination/orchestration of these jobs. The Urbi platform aims to provide the developers with a convenient framework to orchestrate concur- rent, collaborating, tasks. Outline Section 1 introduces some of the features of urbiscript for parallel programming; it concludes on the common need for a high-level job control. Section 2 presents tags, the cornerstone of job control in Urbi. A real world example is presented in Section 3: safe interruption of the Nao walk. -
Edited By: Joschka Boedecker Klaus Dorer Markus Rollmann Yuan Xu Feng Xue Version 1.1 June 2008
Edited by: Version 1.1 Joschka Boedecker Klaus Dorer Markus Rollmann Yuan Xu Feng Xue June 2008 Contents 1 Introduction 1 1.1 What is SimSpark? 1 1.2 History of the Project 1 1.3 About this Manual 2 1.4 Reader’s Guide to the Manual 2 2 System Overview 3 2.1 The Server 3 2.2 The Monitor and Logplayer 4 2.3 The Sample Client 4 2.4 Available Simulations 4 2.5 Available Robot Models 4 3 Getting Started 5 3.1 Download and Installation Instructions 5 3.2 An Example of a Simulation Run 7 4 Simspark 13 4.1 Perceptors 13 4.1.1 General message format 13 4.1.2 General Perceptors 13 4.1.3 Soccer Perceptors 15 4.2 Effectors/Actuators 18 4.2.1 General Effectors 18 4.2.2 Soccer Effectors 19 4.2.3 Older Version Effectors 20 4.3 Simulation Update Loop 21 4.3.1 Single-threaded Timer 22 4.3.2 Multi-threaded Timer 23 4.4 Setup Scripts 23 5 Monitorspark 25 5.1 Internal Monitor 25 5.2 External Monitor 25 5.3 Playing Log files 25 5.4 Key Assignments 25 i 6 Agentspark 27 6.1 Behaviors 27 6.1.1 SoccerbotBehavior 27 6.2 How to change Behaviors? 27 7 Simulations 29 7.1 The Soccer Simulation 29 7.1.1 Overview 29 7.1.2 Environment and Objects on the Field 29 7.1.3 Rules Judged by the Automatic Referee 31 7.1.4 Rules Judged by the Human Referee 31 7.1.5 Setup Script 32 8 The Robot Models 33 8.1 Soccerbot 33 8.2 Nao 36 8.2.1 Parameters 36 8.2.2 Implementation 39 9 Further Resources 41 9.1 Project Homepage 41 9.2 Mailing Lists 41 9.3 IRC channel 41 9.4 Wiki 41 9.5 Thesis and Papers 41 9.6 How to contribute? 42 A License 43 ii Introduction 1 1.1 What is SimSpark? SimSpark is a multi-agent simulation system for agents in three-dimensional environments. -
Programming Robots with Events Truong Giang Le, Dmitriy Fedosov, Olivier Hermant, Matthieu Manceny, Renaud Pawlak, Renaud Rioboo
Programming Robots With Events Truong Giang Le, Dmitriy Fedosov, Olivier Hermant, Matthieu Manceny, Renaud Pawlak, Renaud Rioboo To cite this version: Truong Giang Le, Dmitriy Fedosov, Olivier Hermant, Matthieu Manceny, Renaud Pawlak, et al.. Programming Robots With Events. 4th International Embedded Systems Symposium (IESS), Jun 2013, Paderborn, Germany. pp.14-25, 10.1007/978-3-642-38853-8_2. hal-00924489 HAL Id: hal-00924489 https://hal.inria.fr/hal-00924489 Submitted on 7 Jan 2014 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Distributed under a Creative Commons Attribution| 4.0 International License Programming Robots with Events Truong-Giang Le1, Dmitriy Fedosov2, Olivier Hermant3, Matthieu Manceny1, Renaud Pawlak4, and Renaud Rioboo5 1 LISITE - ISEP, 28 rue Notre-Dame des Champs, 75006 Paris, France 2 Saint-Petersbourg University of Aerospace Instrumentation, 67 Bolshaya Morskaya street, 190000, Saint Petersburg, Russia 3 CRI - MINES ParisTech, 35 rue ST-Honor´e, 77300 Fontainebleau, France 4 IDCapture, 2 rue Duphot, 75001 Paris, France 5 ENSIIE, 1 square de la R´esistance, F-91025 Evry´ CEDEX, France {le-truong.giang,matthieu.manceny}@isep.fr, {dvfdsv,renaud.pawlak}@gmail.com, [email protected], [email protected] Abstract. -
Simple Concurrency for Robotics with the Roboscoop Framework
Simple Concurrency for Robotics with the Roboscoop Framework Andrey Rusakov Jiwon Shin Bertrand Meyer Chair of Software Engineering Department of Computer Science ETH Zurich,¨ Switzerland fandrey.rusakov, jiwon.shin, [email protected] Abstract— Concurrency is inherent to robots, and using enables even novice programmers to program concurrent concurrency in robotics can greatly enhance performance of the robotic software. Current Roboscoop contains behaviors and robotics applications. So far, however, the use of concurrency in tools necessary for the operation of differential drive robots robotics has been limited and cumbersome. This paper presents Roboscoop, a new robotics framework based on Simple Concur- and has been tested on two different robots. rent Object Oriented Programming (SCOOP). SCOOP excludes This paper is organized as follows: After presenting related data races by construction, thereby eliminating a major class of work in Section II, the paper presents the core of Roboscoop concurrent programming errors. Roboscoop utilizes SCOOP’s framework in Section III. Section IV presents an example of concurrency and synchronization mechanisms for coordination using Roboscoop for the task of exploring an unknown area. in robotics applications. We demonstrate Roboscoop’s simplicity by comparing Roboscoop to existing middlewares and evaluate Section V compares Roboscoop against other middlewares Roboscoop’s usability by employing it in education. and also presents an evaluation of Roboscoop in education. The paper concludes with final remarks in Section VI. I. INTRODUCTION Advanced robotic systems are composed of many com- II. RELATED WORK ponents that can operate concurrently. Running these com- In the last decade, many middlewares have been pro- ponents concurrently would enable robots to meet their full posed to ease the development of robotic coordination and potential. -
A Scripting-Based Approach to Robot Behavior Engineering Using Hierarchical Generators
A Scripting-based Approach to Robot Behavior Engineering Using Hierarchical Generators Thijs Jeffry de Haas, Tim Laue and Thomas Rofer¨ Abstract— When developing software for autonomous robots, The contribution of this paper is a domain-specific langua- the aspect of behavior engineering is, among tasks such as sen- ge called b-script to describe hierarchical agent behaviors sing, state estimation, and motion control, of major importance. using the programming concept of generators. We show that Current solutions range from basic behavior-based approaches to sophisticated reasoning systems, in each case depending on it is a convenient way to use hierarchical continuation-based the complexity of the robot’s task as well as the available routines to realize complex robot behaviors in an intuitive amount of computing time. In this paper, we present a behavior and clean way and that it can be used in large-scale appli- specification language, which is called b-script, to describe cations. This is achieved by using a specialized generator hierarchical agent behaviors using the programming concept implementation, similar to Python’s generators, including of generators. We show that this is a convenient approach to realize complex robot behaviors in an intuitive and clean implicit context maintenance. The language is in particular way that can be used in large-scale. Furthermore, the actual suited to be used on resource restricted embedded systems, implementation of this language is in particular suited to be such as the Nao robot [5], and was already successfully used on resource-restricted embedded systems. This is shown applied in actual competitions of the RoboCup [6] Standard in different examples of a Nao robot in a robot soccer scenario. -
Temporal Reasoning About Robotics Applications: Refinement and Temporal Logic
Temporal Reasoning About Robotics Applications: Refinement and Temporal Logic Abdulrazaq Abba Doctor of Philosophy The University of York Computer Science October, 2020 Abstract The challenges of verifying the behaviour of robotics systems has motivated the development of various techniques and tools for supporting the advancement and verification of robotics systems. This is due to the complex nature of verifying robotics systems as part of the category of hybrid dynamical systems that combine discrete and continuous parts. In contrast to the commonly-known computer systems, robotic sys- tems operate in a physical, real-world environment that may include humans, which raises a reasonable question of concern about the safety of the systems. Currently, one of the promising solutions is effective, rigorous verification techniques and tools that verify and guarantee the safe operation of robotics systems 1 . Along this line, formal methods provide mathematical models that support the de- velopment of rigorous verification techniques and tools. In this work, we use formal methods for the verification of temporal specifications of robotics systems. The process algebra tock-CSP provides textual notations for modelling discrete-time behaviours, with the support of various tools for verification. Also, tock-CSP has been used to give semantics to a domain-specific language for robotics, RoboChart. Similarly, automatic verification of Timed Automata (TA) is supported by the real-time verification toolbox Uppaal that facilitates verification of temporal specifications using Time Computation Tree Logic (TCTL). Timed Automata and tock-CSP differ in both modelling and verifi- cation approaches. For instance, liveness requirements are difficult to specify with the constructs of tock-CSP, but they are easy to verify in Uppaal. -
Events!(Reactivity in Urbiscript)
Events! (Reactivity in urbiscript) Jean-Christophe Baillie Akim Demaille Quentin Hocquet Matthieu Nottale Gostai S.A.S., 15, rue Jean-Baptiste Berlier, F-75013 Paris, France http://www.gostai.com, [email protected] Abstract— Urbi SDK is a software platform for the devel- availability of compilers for many different types of hardware opment of portable robotic applications. It features the Urbi architecture, and because many robot SDK are in C/C++. UObject C++ middleware, to manage hardware drivers and/or It also provides access to very low-level system features possibly remote software components, and urbiscript, a domain specific programming language to orchestrate them. Reactivity (such as coroutines, see below), and allows us to program is a key feature of Urbi SDK, embodied in events in urbiscript. their support if they lack, in assembler if needed. Specific This paper presents the support for events in urbiscript. features of some architectures are also easier to use from Event-based programming is the “native” way in urbiscript C/C++, such as the real-time features of Xenomai. Finally, to program responses to stimuli — a common need in some architecture require C++, such the Aibo SDK. robotics. It is typically used for “background jobs that moni- While the sole Urbi core suffices in many situations, it tor some conditions”. It is used to program the human-robot proved useful to provide a programming language to fine- interfaces (“do this when the head button is pushed”), the tune this orchestration. detection exceptional situations (collision avoidance, battery level), the tracking of objects of interest etc. -
Simspark – Concepts and Application in the Robocup 3D Soccer Simulation League
SimSpark { Concepts and Application in the RoboCup 3D Soccer Simulation League Joschka Boedecker1 and Minoru Asada1;2 1Dept. of Adaptive Machine Systems, 2HANDAI Frontier Research Center, Graduate School of Engineering, Osaka University, Osaka, Japan fjoschka.boedecker,[email protected] Abstract. Simulators have a long tradition within RoboCup. In the Soccer Simulation League, one of the earliest leagues within RoboCup, traditionally single-purpose robot simulators with high levels of abstrac- tion have been used. These systems proved valuable as tools for mul- tiagent research, but were difficult to extend. Furthermore, there were concerns that research results would not be easily transferable to the real world due to the extensive simplifications. In order to alleviate these problems, a new, more generic, and more realistic robot simulation sys- tem was proposed in the year 2003 and first used in the league's com- petitions in 2004. This paper presents the architecture and concepts of this system, and its application in the RoboCup 3D Soccer Simulation League. Moreover, it presents ongoing and future development plans. 1 Introduction Ever since the early days of RoboCup, simulators have played in important part in it, with the RoboCup Soccer Simulation League being one of the earliest com- petitions in its history [1]. The Soccer server [2] has been used as the simulation platform in this league in order to address research questions in high-level de- cision making and team coordination amongst others. The level of abstraction of the Soccer server has been quite high: the games are simulated in a 2D envi- ronment with simplified physics rules and agent representations. -
Programming Robots with an Agent-Oriented BDI-Based Control Architecture: Explorations Using the Jaca and Webots Platforms
Alma Mater Studiorum Universita` di Bologna II Facolt`adi Ingegneria Corso di laurea magistrale in Ingegneria Informatica Programming Robots with an Agent-Oriented BDI-based Control Architecture: Explorations using the JaCa and Webots platforms Tesi in: Sistemi Multi Agente Candidato: Relatore: Andrea Mordenti Prof. Alessandro Ricci Correlatore: Dott. Ing. Andrea Santi Anno Accademico 2011/2012 - Sessione II . Keywords Domestic Robots BDI architecture Jason CArtAgO A&A meta-model Webots . To you, who are looking after me from up there. Contents Introduction 11 1 Background 15 1 Programming Robots . 16 1.1 (Domestic)Robotics . 17 1.2 Control Architecture . 18 1.3 Robot Programming Systems . 25 1.4 Benifits and Drawbacks . 27 2 Platforms and Languages . 28 2.1 State of the art . 29 2.2 Simulators . 31 3 Webots . 33 4 Recapitulation . 36 2 Agent Oriented Programming & BDI-based Programming Languages 39 1 Agent Oriented Programming . 39 2 BDI Architecture . 42 3 Agents & Artifacts meta-model . 46 3.1 CArtAgO . 49 4 APLs (Agent Programming Languages) . 52 4.1 Jason . 53 4.2 JaCa . 57 5 BDI languages for Robot Programming . 60 6 Recapitulation . 62 8 Contents 3 Using the BDI architecture for Robot Programming: A Jason- based Approach 63 1 Jason for robot programming . 63 1.1 Layered Architecture . 64 2 System Overview . 66 2.1 Interaction . 67 2.2 Implementation . 68 2.3 Integration with Webots simulator . 69 2.4 Sensory Input & Actuator Commands . 71 3 Recapitulation . 74 4 Experiments 75 Introduction . 76 1 Obstacle Avoidance . 79 1.1 Strategy . 79 1.2 Implementation . 80 2 Object Picking .