1 I. Units and Conversions 1 A. Atomic Units 1 B. Energy Conversions 2 II
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
An Introduction to Hartree-Fock Molecular Orbital Theory
An Introduction to Hartree-Fock Molecular Orbital Theory C. David Sherrill School of Chemistry and Biochemistry Georgia Institute of Technology June 2000 1 Introduction Hartree-Fock theory is fundamental to much of electronic structure theory. It is the basis of molecular orbital (MO) theory, which posits that each electron's motion can be described by a single-particle function (orbital) which does not depend explicitly on the instantaneous motions of the other electrons. Many of you have probably learned about (and maybe even solved prob- lems with) HucÄ kel MO theory, which takes Hartree-Fock MO theory as an implicit foundation and throws away most of the terms to make it tractable for simple calculations. The ubiquity of orbital concepts in chemistry is a testimony to the predictive power and intuitive appeal of Hartree-Fock MO theory. However, it is important to remember that these orbitals are mathematical constructs which only approximate reality. Only for the hydrogen atom (or other one-electron systems, like He+) are orbitals exact eigenfunctions of the full electronic Hamiltonian. As long as we are content to consider molecules near their equilibrium geometry, Hartree-Fock theory often provides a good starting point for more elaborate theoretical methods which are better approximations to the elec- tronic SchrÄodinger equation (e.g., many-body perturbation theory, single-reference con¯guration interaction). So...how do we calculate molecular orbitals using Hartree-Fock theory? That is the subject of these notes; we will explain Hartree-Fock theory at an introductory level. 2 What Problem Are We Solving? It is always important to remember the context of a theory. -
Simplified Hartree-Fock Computations on Second-Row Atoms
Simplified Hartree-Fock Computations on Second-Row Atoms S. M. Blinder Wolfram Research, Inc. Champaign, IL 61820, USA May 18, 2021 Modern computational quantum chemistry has developed to a large extent beginning with applications of the Hartree-Fock method to atoms and molecules[1]. Density-functional methods have now largely supplanted conventional Hartree-Fock computations in current applications of computational chemistry. Still, from a pedagogical point of view, an un- derstanding of the original methods remains a necessary preliminary. However, since more elaborate Hartree-Fock computations are now no longer needed, it will suffice to consider a computationally simplified application of the method[2]. Accordingly, we will represent the many-electron wavefunction by a single closed-shell Slater determinant and use basis functions which are simple Slater-type orbitals. This is in contrast to the more elaborate Hartree-Fock computations, which might use multi-determinant wavefunctions and double- zeta basis functions. All of the symbolic and numerical operations were carried out using Mathematica. We consider Hartree-Fock computations on the ground states of the second-row atoms He through Ne, Z = 2 to 10, using the simplest set of orthonormalized 1s, 2s and 2p orbital functions: s α3=2 3β5 α + β = p e−αr; = 1 − r e−βr; 1s π 2s π(α2 − αβ + β2) 3 5=2 γ −γr 2pfx;y;zg = p re fsin θ cos φ, sin θ sin φ, cos θg: (1) arXiv:2105.07018v1 [quant-ph] 14 May 2021 π An orbital function multiplied by a spin function α or β is known as a spinorbital, a product of the form ( α φ(x) = (r) : (2) β 1 A simple representation of a many-electron atom is given by a Slater determinant con- structed from N occupied spin-orbitals: φa(1) φb(1) : : : φn(1) 1 φa(2) φb(2) : : : φn(2) Ψ(1;:::;N) = p ; (3) . -
Modern Physics Unit 15: Nuclear Structure and Decay Lecture 15.1: Nuclear Characteristics
Modern Physics Unit 15: Nuclear Structure and Decay Lecture 15.1: Nuclear Characteristics Ron Reifenberger Professor of Physics Purdue University 1 Nucleons - the basic building blocks of the nucleus Also written as: 7 3 Li ~10-15 m Examples: A X=Chemical Element Z X Z = number of protons = atomic number 12 A = atomic mass number = Z+N 6 C N= A-Z = number of neutrons 35 17 Cl 2 What is the size of a nucleus? Three possibilities • Range of nuclear force? • Mass radius? • Charge radius? It turns out that for nuclear matter Nuclear force radius ≈ mass radius ≈ charge radius defines nuclear force range defines nuclear surface 3 Nuclear Charge Density The size of the lighter nuclei can be approximated by modeling the nuclear charge density ρ (C/m3): t ≈ 4.4a; a=0.54 fm 90% 10% Usually infer the best values for ρo, R and a for a given nucleus from scattering experiments 4 Nuclear mass density Scattering experiments indicate the nucleus is roughly spherical with a radius given by 1 3 −15 R = RRooA ; =1.07 × 10meters= 1.07 fm = 1.07 fermis A=atomic mass number What is the nuclear mass density of the most common isotope of iron? 56 26 Fe⇒= A56; Z = 26, N = 30 m Am⋅⋅3 Am 33A ⋅ m m ρ = nuc p= p= pp = o 1 33 VR4 3 3 3 44ππA R nuc π R 4(π RAo ) o o 3 3×× 1.66 10−27 kg = 3.2× 1017kg / m 3 4×× 3.14 (1.07 × 10−15m ) 3 The mass density is constant, independent of A! 5 Nuclear mass density for 27Al, 97Mo, 238U (from scattering experiments) (kg/m3) ρo heavy mass nucleus light mass nucleus middle mass nucleus 6 Typical Densities Material Density Helium 0.18 kg/m3 Air (dry) 1.2 kg/m3 Styrofoam ~100 kg/m3 Water 1000 kg/m3 Iron 7870 kg/m3 Lead 11,340 kg/m3 17 3 Nuclear Matter ~10 kg/m 7 Isotopes - same chemical element but different mass (J.J. -
Optical Properties of Bulk and Nano
Lecture 3: Optical Properties of Bulk and Nano 5 nm Course Info First H/W#1 is due Sept. 10 The Previous Lecture Origin frequency dependence of χ in real materials • Lorentz model (harmonic oscillator model) e- n(ω) n' n'' n'1= ω0 + Nucleus ω0 ω Today optical properties of materials • Insulators (Lattice absorption, color centers…) • Semiconductors (Energy bands, Urbach tail, excitons …) • Metals (Response due to bound and free electrons, plasma oscillations.. ) Optical properties of molecules, nanoparticles, and microparticles Classification Matter: Insulators, Semiconductors, Metals Bonds and bands • One atom, e.g. H. Schrödinger equation: E H+ • Two atoms: bond formation ? H+ +H Every electron contributes one state • Equilibrium distance d (after reaction) Classification Matter ~ 1 eV • Pauli principle: Only 2 electrons in the same electronic state (one spin & one spin ) Classification Matter Atoms with many electrons Empty outer orbitals Outermost electrons interact Form bands Partly filled valence orbitals Filled Energy Inner Electrons in inner shells do not interact shells Do not form bands Distance between atoms Classification Matter Insulators, semiconductors, and metals • Classification based on bandstructure Dispersion and Absorption in Insulators Electronic transitions No transitions Atomic vibrations Refractive Index Various Materials 3.4 3.0 2.0 Refractive index: n’ index: Refractive 1.0 0.1 1.0 10 λ (µm) Color Centers • Insulators with a large EGAP should not show absorption…..or ? • Ion beam irradiation or x-ray exposure result in beautiful colors! • Due to formation of color (absorption) centers….(Homework assignment) Absorption Processes in Semiconductors Absorption spectrum of a typical semiconductor E EC Phonon Photon EV ωPhonon Excitons: Electron and Hole Bound by Coulomb Analogy with H-atom • Electron orbit around a hole is similar to the electron orbit around a H-core • 1913 Niels Bohr: Electron restricted to well-defined orbits n = 1 + -13.6 eV n = 2 n = 3 -3.4 eV -1.51 eV me4 13.6 • Binding energy electron: =−=−=e EB 2 2 eV, n 1,2,3,.. -
A Self-Interaction-Free Local Hybrid Functional: Accurate Binding
A self-interaction-free local hybrid functional: accurate binding energies vis-`a-vis accurate ionization potentials from Kohn-Sham eigenvalues Tobias Schmidt,1, ∗ Eli Kraisler,2, ∗ Adi Makmal,2, † Leeor Kronik,2 and Stephan K¨ummel1 1Theoretical Physics IV, University of Bayreuth, 95440 Bayreuth, Germany 2Department of Materials and Interfaces, Weizmann Institute of Science, Rehovoth 76100,Israel (Dated: September 12, 2018) We present and test a new approximation for the exchange-correlation (xc) energy of Kohn- Sham density functional theory. It combines exact exchange with a compatible non-local correlation functional. The functional is by construction free of one-electron self-interaction, respects constraints derived from uniform coordinate scaling, and has the correct asymptotic behavior of the xc energy density. It contains one parameter that is not determined ab initio. We investigate whether it is possible to construct a functional that yields accurate binding energies and affords other advantages, specifically Kohn-Sham eigenvalues that reliably reflect ionization potentials. Tests for a set of atoms and small molecules show that within our local-hybrid form accurate binding energies can be achieved by proper optimization of the free parameter in our functional, along with an improvement in dissociation energy curves and in Kohn-Sham eigenvalues. However, the correspondence of the latter to experimental ionization potentials is not yet satisfactory, and if we choose to optimize their prediction, a rather different value of the functional’s parameter is obtained. We put this finding in a larger context by discussing similar observations for other functionals and possible directions for further functional development that our findings suggest. -
Units and Magnitudes (Lecture Notes)
physics 8.701 topic 2 Frank Wilczek Units and Magnitudes (lecture notes) This lecture has two parts. The first part is mainly a practical guide to the measurement units that dominate the particle physics literature, and culture. The second part is a quasi-philosophical discussion of deep issues around unit systems, including a comparison of atomic, particle ("strong") and Planck units. For a more extended, profound treatment of the second part issues, see arxiv.org/pdf/0708.4361v1.pdf . Because special relativity and quantum mechanics permeate modern particle physics, it is useful to employ units so that c = ħ = 1. In other words, we report velocities as multiples the speed of light c, and actions (or equivalently angular momenta) as multiples of the rationalized Planck's constant ħ, which is the original Planck constant h divided by 2π. 27 August 2013 physics 8.701 topic 2 Frank Wilczek In classical physics one usually keeps separate units for mass, length and time. I invite you to think about why! (I'll give you my take on it later.) To bring out the "dimensional" features of particle physics units without excess baggage, it is helpful to keep track of powers of mass M, length L, and time T without regard to magnitudes, in the form When these are both set equal to 1, the M, L, T system collapses to just one independent dimension. So we can - and usually do - consider everything as having the units of some power of mass. Thus for energy we have while for momentum 27 August 2013 physics 8.701 topic 2 Frank Wilczek and for length so that energy and momentum have the units of mass, while length has the units of inverse mass. -
Measuring Vibration Using Sound Level Meter Nor140
Application Note Measuring vibration using sound level meter Nor140 This technical note describes the use of the sound level meter Nor140 for measurement of acceleration levels. The normal microphone is then substituted by an accelerometer. The note also describes calibration and the relation between the level in decibel and the acceleration in linear units. AN Vibration Ed2Rev0 English 03.08 AN Vibration Ed2Rev0 English 03.08 Introduction Accelerometer Most sound level meters and sound analysers can be used for Many types of acceleration sensitive sensors exist. For vibration measurements, even if they do not provide absolute connection to Nor140 sound level meter the easiest is to (linear) units in the display. To simplify the description, this ap- apply an ICP® or CCP type. This type of transducers has low plication note describes the use of the handheld sound level output impedance and may be supplied through a coaxial meter Norsonic Nor140. However, the described principles able. Nor1270 (Sens. 10 mV/ms-2; 23 g) and Nor1271 (Sens. also apply to other types of sound level meters. 1,0 mV/ms-2; 3,5 g) are recommended. Connect the accelero- Although several transducer principles are commercially meter through the BNC/Lemo cable Nor1438 and the BNC to available, this application note will deal with the accelerometer microdot adaptor Nor1466. You also need a BNC-BNC female only, simply because it is the transducer type most commonly connector. See the figure below. encountered when measuring vibration levels. As the name Alternatively, a charge sensitive accelerometer may be suggests, the accelerometer measures the acceleration it is used and coupled to the normal microphone preamplifier exposed to and provides an output signal proportional to the Nor1209 through the adapter with BNC input Nor1447/2 and instant acceleration. -
Bohr Model of Hydrogen
Chapter 3 Bohr model of hydrogen Figure 3.1: Democritus The atomic theory of matter has a long history, in some ways all the way back to the ancient Greeks (Democritus - ca. 400 BCE - suggested that all things are composed of indivisible \atoms"). From what we can observe, atoms have certain properties and behaviors, which can be summarized as follows: Atoms are small, with diameters on the order of 0:1 nm. Atoms are stable, they do not spontaneously break apart into smaller pieces or collapse. Atoms contain negatively charged electrons, but are electrically neutral. Atoms emit and absorb electromagnetic radiation. Any successful model of atoms must be capable of describing these observed properties. 1 (a) Isaac Newton (b) Joseph von Fraunhofer (c) Gustav Robert Kirch- hoff 3.1 Atomic spectra Even though the spectral nature of light is present in a rainbow, it was not until 1666 that Isaac Newton showed that white light from the sun is com- posed of a continuum of colors (frequencies). Newton introduced the term \spectrum" to describe this phenomenon. His method to measure the spec- trum of light consisted of a small aperture to define a point source of light, a lens to collimate this into a beam of light, a glass spectrum to disperse the colors and a screen on which to observe the resulting spectrum. This is indeed quite close to a modern spectrometer! Newton's analysis was the beginning of the science of spectroscopy (the study of the frequency distri- bution of light from different sources). The first observation of the discrete nature of emission and absorption from atomic systems was made by Joseph Fraunhofer in 1814. -
Particle Nature of Matter
Solved Problems on the Particle Nature of Matter Charles Asman, Adam Monahan and Malcolm McMillan Department of Physics and Astronomy University of British Columbia, Vancouver, British Columbia, Canada Fall 1999; revised 2011 by Malcolm McMillan Given here are solutions to 5 problems on the particle nature of matter. The solutions were used as a learning-tool for students in the introductory undergraduate course Physics 200 Relativity and Quanta given by Malcolm McMillan at UBC during the 1998 and 1999 Winter Sessions. The solutions were prepared in collaboration with Charles Asman and Adam Monaham who were graduate students in the Department of Physics at the time. The problems are from Chapter 3 The Particle Nature of Matter of the course text Modern Physics by Raymond A. Serway, Clement J. Moses and Curt A. Moyer, Saunders College Publishing, 2nd ed., (1997). Coulomb's Constant and the Elementary Charge When solving numerical problems on the particle nature of matter it is useful to note that the product of Coulomb's constant k = 8:9876 × 109 m2= C2 (1) and the square of the elementary charge e = 1:6022 × 10−19 C (2) is ke2 = 1:4400 eV nm = 1:4400 keV pm = 1:4400 MeV fm (3) where eV = 1:6022 × 10−19 J (4) Breakdown of the Rutherford Scattering Formula: Radius of a Nucleus Problem 3.9, page 39 It is observed that α particles with kinetic energies of 13.9 MeV or higher, incident on copper foils, do not obey Rutherford's (sin φ/2)−4 scattering formula. • Use this observation to estimate the radius of the nucleus of a copper atom. -
Account 0103 - 5053 $6.00+0.00Ac Carbocations on Zeolites
J. Braz. Chem. Soc., Vol. 22, No. 7, 1197-1205, 2011. Printed in Brazil - ©2011 Sociedade Brasileira de Química Account 0103 - 5053 $6.00+0.00Ac Carbocations on Zeolites. Quo Vadis? Claudio J. A. Mota* and Nilton Rosenbach Jr.# Instituto de Química and INCT de Energia e Ambiente, Universidade Federal do Rio de Janeiro, Cidade Universitária, CT Bloco A, 21941-909 Rio de Janeiro-RJ, Brazil A natureza dos carbocátions adsorvidos na superfície da zeólita é discutida neste artigo, destacando estudos experimentais e teóricos. A adsorção de halogenetos de alquila sobre zeólitas trocadas com metais tem sido usada para estudar o equilíbrio entre alcóxidos, que são espécies covalentes, e carbocátions, que têm natureza iônica. Cálculos teóricos indicam que os carbocátions são mínimos (intermediários) na superfície de energia potencial e estabilizados por ligações hidrogênio com os átomos de oxigênio da estrutura zeolítica. Os resultados indicam que zeólitas se comportam como solventes sólidos, estabilizando a formação de espécies iônicas. The nature of carbocations on the zeolite surface is discussed in this account, highlighting experimental and theoretical studies. The adsorption of alkylhalides over metal-exchanged zeolites has been used to study the equilibrium between covalent alkoxides and ionic carbocations. Theoretical calculations indicated that the carbocations are minima (intermediates) on the potential energy surface and stabilized by hydrogen bonds with the framework oxygen atoms. The results indicate that zeolites behave like solid solvents, stabilizing the formation of ionic species. Keywords: zeolites, carbocations, alkoxides, catalysis, acidity 1. Introduction Thus, NH4Y can be prepared by exchange of the NaY with ammonium salt solutions. An acidic material can Zeolites are crystalline aluminosilicates with pores of be obtained by calcination of the ammonium-exchanged molecular dimensions. -
ACF NATIONALS 2018 ROUND 1 PRELIMS 1 Packet by OXFORD + DUKE
ACF NATIONALS 2018 ROUND 1 PRELIMS 1 packet by OXFORD + DUKE authors Oxford: Daoud Jackson, George Charlson, Jacob Robertson, Freddy Potts, Chris Stern Duke: Ryan Humphrey, Gabe Guedes, Lucian Li, Annabelle Yang ACF Nationals 2018 | Packet: Oxford + Duke | Page 1 Editors: Jordan Brownstein, Andrew Hart, Stephen Liu, Aaron Rosenberg, Andrew Wang, Ryan Westbrook Tossups 1. ARCIMBOLDO (ar-chim-BOL-do) and the auto-rickshaw platform process data from this technique. The sphere-of- influence algorithm for this technique helps differentiate solvents and the target molecule, and like the free lunch algorithm, is found in the SHELXE (“shell X-E”) package. Data from this technique can be more easily processed by repeating data collection after either using a laser to induce radiation damage in the sample, or soaking the sample in a heavy metal compound. This is the most prominent technique for which Rigaku produces instruments, including the MiniFlex. MAD, SAD, and isomorphous replacement are methods used in this technique to solve the phase problem. The systematic absences from this technique are used to help find the space group of the analyte, which must be determined in order to solve the final structure. For 10 points, name this technique that uses Bragg’s law to determine the structure of a crystal. ANSWER: x-ray diffraction [accept x-ray crystallography or XRD] 2. Five years after this man’s death, his diaries were collected by the manager of the Pomeranian Mortgage Bank, including correspondences produced while he lived with his former lieutenant Wilhelm Junker. This man’s peaceful meeting with Omukama Kabalega (oh-moo-KAH-mah kah-bah-LEH-gah) is commemorated by a cone-shaped structure at the Mparo Royal Tombs. -
UNITS This Appendix Explains Some of the Abbreviations1•2 Used For
APPENDIX: UNITS This appendix explains some of the abbreviations1•2 used for units in this book and gives conversion factors to SI units and atomic units: length 1 a0 = 1 bohr = 0.5291771 X 10-10 m 1 A= 1 Angstrom= lo-10 m = 1.889727 ao mass 1 me = 1 atomic unit of mass = mass of an electron 9.109534 X 10-31 kg = 5.485803 X 10-4 U 1 u 1 universal atomic mass unit = one twelfth the mass of a 12c atom 1.6605655 x lo-27 kg = 1822.887 me time 1 t Eh 1 = 1 atomic unit of time = 2.418884 x l0-17 s 1 s = 1 second = 4.134137 x 1016 t/Eh temperature 1 K = 1 Kelvin amount of substance 1 mol = 1 mole 6.022045 x 1023 atoms, molecules, or formula units energy 1 cm-1 = 1 wavenumber 1 kayser 1.986477 x lo-23 J 4.556335 x 10-6 Eh 857 858 APPENDIX: UNITS 1 kcal/mol = 1 kilocalorie per mole 4.184 kJ/mol = 1.593601 x 10-3 Eh 1 eV 1 electron volt = 1.602189 x lo-19 J 3.674902 X 10-2 Eh 1 Eh 1 hartree = 4.359814 x lo-18 J Since so many different energy units are used in the book, it is helpful to have a conversion table. Such a table was calculated from the recommended values of Cohen and Taylor3 for the physical censtants and is given in Table 1. REFERENCES 1. "Standard for Metric Practice", American Society for Testing and Materials, Philadelphia (1976).