Synthesis and Reactivity of Transition Metal and Main Group Hydrogenation Catalysts

Total Page:16

File Type:pdf, Size:1020Kb

Synthesis and Reactivity of Transition Metal and Main Group Hydrogenation Catalysts Synthesis and Reactivity of Transition Metal and Main Group Hydrogenation Catalysts by Eliar Mosaferi A thesis submitted in conformity with the requirements for the degree of Doctor of Philosophy Department of Chemistry University of Toronto © Copyright by Eliar Mosaferi 2019 Synthesis and Reactivity of Transition Metal and Main Group Hydrogenation Catalysts Eliar Mosaferi Doctor of Philosophy Department of Chemistry University of Toronto 2019 Abstract Since its discovery by Paul Sabatier, catalytic hydrogenation of unsaturated substrates has become the single largest industrial process to date and encompasses the production of many products, such as foods, agrochemicals, pharmaceuticals, and materials. Over the last century research in the area has predominantly focused on the use of transition metals such as palladium, platinum, rhodium, and ruthenium to develop heterogeneous and homogeneous hydrogenation catalysts. The research presented herein focuses on the use of ruthenium complexes bearing electron-rich phosphorylated N-heterocyclic carbene ligands as well as the development of main- group compounds for frustrated Lewis pair catalysis. Complexes [Ru(0)LL’2(CO)] and [RuHL2(CO)][Cl], where L = N-phosphorylated N- heterocyclic carbene (NHCP), and L’ = triphenylphosphine, were prepared as a mixture by treatment of RuHCl(CO)(PPh3)3 with excess NHCP carbene and separated by crystallization. The zero-valent complex [Ru(0)LL’2(CO)] was shown to undergo rapid oxidative addition to the corresponding Ru(II) species when treated with small molecules to afford complexes of the general type [RuHXLL’(CO)], where L = N-phosphorylated N-heterocyclic carbene, L = triphenylphosphine, and X = H, SiPh3, or Si(H)Ph2. ii The reaction of NHCP carbene with [RuCl2(p-cymene)]2 resulted in the isolation of the piano- stool half-sandwich complex [RuCl2(p-cymene)(NHCP)] as well as an unusual arene-activated species. The half-sandwich complex was treated with a halide-abstracting agent to afford the cationic compound [RuCl(p-cymene)(NHCP)]+, which was shown to rapidly undergo dihydrogen activation via an outer-sphere mechanism involving the phosphine appended to the carbene ligand. To demonstrate the utility of main-group catalysts, trityl cations of the form [(4-MeO- C6H4)xCPh3-x][BR4] were synthesized, where x = 1 and 3, and R = F, or C6F5. Treatment of equimolar solutions of [(4-MeO-C6H4)CPh2][BF4] and sterically encumbered phosphines with dihydrogen resulted in activation of dihydrogen but no catalytic activity was observed. The air- and moisture-stable [(4-MeO-C6H4)CPh2][BF4] was shown to be a potent Lewis acid catalyst in the hydrothiolation of olefins. iii Acknowledgments First and foremost, I would like to thank Professor Douglas Stephan for giving me the opportunity to complete my degree in his group. His vast knowledge, unwavering support, and infectious enthusiasm have been invaluable in aiding my journey through grad school and as a result my experience has been immensely positive. I am thankful for the opportunities to learn and grow and will always look back on my years in his group with fondness. As well, I’d like to thank the members of my advisory committee, Prof. Morris and Prof. Song, for the invaluable advice throughout my degree. I would also like to thank all the members of the Stephan group, both past and present, for their support and help both in and outside the lab. The life of a graduate student is heavily influenced by the peers around them and I am truly grateful to have known these wonderful group of colleagues, friends, and mentors. In particular, I’d like to thank Dr. Adam McKinty, Dr. Michael Boone, Dr. Colin Douglas, Dr. Adelle Vandersteen, and all other past and present members of C.S.S.G. for keeping me humble and for always being ready with a helping hand. In particular, the meetings held over glasses of Red Leaf juice were particularly useful. I’d especially like to thank Dr. Tim Johnstone, Dr. Andrew Jupp, and Kevin Szkop for their technical and mental support and the pleasant chats over afternoon coffee. As well I’d like to thank Dr. Andrew Jupp, Dr. Tim Johnstone, Kevin Szkop, Karlee Bamford, James Lafortune, and Alex Waked for editing my thesis and providing valuable feedback. And to all of the friends I have made in Toronto, whether in the lab or outside, I am forever grateful for your kindness, hospitality, and support. As always, my family has been incredibly supportive and without their sacrifices I would not be where I am today. My parents, Hassan and Maryam, have always pushed me to be my best in all aspects of my life. They have supported me through the different chapters of my life. My brother, Yashar, has also been instrumental in my life. Much like my parents, he has been there for me time and time again. It has been their encouragement, support, and unconditional love that has allowed me to persevere through challenges. I owe an immense debt of gratitude to them for their unconditional love and look forward to the opportunity to support and encourage them in the future. iv Last but not least, I would like to thank my incredible partner, Setareh Nourani. More than anyone she has been patient and supportive throughout this journey. Despite not being a chemist, she has patiently and enthusiastically played the role of my sound board and provided guidance when I faced problems in the lab. Equally, outside the lab she has shown an incredible amount of love and care and for that I owe her a great debt. Her enthusiasm and willingness to bear through my chemistry problems have been an invaluable asset. This work could not be completed without her undying support. v Table of Contents Acknowledgments.......................................................................................................................... iv Table of Contents ........................................................................................................................... vi List of Tables ................................................................................................................................. ix List of Schemes ................................................................................................................................x List of Figures ................................................................................................................................xv List of Abbreviations ................................................................................................................. xviii Chapter 1 Introduction .....................................................................................................................1 1.1 Chemistry and Impact on Society ........................................................................................1 1.2 Catalysis ...............................................................................................................................2 1.3 Transition Metal Hydrogenation ..........................................................................................3 1.3.1 Heterogeneous Catalysts ..........................................................................................3 1.3.2 Well-Defined Homogeneous Catalysts ....................................................................3 1.4 Metal-Free Hydrogenation .................................................................................................10 1.4.1 Main-Group Catalysis ............................................................................................10 1.4.2 Frustrated Lewis Pairs (FLP) .................................................................................12 1.4.3 FLP Hydrogenations ..............................................................................................16 1.5 N-Heterocyclic Carbenes (NHC) .......................................................................................18 1.5.1 History of NHC Carbenes ......................................................................................18 1.5.2 NHC Complexes in Hydrogenation .......................................................................23 1.6 Nitrile Butadiene Rubber ...................................................................................................25 1.7 Lanxess Project ..................................................................................................................26 1.8 Scope of this Thesis ...........................................................................................................27 1.9 Contributions to Knowledge ..............................................................................................27 1.9.1 Relevant Publications.............................................................................................27 vi 1.9.2 Conference Presentations .......................................................................................28 1.9.3 Undergraduate Mentoring ......................................................................................28 Chapter 1 References .....................................................................................................................30 Chapter 2 Coordination Chemistry of N-Heterocyclic Phosphanyl Carbenes ...............................38 2.1 Introduction ........................................................................................................................38 2.1.1 Zero-Valent Ruthenium Complexes ......................................................................38 2.1.2 N-Heterocyclic
Recommended publications
  • Refereed Publications (A = Article, C = Communication, R = Review)
    Curriculum Vitae: Douglas W. Stephan FRSC, FRS Current Address Department of Chemistry, University of Toronto, 80 St. George St. Toronto, ON, M5S3H6 [email protected]; [email protected] Phone: 416-946-3294; Cell: 647-339-3568; Admin. Asst: Shanna Pritchard 416-978-8940, [email protected] webpage: http://www.chem.utoronto.ca/staff/DSTEPHAN Home Address 47 St. Clair Ave. W., Suite 302, Toronto, ON. M4V 3A5; Home: 416-619-5901 Personal Born in Hamilton, Ontario, CANADA July 27 1953, married (Dianne L. Gunn) two adult children (David and Kathryn) Citizenship Canadian Education Ph.D 1980 (University of Western Ontario), B.Sc. 1976 (McMaster University, summa cum laude) Positions Held 2018-present University Professor, University of Toronto 2008-2018 Professor, University of Toronto 2016-2019 Chair, Editorial Board of Chemical Society Reviews 2016-2018 Einstein Visiting Fellow, TU Berlin. 2011-2017 Associate Editor, Chemical Society Reviews 2006 (Oct) International Research Guest Professor, WW-Universitaet Muenster 2008-2021 Canada Research Chair in Catalysis and New Materials (UToronto) 2005-2007 Canada Research Chair in Catalysis and New Materials (UWindsor) 2003-2006 Head, Department of Chemistry & Biochemistry 2002-2007 University Professor, University of Windsor 2002-2003 Humboldt Senior Awardee, WW-Universitaet Muenster 2001-2006 NSERC/NOVA Chemicals Corporation Industrial Research Chair 1995 DAAD Visiting Scientist, Muenster, Germany (declined) 1995 NSERC/DFG Visiting Scientist, WW-Universitaet Muenster. 1992-2002
    [Show full text]
  • Toward Thermodynamically Stable Triplet Carbenes Yumiao Ma* BSJ Institute, Haidian, Beijing, 100084 [email protected] Abstr
    Toward Thermodynamically Stable Triplet Carbenes Yumiao Ma* BSJ Institute, Haidian, Beijing, 100084 [email protected] Abstract In sharp contrast to the widely studied and applied stable singlet carbenes, only several kinetically persistent triplet carbenes have been studied, and thermodynamically stable triplet carbenes are much less developed. With the Gibbs free energy of C-H bond insertion into methane as a probe, DFT calculations were employed to examine a variety of candidate molecules for stable triplet carbenes. Guided by these calculations, some molecules with significant stability against C-H insertion were designed by fine tuning of geometry and electronic structures. These compounds might be potential candidates for experimental development of stable triplet carbenes. Introduction Pioneered by Guy Bertrand, Armin Arduengo and others, stable singlet carbenes have been well developed since 1980s1-3, and have exhibited great importance as ligands, reagents, etc. On the other hand, stable, or even kinetically persistent triplet carbenes are still scarce. A persistent triplet carbene, 2, 2', 4, 4', 6, 6'-hexabromodiphenylcarbene, was reported by Hideo Tomioka et al in 19954, with a half-life at ~1 s. In 2001, persistent triplet carbene with half-life of 19 min at room temperature was reported5, which was a great breakthrough. Several other kinetically persistent triplet carbenes were also studied, and the half-life ranges from microseconds to a week6, 7. However, thermodynamically stable triplet carbenes are still unknown hitherto, to the best of our knowledge. In this work, a variety of potential candidates for stable triplet carbenes were designed and examined by quantum chemical calculations. Guided by calculations and rational design, some competitive candidates were obtained, which may be helpful for the development of stable triplet carbenes, and for the understanding of the chemical properties related to open shell organic compounds.
    [Show full text]
  • Phosphorus Lewis Acids: Emerging Reactivity and Applications in Catalysis
    Chemical Society Reviews Phosphorus Lewis Acids: Emerging Reactivity and Applications in Catalysis Journal: Chemical Society Reviews Manuscript ID: CS-REV-06-2015-000516.R1 Article Type: Tutorial Review Date Submitted by the Author: 30-Jul-2015 Complete List of Authors: Bayne, Julia; University of Toronto, Chemistry Stephan, Douglas; University of Toronto, Department of Chemistry Page 1 of 10 ChemicalPlease do notSociety adjust Reviews margins Journal Name ARTICLE Phosphorus Lewis Acids: Emerging Reactivity and Applications in Catalysis a a* Received 00th January 20xx, J. M. Bayne and D. W. Stephan Accepted 00th January 20xx Part of the renaissance in main group chemistry has been a result of the focus on reactivity. This has led to the DOI: 10.1039/x0xx00000x development of applications in stoichiometric reactivity and catalysis. In this tutorial review, we focus attention on the role of phosphorus-based Lewis acids in such advances. While early literature recognizes the role of P(III) and P(V) www.rsc.org/ electrophiles in coordination chemistry, it has generally been more recent studies that have focused on applications of this Lewis acidity. Applications of these novel P-based Lewis acids in stoichiometric reactivity, Lewis acid catalysis and frustrated Lewis pair (FLP) reactivity are reviewed. These advances demonstrate that P-based Lewis acids are a powerful tool for further developments in metal-free catalysis. Key Learning Points 1. The development of main group catalysis has contributed to significant advancements in catalytic and stoichiometric transformations. 2. Although P(III) species are typical Lewis bases, phosphenium cations have demonstrated electron accepting abilities. 3. As saturated acceptors, phosphorus(V)-based Lewis acids derive their acidity from a low lying σ* orbital.
    [Show full text]
  • Copyrighted Material
    275 Index a antiaromatic systems acetals and hemiacetals – benzo-annulation 264 – aldehyde hydrates 267 – compounds 262–263 – chloral hydrate 267 – cyclobutadiene 263 – cyclohexanone hydrate 267 – cyclooctatetraene 264 – cyclopropanones 267, 268 – cyclopropene 263 – definitions 267 – 3-cyclopropenyl anion 263 – formation mechanisms 268, 269 – dimerization 263–264 – protecting group 268, 269 – energetically destabilized, conjugation activation energy 17 262, 264 addition reactions, carbenes aryne–metal complexes 227–228 – bicyclic olefins 172–173 arynes – carbene to alkene, stereospecific – 1,2-, 1,3-and 1,4-didehydrobenzenes addition 170 229–230 – dibromocarbene 168, 169 – allylic hydrogen 228 – hexafluorobenzene 172, 173 – 1-aminobenzotriazole, oxidation 235 – pyrroles and indoles 172, 173 – benzenediazonium-2-carboxylate 232, – Simmons–Smith reactions 174, 175 233–234 – Simmons–Smith reagent 173–174 – Bergman cyclization 229 – singlet carbenes 168, 169 – coupled cluster (CC) 225 – stereochemistry 170–171, 172 – cycloaddition reactions 227, 240–243 – stereoselectivity 173 – density functional theory (DFT) 225 – triplet carbenes 168, 169–170 – 1,3-dipolar cycloaddition 243–244 aldol condensation – generation 230 – aldehyde/ketone 78, 79 – and heteroarynes 225 – aromatic ketones 78, 79 – isolable zwitterion 234 – Claisen condensation 78, 80 – lowest unoccupied molecular orbitals – Dieckmann condensation 80 (LUMOs) 227 – esters 78 – meta-benzyne 228, 229 – fluoroacetonitrileCOPYRIGHTED 78, 79 – nomenclature MATERIAL 226 – Knoevenagel condensation 81 – nucleophilic addition 237–238 – Michael reaction 81 – in organic synthesis 245–246 alkene 30 – ortho-, meta-and para-benzynes alkyl and dialkyl carbenes 185 227 allenes (cycloaddition to 1,2-dienes) – ortho-benzyne 226 176 – para-benzyne 228, 229 allylic hydrogen 228 – reactions 228 amine 29–30 – representative 226 Reactive Intermediates in Organic Chemistry: Structure, Mechanism, and Reactions, First Edition.
    [Show full text]
  • Organocatalysis with N-Heterocyclic Carbenes
    Organocatalysis with N-Heterocyclic Carbenes Frontiers of Chemistry Robert B. Lettan II March 28th, 2009 Key References: Enders, D.; Niemeier, O.; Henseler, A. Chem. Rev. 2007, 107, 5606-5655. Marion, N.; Díez-González, S.; Nolan, S. P. Angew. Chem. Int. Ed. 2007, 46, 2988-3000. Johnson, J. S. Curr. Opinion Drug. Discov. Develop. 2007, 10, 691-703. Rob Lettan @ Wipf Group Page 1 of 34 3/30/2009 Thiamine-Dependent Enzymes NH 2 Me N OR Thiamine: R = H N 3— TPP: R = P2O6 S Me N H Thiamine diphosphate (TPP) is required by a number of enzymes that catalyze the cleavage and formation of bonds to the carbon atom of a carbonyl group. Mechanism of pyruvate decarboxylase (PDC) Me Me N Me N OR HO N N pyruvate Me S —CO2 Me NH2 S Me H O O N N HO S H S Me N Me Me carbene Me H N OR ylide N N O H S NH H Me S Me H All 3 nitrogens on aminopyridine ring OH involved in hydrogen binding to enzyme. Jordan, F. Nat. Prod. Rep. 2003, 20, 184-201. Rob Lettan @ Wipf Group Page 2 of 34 3/30/2009 Thiamine-Dependent Enzymes Rob Lettan @ Wipf Group Page 3 of 34 3/30/2009 Thiamine-Dependent Enzymes Mechanism of pyruvate dehydrogenase (E1) Me Me N Me pyruvate N N N HO —CO2 S NH2 S E1 Me carbene ylide S S H N E2 O SH H O FADH2 NAD N lipoamide Me S E2 O E3 SH H FAD NADH CoASH N E2 HS E2 O O Krebs cycle How can nature’s Umpolung method cellular Me SCoA of bond-formation be applied to synthesis? respiration Acetyl-CoA Leeper, F.
    [Show full text]
  • Communicatio N In
    COMMUNICATIOUS009932315B2 N IN ( 12 ) United States Patent ( 10 ) Patent No. : US 9 , 932 ,315 B2 Johnson et al. (45 ) Date of Patent: Apr . 3 , 2018 ( 54 ) PERSISTENT CARBENE ADDUCTS AND FOREIGN PATENT DOCUMENTS RELATED METHODS WO WO 00 /071554 A2 11/ 2000 wo WO 02 /076613 Al 10 / 2002 ( 71 ) Applicant : Massachusetts Institute of Wo WO 2008 / 069688 A2 6 / 2008 Technology , Cambridge , MA (US ) WO WO 2012 / 002913 AL 1 /2012 (72 ) Inventors : Jeremiah A . Johnson , Boston , MA OTHER PUBLICATIONS (US ) ; Aleksandr V . Zhukhovitskiy , El Cerrito , CA (US ) International Search Report and Written Opinion for PCT/ US15 / 44295 dated Nov . 13 , 2015 . International Preliminary Report on Patentability for PCT/ US15 / ( 73 ) Assignee : Massachusetts Institute of 44295 dtaed Feb . 23 , 2017 . Technology, Cambridge , MA (US ) Kuchenbeiser , Reactivity of Bis ( amino )cyclopropenylidenes ( BACs ) and Cyclic ( alkyl ) (amino )carbenes ( CAACs) . UC Riverside @( * ) Notice : Subject to any disclaimer , the term of this Electronic Theses and Dissertations. Aug. 2009 217 pages . Last accessed on Apr. 20 , 2017 at < http : // escholarship . org/ uc / item / patent is extended or adjusted under 35 6h67q1f4 > . U . S . C . 154 ( b ) by 0 days . Dyker et al. , Soluble Allotropes of Main - Group Elements . Science . Aug . 22 , 2008 ;321 (5892 ) : 1050 - 1 . ( 21 ) Appl. No. : 15 /502 , 678 Kuhn et al ., A Facile Preparation of Imidazolinium Chlorides . Org . Lett . 2008 ; 10 ( 10 ) : 2075 - 7 . Epub Apr. 16 , 2008 . ( 22 ) PCT Filed : Aug. 7 , 2015 Kuhn et al. , 1, 3 - Diisopropyl - 4 , 5 - dimethylimidazolium - 2 - N , N ’ diisopropylamidinat , ein neuartiges Betain . Zeitschrift für Naturforschung B . Apr . 1999 ; 54 ( 4 ) :434 - 40 .
    [Show full text]
  • Synthesis of Transition Metal N-Heterocyclic Carbene Complexes and Applications in Catalysis
    Université de Montréal Synthesis of Transition Metal N-Heterocyclic Carbene Complexes and Applications in Catalysis Par Michael Holtz-Mulholland Département de chimie Faculté des arts et des sciences Thèse présentée à la Faculté des études supérieures et postdoctorales en vue de l’obtention du grade de philosophiæ doctor (Ph.D.) en chimie Août, 2014 © Michael Holtz-Mulholland, 2014 Université de Montréal Faculté des études supérieures et postdoctorales Cette thèse intitulée: Synthesis of Transition Metal N-Heterocyclic Carbene Complexes and Applications in Catalysis Présentée par: Michael Holtz-Mulholland A été évaluée par un jury composé des personnes suivantes: Pr. Davit Zargarian, président-rapporteur Pr. Shawn K. Collins, directeur de recherche Pr. André B. Charette, membre du jury Pr. Bruce A. Arndtsen, examinateur externe Pr. David Morse, représentant du doyen de la FAS Abstract A new class of C1-symmetric N-heterocyclic carbene (NHC) ligands has been developed. The new ligands exploit a biaryl methyne as a chiral relay, and an N-methyl group as a reactivity controlling element. The precursors for the new ligands were synthesized via a modular scheme that allows for facile diversification. Several of the new ligands were installed onto both copper and gold, generating mono N-heterocyclic carbene transition metal complexes. The new C1-symmetric copper complexes were tested as catalysts for the synthesis of binaphthols via the oxidative coupling of electron poor 2-naphthols. The new C1-symmetric ligands afforded higher yields than their C2-symmetric counterparts. During the course of the optimization, small molecule additives were found to modulate the reactivity of the copper catalyst.
    [Show full text]
  • Downloaded on 2017-02-12T05:57:30Z Theoretical Chemistry Accounts Manuscript No
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Cork Open Research Archive Title Copper(I) carbene hydride complexes acting both as reducing agent and precursor for Cu ALD: a study through density functional theory Author(s) Dey, Gangotri; Elliott, Simon D. Publication date 2013-11-14 Original citation DEY, G. & ELLIOTT, S. D. 2013. Copper(I) carbene hydride complexes acting both as reducing agent and precursor for Cu ALD: a study through density functional theory. Theoretical Chemistry Accounts, 133, 1-7. http://dx.doi.org/10.1007/s00214-013-1416-y Type of publication Article (peer-reviewed) Link to publisher's http://dx.doi.org/10.1007/s00214-013-1416-y version Access to the full text of the published version may require a subscription. Rights © Springer-Verlag Berlin Heidelberg 2013. The final publication is available at Springer http://dx.doi.org/10.1007/s00214-013-1416-y Item downloaded http://hdl.handle.net/10468/2476 from Downloaded on 2017-02-12T05:57:30Z Theoretical Chemistry Accounts manuscript No. (will be inserted by the editor) Copper(I) carbene hydride complexes acting both as a reducing agent and precursor for Cu ALD - A study through Density Functional Theory Gangotri Dey · Simon D. Elliott the date of receipt and acceptance should be inserted later Abstract We propose dual functional copper complexes that may act both as reducing agents and as Cu sources for prospective Cu Atomic Layer Deposition (ALD). Here we see a CuH carbene complex, which can donate the H- anion to another Cu precursor forming neu- tral by-products and metallic Cu(0).
    [Show full text]
  • Program Book.PDF
    16th Boron Chemistry Meeting in the Americas June 26 - 30, 2018 at Boston College Program and Abstracts 1 WELCOME It is our distinct pleasure to welcome you to the 16th Boron Chemistry Meeting in the Americas here at Boston College. We hope that you will enjoy the historic city of Boston as well as the four-day program filled with exciting talks and stimulating discussions. Delegates from all over the world (North-, Central-, and South America, Europe, and Asia), and from diverse backgrounds (academia, industry, and government) are coming together at this conference to learn about the latest developments in boron chemistry. Thus, we hope that this gathering will not only promote scientific exchange and collaboration but also provide an opportunity for participants to make new connections and to reconnect with old friends. In organizing the program, the vision we had was to highlight the versatility of the element boron in four specific areas (medicinal chemistry, organic synthesis, materials chemistry, fundamental chemistry). This four-pronged thematic focus is represented by our conference logo with four infinity symbols surrounding the boron and is reflected by the scientific program. One of the highlights of the program will be the poster session on Wednesday evening. This will be a great opportunity to chat about the latest research while enjoying small bites and drinks. Another highlight is the conference banquet, which will take place on Thursday evening at the exquisite State Room with unparalleled views of the city and the Boston waterfront from the 33rd floor in the heart of downtown Boston. During the banquet we will celebrate Prof.
    [Show full text]
  • The Synthesis of Novel Aryl and Alkyl Phosphine-Imidazolium Salts
    The Synthesis of Novel Aryl and Alkyl Phosphine-Imidazolium Salts by Huw John Roberts B.Sc. (Hons) This thesis is presented for the degree of Doctor of Philosophy to the University of Wales Cardiff, Department of Chemistry 2007 The work described in this thesis was carried out in the Department of Chemistry at the University of Wales Cardiff under the supervision of Prof. Kingsley J. Cavell UMI Number: U585058 All rights reserved INFORMATION TO ALL USERS The quality of this reproduction is dependent upon the quality of the copy submitted. In the unlikely event that the author did not send a complete manuscript and there are missing pages, these will be noted. Also, if material had to be removed, a note will indicate the deletion. Dissertation Publishing UMI U585058 Published by ProQuest LLC 2013. Copyright in the Dissertation held by the Author. Microform Edition © ProQuest LLC. All rights reserved. This work is protected against unauthorized copying under Title 17, United States Code. ProQuest LLC 789 East Eisenhower Parkway P.O. Box 1346 Ann Arbor, Ml 48106-1346 Declaration DECLARATION This work has not previously been accepted in substance for any degree and is not concurrently submitte submitted in candidature for any degree.currently Signed (candidate) Date ............... STATEMENT 1 This thesis is being submitted in partial fulfillment of the requirements for the degree o f .................... (insert MCh, MD, MPhil, PhD etc, as appropriate) Signed ........................................ (candidate) D ate *>.}.?. J M ............. STATEMENT 2 This thesis is the result of my own independent work/investigation, except where otherwise stated. Other sources are acknowledged by explicit references.
    [Show full text]
  • Thesis Template
    Investigating Metal Oxide Nanoparticles as Photocatalysts for Carbon Dioxide Reduction Reactions by « Thomas Wood » A thesis submitted in conformity with the requirements for the degree of Doctorate of Philosophy Chemical Engineering and Applied Chemistry University of Toronto © Copyright by Thomas Wood 2017 ii Investigating Metal Oxide Nanoparticles as Photocatalysts for Carbon Dioxide Reduction Reactions Thomas Wood Doctorate of Philosophy Chemical Engineering and Applied Chemistry University of Toronto 2017 Abstract Metal oxide nanoparticles were investigated for their application as photocatalysts for the gas- phase photocatalytic conversion of carbon dioxide to value-added chemicals and fuels. A multi- photoreactor catalyst screening system was developed to screen a broad set of nanoparticles for 13 photocatalytic activity. Carbon-13 labelled carbon dioxide ( CO2) isotope tracing was carried out to discriminate whether the products arose from CO2 conversion or from reactions involving residual carbon contamination. A set of metal oxide photocatalysts were investigated at o o temperatures ranging from 80 C to 190 C in atmospheres containing both H2 and CO2. A nanoparticle heterostructure composed of Cu sputtered into a mesoporous TiO2 nanoparticle film was synthesized. These films showed evidence of increased hydrocarbon production under illumination, but no 13C labelled product was measured. iii Hydroxylated indium sesquioxide (In2O3-xOHy) nanoparticles were synthesized and investigated for the photocatalytic conversion of CO2. It was found that In2O3-xOHy nanoparticles are capable of photocatalytically and thermally driving the reverse water gas shift (RWGS) reaction at o 13 13 temperatures above 130 C. Both CO and trace CH4 were measured. A strong relationship between the CO2 adsorption capacity and the relative surface concentrations of surface defects, such as hydroxides and oxygen vacancies, and photocatalytic activity was established.
    [Show full text]
  • RSC Communication Template
    Dynamic Article Links ► ChemComm Cite this: DOI: 10.1039/c0xx00000x www.rsc.org/xxxxxx CONFERENCE REPORT Highlights from the 47th EUCHEM Conference on Stereochemistry, Bürgenstock, Switzerland, May 2012 Tom D. Shepparda and Thomas N. Snaddonb Received (in XXX, XXX) Xth XXXXXXXXX 20XX, Accepted Xth XXXXXXXXX 20XX 5 DOI: 10.1039/b000000x On Sunday the 29th April around 120 chemists descended on the which the President, Andres Pfaltz, welcomed this year’s guest beautiful town of Brunnen on the banks of the Vierwaldstättersee of honour Albert Eschenmoser (ETH Zürich). The President (Lake Lucerne), Switzerland (Fig. 1). The majestic Seehotel 35 completed his doctoral studies under the direction of Professor Waldstätterhof was the location for 47th annual Bürgenstock Eschenmoser and spoke with great fondness of the special life- 10 Stereochemistry Conference. The atmosphere was bustling and long relationship he has with his former advisor, and which full of excitement as the eagerly awaited event was soon to begin. typically evolves between a great many doctoral students and In keeping with tradition, the line up of speakers is kept strictly their advisors. It is certain that many of the attendees also feel a secret until the arrival of delegates. This is but one of the 40 strong affinity with Professor Eschenmoser, such is the unique traditions that make ‘Bürgenstock’ one of the most celebrated impact he has had on the development of organic chemistry. 15 events on the conference calendar. This year’s organising The scientific programme began immediately after dinner with committee comprising Alain De Mesmaeker (Syngenta, Stein), former president Jeremy Sanders (University of Cambridge) Donald Hilvert (ETH Zürich), Jérôme Lacour (Universite de chairing the first session.
    [Show full text]