Walter Jacobs Was a Very Highly Regarded Member of the Rockefeller Institute for Some Fifty Years

Total Page:16

File Type:pdf, Size:1020Kb

Walter Jacobs Was a Very Highly Regarded Member of the Rockefeller Institute for Some Fifty Years NATIONAL ACADEMY OF SCIENCES WALTER ABRAHAM JACOBS 1883—1967 A Biographical Memoir by ROBERT C. ELDERFIELD Any opinions expressed in this memoir are those of the author(s) and do not necessarily reflect the views of the National Academy of Sciences. Biographical Memoir COPYRIGHT 1980 NATIONAL ACADEMY OF SCIENCES WASHINGTON D.C. WALTER ABRAHAM JACOBS December 24, 1883-July 12, 1967 BY ROBERT C. ELDERFIELD ALTER ABRAHAM JACOBS died in Los Angeles after a Wlong and impressive career. He left behind some 273 publications which record important contributions in the field of the chemistry of natural products of biological im- portance, as well as the development of chemotherapeutic agents-the significance of which was not recognized until some years had passed. Jacobs was born in New York City on December 24, 1883 and attended local elementary schools. He received an A.B. degree in 1904 and an A.M. in 1905 from Columbia Univer- sity, after which he enrolled at the University of Berlin for study under Emil Fischer, earning a Ph.D. degree in 1907. On his return to New York, Jacobs received an appoint- ment as a fellow in chemistry in the laboratory of Phoebus A. Levene at the newly established Rockefeller Institute for Medical Research. In 1908 he became an assistant, and in 1910 an associate in Levene's laboratory. During these years with Levene, he was closely associated with the latter's work on the chemistry of the nucleic acids. The studies, first with the nucleotide inosinic acid from beef extract, disclosed its essential chemistry by hydrolysis to the nucleoside, inosine, and by subsequent cleavage from the latter of its crystalline sugar component which was identified 248 BIOGRAPHICAL MEMOIRS as D-ribose. This became the pattern for similar studies with the nucleotide guanylic acid, and with yeast nucleic acid (ribonucleic acid), from which the various nucleosides were then isolated and interpreted. The attempted extension of this procedure to similar studies with thymus nucleic acid (subsequently shown to be desoxyribosenucleic acid) was in- terrupted by Jacobs' promotion in 1912 to associate member of the Institute with independent status. Dr. Simon Flexner, Director of the Institute, felt that the developing field of chemotherapy warranted a division of its own, and Jacobs was placed in charge of it. In collaboration with Michael Heidelberger, he began an investigation of the possible chemotherapy of polio. It was known that hexameth- ylenetetramine apparently exerted a slight therapeutic effect, and an extended series of quaternary salts was prepared by reaction with aromatic and alipathic halogen compounds. Some of the salts displayed bactericidal properties, and a few appeared to prolong the life of polio-infected monkeys. Un- fortunately, this was due to a loss of virulence of the virus strain. After the disappointing outcome of the chemotherapeutic studies concerning polio, the JacobsHeidelberger team turned its attention to African sleeping sickness, for which no effective and non-toxic drugs were available. Ehrlich had produced a powerful synthetic agent against trypanosomiasis in para-arsenophenylglycine, in which the arsenic was tri- valent. The analogous pentavalent substance, para-phenyl- glycine arsonic acid, was considerably less toxic, but devoid of activity against the disease. Jacobs reasoned that the lack of activity could be due to the free carboxyl group which con- ceivably could react with many centers of the tissue proteins before reaching the parasites. He therefore proposed mask- ing the carboxyl group by conversion to the amide. The resulting substance, sodium para-phenylglycine amide ar- WALTER ABRAHAM JACOBS 249 sonate, was the first, simplest, and best arsenical of a series subsequently synthesized. The new arsenical, named Tryparsamide by Simon Flexner, was found to be extremely effective in trypanosome infected animals by Drs. Wade H. Brown and Louise Pearce, who now formed part of the chemotherapeutic team. Several patents were awarded for control of the drug and several of its analogs-although none of the latter proved to be supe- rior to Tryparsamide. At the conclusion of World War I, Louise Pearce made an extensive study of the drug in the Belgian Congo, which showed Tryparsamide to be more ef- fective than previously used drugs. Further tests in the United States demonstrated some utility in the treatment of tertiary syphilis. Some years later (1953), Belgium recognized the successes of Tryparsamide by making Drs. Jacobs, Heidelberger, Brown and Pearce officers of the Order of Leopold 11. During World War I, a portion of the Institute was desig- nated as U.S. Laboratory # 1, and served as a training facility in laboratory techniques for army physicians. Jacobs and Hei- delberger investigated possible synthetic substitutes for Sal- varsan, a drug in scant supply and of undesirable toxicity. One analog (arsenophenyl-glycine-bis-m-hydroxyanilide), which appeared to be less toxic and at least as active against syphilis when studied by Brown and Pearce in animals, showed promising results in some one hundred human syphilitics. Unfortunately, a second batch, for no apparent reason, caused severe, dangerous dermatitis and was aban- doned. At the conclusion of the work on arsenicals, Jacobs and Heidelberger desired to turn to fields other than synthetic organic chemistry, but Flexner's faith in this approach pre- vailed and attention was turned to pneumococcal and strep- tococcal infections. The drug, Optochin, had been used with 250 BIOGRAPHICAL MEMOIRS partial success in the treatment of pneumococcal infections, SO further modification of the cinchona alkaloids was investi- gated, and a long series of papers resulted. Unfortunately, most of these substances killed infected mice faster than drug or infection alone. The state of this area of chemistry in the United States at the time is reflected in the refusal of the Journal of the American Chemical Society to publish the work on the cinchona alkaloids--on the grounds that no one in Amer- ica was interested in alkaloids. Only after long arguments were the manuscripts accepted. One of the intermediates used in modification of the alkaloids and in other syntheses was p-aminobenzene- sulfonamide, or sulfanilamide, which had been prepared in 1908 by Gelmo in Germany. This was shown by Trefouel, Trefouel, Nitti, and Bovet to be one of the metabolic prod- ucts of the azo dye Prontosil, the antibiotic action of which w,as demonstrated in the same year (1935) by Gerhardt Domagk for which he was awarded the Nobel Prize. Actually, it developed that the antibiotic action of Prontosil was due to the sufanilamide liberated on metabolism of Prontosil. It ap- parently never occurred to Jacobs and Heidelberger in 1920 that such a simple substance could control bacterial infections by other than direct antibacterial action. If the antibiotic ac- tion had been recognized, many thousands of lives could have been saved in the intervening years. After some nine and one-half years, the team of Jacobs and Heidelberger separated. Flexner agreed that chemo- therapeutic research through synthetic methods could be abandoned, and Heidelberger was transferred to the new laboratory of Donald D. Van Slyke to become familiar with biochemistry. Jacobs became a full member of the IRocke- feller Institute in 1923, and turned his attention to the eluci- dation of the structures of substances of natural origin which displayed powerful physiological actions in order to correlate WALTER ABRAHAM JACOBS 25 1 structure with such activity. The name of the laboratory was changed to that of chemical pharmacology. The first group explored was that known as the cardiac glycosides, noted for their specific and powerful action on the myocardium, and which are unrivaled in value for the treat- ment of congestive heart failure. Of the group, the glycosides from digitalis species are probably the best known. Extracts of other plants containing members of the group such as strophanthus species were used as arrow poisons by African tribes. The ancient Egyptians were familiar with the proper- ties of squill, and the Romans used it as an emetic, heart tonic, diuretic and rat poison. Strophanthus was introduced into modern medicine in 1890, and the modern use of digitalis dates from 1785, when William Withering published his famous book entitled, An Account of the Foxglove and Some of Its Medicinal Uses: With Practical Remarks on Dropsy and Other Dis- eases. At the time Jacobs began his investigations on the struc- tures of these important compounds, little was known of them or their chemistry. It was known that they were glyco- sides consisting of a rather complicated aglycone moiety, which was responsible for their major pharmacological prop- erties, joined with one or more sugar molecules. The digitalis glycosides are present in the plant in extremely small amounts, whereas the seeds of Strophanthus kombi are rela- tively rich in the glycosides of strophanthidin. Jacobs' plan of attack on the structures of the aglycones was to place major emphasis on the structure determination of the more acces- sible strophanthidin and to attempt a correlation of this struc- ture with the digitalis aglycones and others by chemical inter- conversions of appropriate derivatives. This plan proved to be completely successful and the structures of a half dozen or so of the aglycones were demonstrated. It should be noted that when the study of the cardiac 252 BIOGRAPHICAL MEMOIRS. aglycones was begun (1923), similar studies on cholesterol and the bile acids by Windaus (1903), Diels (1903) and Wie- land (1912) in Germany were also under way. There was no reason to believe that the th'ree groups of substances would ultimately be found to be closely related. Also, with the pos- sible exception of ultraviolet spectroscopy, none of the instru- mental methods, such as infrared spectroscopy, X-ray spec- troscopy and nuclear magnetic resonance, were available. Chemical transformations and degradation with subsequent interpretation formed the basis for structural elucidati~on-a long and tedious process at best.
Recommended publications
  • <I>Anemone Raddeana</I>
    REVIEW Pharmacochemistry & Biomacromolecule Research Laboratories1, Qiqihar Medical University, Qiqihar; College of Pharmacy2, Changchun University of Chinese Medicine, Changchun, P. R.China Phytochemicals and bioactivities of Anemone raddeana Regel: a review Yong-Xu Sun 1,∗, Ji-Cheng Liu 1,∗, Da-You Liu 2,∗ Received April 28, 2011, accepted May 27, 2011 Ji-Cheng Liu, Qiqihar Medical University, 333 BuKui Street, JianHua District, Qiqihar, 161006, China [email protected] Da-YouLiu, College of Pharmacy, Changchun University of Chinese Medicine, 1035 BoShuo Road, Jing Yue Economic Development District, Changchun, 130117, China [email protected] Yong-Xu Sun, Pharmacochemistry & Biomacromolecule Research Laboratories, Qiqihar Medical University, 333 BuKui Street, JianHua District, Qiqihar, 161006, China [email protected] ∗These authors contributed equally to this work. Pharmazie 66: 813–821 (2011) doi: 10.1691/ph.2011.1574 Anemone raddeana, usually called as “ToujianLiang” in China, is an Anemone herb belonging to the Ranun- culaceae family. Until now there are in total 67 of chemical components identified including triterpenoids, steroids, lactones, fats and oils, saccharide and alkaloids. A broad spectrum of pharmacological activity of A. raddeana compounds have been reported, such as antitumor, antimicrobial, anti-inflammatory, sedative and analgesic activites, as well as anti-convulsant and anti-histamine effects. In view of this, we initiated this short review to present the phytochemical and pharmacological profile of A. raddeana to support future studies in this discipline. 1. Introduction Anemone raddeana Regel is a traditional Chinese medicinal herb belonging to the Anemone genus (Ranunculaceae), which is widely distributed in Russia (Far east), northeast of China, Japan and Korea (Chen et al.
    [Show full text]
  • E-Newsletter
    October 2009 Center for Clinical and Translational Science e-Newsletter Center News New Certificate Program in Clinical and Translational Science Graduates First Class By Angela Slattery In September 2008, a new Certificate Program in Clinical and Translational Science began at Rockefeller University. Eighteen students from across campus participated in the inaugural class. In June 2009, all of the program’s students graduated and received a Certificate in Clinical and Translational Science from the university. The Certificate Program, which is sponsored by the Center for 2009 Inaugural Certificate in Clinical and Translational Science Class Clinical and Translational Science or his own hypothetical human subjects The protocols that were submitted (CCTS), was developed in collaboration protocol, including an informed consent in fulfillment of the requirement of with students and postdoctoral fellows form. To further familiarize the students the course were of exceptionally high to provide trainees with an introduction with the protocol review process, the caliber and offered insights into the to the principles and practices of clinical students then functioned as a mock IRB, clinical research interests of the talented and translational research. reviewing each of the protocols and group of investigators who enrolled in The Certificate Program is a one year offering suggestions to insure the optimal the program. Dr. Barry Coller, director program that consists of two courses. design and the greatest protection of the of the Certificate Program stated, Each student was required to create her human subjects that would participate. (continued on page 2) CCTS and Clinical Directors Network Successfully Complete First Collaborative Project By Angela Slattery In the fall of 2008, through the history phenotyping system.
    [Show full text]
  • Saponins from Chinese Medicines As Anticancer Agents
    molecules Review Saponins from Chinese Medicines as Anticancer Agents Xiao-Huang Xu 1,†, Ting Li 1,†, Chi Man Vivienne Fong 1, Xiuping Chen 1, Xiao-Jia Chen 1, Yi-Tao Wang 1, Ming-Qing Huang 2,* and Jin-Jian Lu 1,* 1 State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao, China; [email protected] (X.-H.X.); [email protected] (T.L.); [email protected] (C.M.V.F.); [email protected] (X.C.); [email protected] (X.-J.C.); [email protected] (Y.-T.W.) 2 College of Pharmacy, Fujian University of Traditional Chinese Medicine, Fuzhou 350122, China * Correspondence: [email protected] (M.-Q.H.); [email protected] (J.-J.L.); Tel.: +86-591-2286-1135 (M.-Q.H.); +85-388-224-674 (J.-J.L.) † The authors contribute equally to this work. Academic Editor: Derek J. McPhee Received: 15 August 2016; Accepted: 30 September 2016; Published: 5 October 2016 Abstract: Saponins are glycosides with triterpenoid or spirostane aglycones that demonstrate various pharmacological effects against mammalian diseases. To promote the research and development of anticancer agents from saponins, this review focuses on the anticancer properties of several typical naturally derived triterpenoid saponins (ginsenosides and saikosaponins) and steroid saponins (dioscin, polyphyllin, and timosaponin) isolated from Chinese medicines. These saponins exhibit in vitro and in vivo anticancer effects, such as anti-proliferation, anti-metastasis, anti-angiogenesis, anti-multidrug resistance, and autophagy regulation actions. In addition, related signaling pathways and target proteins involved in the anticancer effects of saponins are also summarized in this work.
    [Show full text]
  • In Chemistry, Glycosides Are Certain Molecules in Which a Sugar Part Is
    GLYCOSIDES Glycosides may be defined as the organic compounds from plants or animal sources, which on enzymatic or acid hydrolysis give one or more sugar moieties along with non- sugar moiety. Glycosides play numerous important roles in living organisms. Many plants store important chemicals in the form of inactive glycosides; if these chemicals are needed, the glycosides are brought in contact with water and an enzyme, and the sugar part is broken off, making the chemical available for use. Many such plant glycosides are used as medications. In animals (including humans), poisons are often bound to sugar molecules in order to remove them from the body. Formally, a glycoside is any molecule in which a sugar group is bonded through its carbon atom to another group via an O-glycosidic bond or an S-glycosidic bond; glycosides involving the latter are also called thioglycosides. The sugar group is then known as the glycone and the non-sugar group as the aglycone or genin part of the glycoside. The glycone can consist of a single sugar group (monosaccharide) or several sugar groups (oligosaccharide). Classification Classification based on linkages Based on the linkage of sugar moiety to aglycone part 1. O-Glycoside:-Here the sugar is combined with alcoholic or phenolic hydroxyl function of aglycone.eg:-digitalis. 2. N-glycosides:-Here nitrogen of amino group is condensed with a sugar ,eg- Nucleoside 3. S-glycoside:-Here sugar is combined with sulphur of aglycone,eg- isothiocyanate glycosides. 4. C-glycosides:-By condensation of a sugar with a cabon atom, eg-Cascaroside, aloin. Glycosides can be classified by the glycone, by the type of glycosidic bond, and by the aglycone.
    [Show full text]
  • 2019 Annual Report
    Alfred P. Sloan Foundation $ 2019 Annual Report 2019 Annual Report 1 Alfred P. Sloan Foundation $ 2019 Annual Report Driven by the promise of great ideas. Alfred P. Sloan Foundation $ 2019 Annual Report Contents Preface 2 Mission 3 From the President 4 On Racism and Our Responsibilities 6 The Year in Discovery 8 Deep Carbon Observatory 18 Microbiology of the Built Environment 21 About the Grants Listing 24 2019 Grants by Program 25 2019 Financial Review 123 Audited Financial Statements and Schedules 125 Board of Trustees 156 Officers and Staff 157 Index of 2019 Grant Recipients 158 Cover: A student participant in the Environmentor program holds a turtle. An initiative of RISE (the Rockaway Institute for Sustainability), the Environmentor program is a Sloan-supported science research mentorship that offers NYC high school students the opportunity to conduct authentic, hands-on environmental research on Jamaica Bay and the Rockaway shoreline. (PHOTO: RISE ROCKAWAY) 1 Alfred P. Sloan Foundation $ 2019 Annual Report Preface The Alfred P. Sloan Foundation administers a private fund for the benefit of the public. It accordingly recognizes the responsibility of making periodic reports to the public on the management of this fund. The Foundation therefore submits this public report for the year 2019. 2 Alfred P. Sloan Foundation $ 2019 Annual Report Mission The Alfred P. Sloan Foundation makes grants primarily to support original research and education related to science, technology, engineering, mathematics, and economics. The Foundation believes that these fields— and the scholars and practitioners who work in them— are chief drivers of the nation’s health and prosperity.
    [Show full text]
  • Traditional Medicine Research Doi: 10.12032/TMR20210616237
    Traditional Medicine Research doi: 10.12032/TMR20210616237 Annual advances of integrative pharmacology in 2020 Ke-Wu Zeng1*, Ming-Yao Gu2* 1State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China; 2Department of Cell Biology and Medical Genetics, School of Basic Medical Sciences, Shenzhen University Health Science Center, Shenzhen 518061, China. *Corresponding to: Ke-Wu Zeng, State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, No.38 Xueyuan Road, Haidian District, Beijing 100191, China; E-mail: [email protected]. Ming-Yao Gu, Department of Cell Biology and Medical Genetics, School of Basic Medical Sciences, Shenzhen University Health Science Center, No.1066 Xueyuan Avenue, Nanshan District, Shenzhen 518061, China; E-mail: [email protected]. Highlights This review covers the studies in the year 2020 for pharmacological reports on traditional medicine as well as herb-derived active natural products. Moreover, the pharmacological reports on active natural products against cancers, inflammation, and metabolic diseases were major topics. Tradition This annual integrative pharmacology review includes the reports published in 2020 on bioactive herbal extracts and novel compounds in traditional medicine. Pharmacological reports on traditional herbs as well as their active compounds for anticancer, inflammation, and metabolic diseases occupy dominant positions. Submit a manuscript: https://www.tmrjournals.com/tmr 1 doi: 10.12032/TMR20210616237 REVIEW Abstract Major studies on the pharmacology of traditional herbs as well as active compounds have been introduced in this review over the previous 12 months. This annual integrative pharmacology review includes the reports published in 2020 on bioactive herbal extracts and novel compounds in traditional medicine.
    [Show full text]
  • Print This Article
    PEER-REVIEWED ARTICLE bioresources.com GC-MS Characterisation of Sapogenins from Sisal Waste and a Method to Isolate Pure Hecogenin Jener David G. Santos * and Alexsandro Branco ** Five steroidal sapogenins (tigogenin, neotigogenina, hecogenin, gloriogenin, and dehydrohecogenin) were characterised by gas chromatography coupled with mass spectrometry (GC-MS) from a hydrolysed extract of sisal waste. In addition, pure hecogenin, an important raw material for the pharmaceutical industry, was obtained from this waste by selective liquid-liquid extraction of saponins with only hecogenin as aglycone, followed by acid hydrolysis. The yield of pure hecogenin was 460 mg.Kg-1 of sisal waste. Keywords: Agave sisalana; Sisal waste; Extraction; Steroids; Hecogenin Contact information: Laboratory of Phytochemistry, State University of Feira de Santana, 44.036-900 Feira de Santana, Bahia, Brazil; Corresponding authors: *[email protected], **[email protected] INTRODUCTION Steroidal sapogenins are a glycone non-sugar portion of the saponin molecule used for the semi-synthesis of bioactive compounds. Example compounds used in this application include the following: smilagenin, sarsasapogenin, diosgenin, yamogenin, tigogenin, neotigogenin, gloriogenin, gentrogenin, hecogenin, sisalagenin, 9-dehydro- hecogenin, and gitogenin (Agrawal et al. 1985). Among these steroidal sapogenins, diosgenin, sarsasapogenin, and hecogenin are particularly important. The usefulness of hecogenin (Fig. 1) as a synthetic starting material is due to the presence of an oxygen atom in the C-12 position that can be moved to the C-11 position. This makes it possible to introduce the 9-11 double bond required for the syntheses of corticosteroids (Beauvoir 1976). Fig. 1. Chemical structural of hecogenin In the 1940s, steroidal sapogenins achieved great economic importance because of their transformation into pharmaceutically valuable derivatives such as corticosteroids (prednisone, dexamethasone, betamethasone, triamcinolone, and others), sexual hormones, and steroid diuretics (Fernández-Herrera et al.
    [Show full text]
  • Naturally Occurring Saponins: Chemistry and Biology
    Journal of Poisonous and Medicinal Plant Research Vol. 1(1), pp. 001-006, May, 2013 Available online at http://www.apexjournal.org ISSN 2315-8834© 2013 Apex Journal International Review Naturally occurring saponins: Chemistry and biology J. S. Negi 1*, P. S. Negi 2, G. J. Pant 2, M. S. M. Rawat 2, S. K. Negi 3 1Herbal Research and Development Institute, Mandal, Gopeshwar (Chamoli) - 246 401, Uttarakhand, India. 2Department of Chemistry, HNB Garhwal University, Srinagar (Garhwal)- 246 174, Uttarakhand, India. 3Department of Botany, HNB Garhwal University, Srinagar (Garhwal) - 246 174, Uttarakhand, India. Accepted 2 April, 2013 Naturally occurring saponins are glycosides of steroids, alkaloids and triterpenoids. They are widely distributed in nature and reported to be present in 500 genera of plants. A wide variety of plants belonging to family Liliaceae, Dioscoreaceae, Solanaceae, Sapindaceae and Agavaceae are the major source of saponins. They are amorphous substances having high molecular weight and are soluble in water and alcohol to produce foam but organic solvents inhibit their foaming property. Plants saponins are generally extracted into butanol through liquid-liquid partition and separated through column chromatography using silica gel as adsorbent and chloroform: methanol as mobile phase. HPLC, GC, Sephadex LH-20 Chromatography, DCCC, preparative paper chromatography and TLC were also used for the separation and isolation of saponins. The structures of saponins were determined by several spectroscopic techniques, viz., UV, IR, 1H NMR, 13 C NMR and Mass spectroscopy. Saponins possess several biological activities such as antioxidant, immunostimulant, antihepatotoxic, antibacterial, anticarcinogenic, antidiarrheal, antiulcerogenic, antioxytoxic, antihypoglycemic, anticytotoxic and antimolluscicidal. Saponins are biologically synthesized by C5 isoprene units through cytosolic mevalonate pathway.
    [Show full text]
  • United States Patent Office W
    w 2,870,143 United States Patent Office Patented Jan. 20, 1959 2 2,870,143 the structure of the parent sapogenin and that heating beyond the point of complete conversion gives lower PROCESS FOR CONVERSION OF STEROIDAL yields of the pseudosapogenins. In particular, differ SAPOGENINS TOPSEUDOSAPOGENNS ences in the spiroketal side chain configuration of Sapog Monroe E. Wall, Oreland, and Samuel Serota, Phila eninsis one factor which leads to significant differences delphia, Pa., assignors to the United States of America in the rate of conversion of the sapogenin to pseudo as represented by the Secretary of Agriculture sapogenin. In the accompanying table (Table I) each No Drawing. Application January 22, 1958 pair of sapogenins is identical except for isomerism in the spiroketal side chain. The site of isomerism, now Serial No. 710,588 10 considered to be at C25 (cf. M. E. Wall, Experientia 11, i8. Claims. (Cl. 260-239.55) 340 (1955), for a review of pertinent literature), is im material to the present invention. The significance of (Granted under Title 35, U.S. Code (1952), sec. 266) the data in Table I is that in each pair of normal and A non-exclusive, irrevocable, royalty-free license in the iso sapogenins, the normal isomer is converted to its re invention herein described, throughout the world for all 5 spective pseudosapogenin much more rapidly than is the purposes of the United States Government, with the power iso analogue. to grant sublicenses for such purposes, is hereby granted TABLE. I.-CONVERSION OF NATURAL SAPOGENINS TO to the Government of the United States of America.
    [Show full text]
  • International Historic Chemical Landmark Acclaims Success of Mexican Steroid Industry and a U.S
    Journal of the Mexican Chemical Society ISSN: 1870-249X [email protected] Sociedad Química de México México Raber, Linda Steroid industry honored. International historic chemical landmark acclaims success of mexican steroid industry and a U.S. chemist who made it possible Journal of the Mexican Chemical Society, vol. 43, núm. 6, noviembre-diciembre, 1999, pp. 235-237 Sociedad Química de México Distrito Federal, México Available in: http://www.redalyc.org/articulo.oa?id=47543610 How to cite Complete issue Scientific Information System More information about this article Network of Scientific Journals from Latin America, the Caribbean, Spain and Portugal Journal's homepage in redalyc.org Non-profit academic project, developed under the open access initiative Revista de la Sociedad Química de México, Vol. 43, Núm. 6 (1999) 235-237 Noticias Steroid Industry Honored† International Historic Chemical Landmark Acclaims Success of Mexican Steroid Industry and a U.S. Chemist Who Made it Possible Linda Raber American Chemical Society 1155-16th St., N.W, Washington, D.C. 20036. U.S.A. “There are more stories told about Russell Marker than any he founded in Mexico City with Emeric Somlo and Federico other chemist. Although perhaps many of these stories are A. Lehmann. apocryphal, they are so fascinating that most of us cannot bear “This low-cost progesterone eventually became the pre- to stop repeating them. This is the oral history of our profes- ferred precursor in the industrial preparation of the anti- sion that we pass to our colleagues and our students. They are inflammatory drug cortisone. In 1951, Syntex researchers syn- the campfire stories that bind our profession together” – thesized the first useful oral contraceptive from Marker’s start- Steven M.
    [Show full text]
  • Chemical Constituents of Plants from the Genus Patrinia
    Natural Product Sciences 19(2) : 77-119 (2013) Chemical Constituents of Plants from the Genus Patrinia Ju Sun Kim and Sam Sik Kang* Natural Products Research Institute and College of Pharmacy, Seoul National University, Seoul 151-742, Korea Abstract − The genus Patrinia, belonging to the Valerianaceae family, includes ca. 20 species of herbaceous plants with yellow or white flowers, distributed in Korea, China, Siberia, and Japan. Among them, P. scabiosaefolia (yellow Patrinia), P. saniculaefolia, P. villosa (white Patrinia), and P. rupestris are found in Korea. Several members of this genus have long been used in folk medicine for the treatment of inflammation, wound healing, ascetics, and abdominal pain after childbirth. Thus far, ca. 217 constituents, namely flavonoids, iridoids, triterpenes, saponins, and others have been identified in this genus. Crude extract and isolated compounds have been found to exhibit anticancer, anti-inflammatory, antioxidant, antifungal, antibacterial, cytotoxic activities, lending support to the rationale behind several of its traditional uses. The present review compiles information concerning the phytochemistry and biological activities of Patrinia, with particular emphasis on P. villosa, as studied by our research group. Keywords − Valerianaceae, Patrinia species, Natural products chemistry, Biological activities Introduction of the compounds/extracts obtained from this plants. Patrinia is a genus of herbaceous plants in the Chemical Constituents Valerianaceae family. There are about 20 species native to grassy mountain habitats in China, Siberia, and Japan. The reported chemical constituents from the genus Among them, P. scabiosaefolia (yellow Patrinia), P. Patrinia number, thus far, approximtely 217, include saniculaefolia, P. villosa (white Patrinia), and P. rupestris flavonoids, iridoids, triterpenes, saponins, steroids, and a are found in Korea (Lee, 1989; Bae, 2000).
    [Show full text]
  • Saponins As Cytotoxic Agents: a Review
    Phytochem Rev (2010) 9:425–474 DOI 10.1007/s11101-010-9183-z Saponins as cytotoxic agents: a review Irma Podolak • Agnieszka Galanty • Danuta Sobolewska Received: 13 January 2010 / Accepted: 29 April 2010 / Published online: 25 June 2010 Ó The Author(s) 2010. This article is published with open access at Springerlink.com Abstract Saponins are natural glycosides which Con A Concanavalin A possess a wide range of pharmacological properties ER Endoplasmic reticulum including cytotoxic activity. In this review, the recent ERK Extracellular signal-regulated studies (2005–2009) concerning the cytotoxic activity kinase of saponins have been summarized. The correlations GADD Growth arrest and DNA damage- between the structure and the cytotoxicity of both inducible gene steroid and triterpenoid saponins have been described GRP Glucose regulated protein as well as the most common mechanisms of action. hTERT Telomerase reverse transcriptase JAK Janus kinase Keywords Cytotoxic mechanisms Á MEK = MAPK Mitogen-activated protein kinase Glycosides Á Sar Á Steroid Á Triterpenoid MMP Matrix metalloproteinase mTOR Mammalian target of rapamycin Abbreviations NFjB Nuclear factor kappa-light-chain- AMPK AMP activated protein kinase enhancer of activated B cells BiP Binding protein NO Nitric oxide BrDU Bromodeoxyuridine PARP Poly ADP ribose polymerase CCAAT Cytidine-cytidine-adenosine- PCNA Proliferating cell nuclear antigen adenosine-thymidine PI3K Phosphoinositide-3-kinase CD Cluster of differentiation molecule PP Protein phosphatase CDK Cyclin-dependent kinase PPAR-c Peroxisome proliferator-activated CEBP CCAAT-enhancer-binding protein receptor c CHOP CEPB homology protein Raf Serine/threonine specific kinase STAT Signal transducer and activator of transcription TIMP Tissue inhibitor of metallo- proteinase TSC Tuberous sclerosis complex VEGF Vascular endothelial growth factor & I.
    [Show full text]